如何使用ASPEN TM_软件模拟完成精馏的设计和控制 第一章

如何使用ASPEN TM_软件模拟完成精馏的设计和控制 第一章
如何使用ASPEN TM_软件模拟完成精馏的设计和控制 第一章

特别说明

此资料来自豆丁网(https://www.360docs.net/doc/0112464043.html,/)

您现在所看到的文档是使用下载器所生成的文档

此文档的原件位于

https://www.360docs.net/doc/0112464043.html,/p-60311798.html

感谢您的支持

抱米花

https://www.360docs.net/doc/0112464043.html,/lotusbaob

Aspen plus模拟精馏塔说明书要点

Aspen plus模拟精馏塔说明书 一、设计题目 根据以下条件设计一座分离甲醇、水、正丙醇混合物的连续操作常压精馏塔: 生产能力:100000吨精甲醇/年;原料组成:甲醇70%w,水28.5%w,丙醇1.5%w;产品组成:甲醇≥99.9%w;废水组成:水≥99.5%w;进料温度:323.15K;全塔压降:0.011MPa;所有塔板Murphree 效率0.35。 二、设计要求 对精馏塔进行详细设计,给出下列设计结果并利用AutoCAD绘制塔设备图,并写出设计说明。 (1).进料、塔顶产物、塔底产物、侧线出料流量; (2).全塔总塔板数N;最佳加料板位置N F;最佳侧线出料位置N P; (3).回流比R; (4).冷凝器和再沸器温度、热负荷; (5).塔内构件塔板或填料的设计。 三、分析及模拟流程 1.物料衡算(手算) 目的:求解 Aspen 简捷设计模拟的输入条件。 内容: (1)生产能力:一年按8000 hr计算,进料流量为 100000/(8000*0.7)=17.86 t/hr。 (2)原料、塔顶与塔底的组成(题中已给出): 原料组成:甲醇70%w,水28.5%w,丙醇1.5%w; 产品:甲醇≥99.9%w;废水组成:水≥99.5%w。 (3).温度及压降: 进料温度:323.15K;全塔压降:0.011MPa; 所有塔板Murphree 效率0.35。 2.用简捷模块(DSTWU)进行设计计算 目的:对精馏塔进行简捷计算,根据给定的加料条件和分离要求计算最小回流比、最小理论板数、理论板数和加料板位置。 3.灵敏度分析 目的:研究回流比与塔径的关系(N T-R),确定合适的回流比与塔板数;

精馏塔提馏段的温度控制系统

南华大学 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统学生XXX 专业班级自动化X X X 学号XXXXXXXXXX 指导老师XXX 2012年6月25日

目录 1.系统简介与设计目的 (2) 2.控制系统工艺流程及控制要求 (3) 3.设计方案及仪表选型 (4) 3.1控制方案的确定 (4) 3.2控制系统图、方框图 (5) 4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7) 4.1检测元件 (7) 4.1.1铠装热电偶特点 (7) 4.1.2铠装热电偶主要技术参数 (7) 4.2变送器 (7) 4.2.1变送器主要技术指标 (7) 4.3调节器 (8) 4.4执行器 (8) 4.4.1电/气阀门定位器作用 (8) 5.绘制仪表盘电气接线图,端子接线图 (10)

6.仪表型号清单 (11) 7.设计总结 (12) 参考文献 (13) 1.系统简介与设计目的 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以 来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔 板组成,在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的 特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是,在保证产品质 量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好 实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。 如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化, 首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变 化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高于塔 顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几 倍最小回流比时,可采用提馏段控制。提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

精馏塔温度控制系统设计.doc

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 090302074 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

aspen吸收、精馏塔模拟设计(转载)

aspen模拟塔设计(转载) 一、板式塔工艺设计 首先要知道工艺计算要算什么?要得到那些结果?如何算?然后再进行下面的计算步骤。(参考) 其次要知道你用的软件(或软件模块)能做什么,不能做什么?你如何借助它完成给定的设计任务。 记住:你是工艺设计者,没有 aspen 你必须知道计算过程及方法,能将塔设计出来,这是你经过课程学习应该具有的能力,理论上讲也是进入毕业设计的前提。只是设计过程中将复杂的计算过程交给 aspen 完成, aspen 只替你计算,不能替你完成你的设计。做不到这一点说明工艺设计部份还不合格,毕业答辩就可能要出问题,实际的这是开题时要做的事的一部份,开题答辩就是要考察这个方面的问题。 设计方案,包括设计方法、路线、分析优化方案等,应该是设计开题报告中的一部份。没有很好的设计方案,具体作时就会思路不清晰,足见开题的重要性。下面给出工艺设计计算方案参考,希望借此对今后的结构和强度设计作一个详细的设计方案,明确的一下接下来所有工作详细步骤和方法,以便以后设计工作顺利进行。 板式塔工艺计算步骤 1.物料衡算(手算) 目的:求解 aspen 简捷设计模拟的输入条件。 内容:(1) 组份分割,确定是否为清晰分割; (2)估计塔顶与塔底的组成。 得出结果:塔顶馏出液的中关键轻组份与关键重组份的回收率 参考:《化工原理》有关精馏多组份物料平衡的内容。 2.用简捷模块(DSTWU)进行设计计算 目的:结合后面的灵敏度分析,确定合适的回流比和塔板数。 方法:选择设计计算,确定一个最小回流比倍数。 得出结果:理论塔板数、实际板数、加料板位置、回流比,蒸发率等等RadFarce 所需要的所有数据。

精馏塔温度控制系统设计

精馏塔温度控制系统设计 The Standardization Office was revised on the afternoon of December 13, 2020

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 0 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而

aspen模拟间歇精馏的简单程序

[注意]随便看看吧 BLOCK: COL MODEL: BATCHFRAC --------------------------------- CHARGE - FEED OPSTEP O-1 STAGE 10 OUTLETS - PROD COL-CONTENTS OPSTEP O-1 STAGE 10 DIST DISTILLATE OPSTEP O-1 STAGE 1 PROPERTY OPTION SET: NRTL-RK RENON (NRTL) / REDLICH-KWONG *** MASS AND ENERGY BALANCE *** IN OUT RELATIVE DIFF. TOTAL BALANCE MOLE(KMOL/HR ) 35.5310 35.5310 -0.651964E-07 MASS(KG/HR ) 1000.00 1000.00 0.346421E-06 ENTHALPY(MMKCAL/H) -2.18172 -2.13628 -0.208274E-01 ********************** **** INPUT DATA **** ********************** **** INPUT PARAMETERS **** NUMBER OF PHASES 2 NUMBER OF THEORETICAL STAGES 10 NUMBER OF OPERATION STEPS 1 NUMBER OF ACCUMULATORS 1 ALGORITHM OPTION STANDARD MAXIMUM NO. OF TOTAL REFLUX LOOPS 60 MAXIMUM NO. OF OUTSIDE LOOPS 50 MAX NO. OF INSIDE LOOPS/OUTSIDE LOOP 10 MAXIMUM NUMBER OF FLASH ITERATIONS 50 REPORT TIME INTERVAL HR 2.00000 FLASH TOLERANCE 0.000100000 DISTILLATION ALGORITHM OUTSIDE LOOP TOL 0.100000-04 DISTILLATION ALGORITHM INSIDE LOOP TOL 0.100000-05 TOTAL REFLUX ALGORITHM TOLERANCE 0.100000-05 INTEGRATION ERROR TOLERANCE 0.000100000 INITIAL TIME STEP USED BY INTEGRATOR HR 0.00027778 ************************************ **** OPERATION STEP O-1 **** ************************************ **** COL-SPECS **** MOLAR VAPOR DIST / TOTAL DIST 0.0 MASS DISTILLATE RATE KG/HR 10.0000 MOLAR REFLUX RATIO 2.00000 MOLAR BOILUP RATE (TOTAL REF) KMOL/HR 3.55310 **** COLUMN PROFILES **** TRAY HOLDUP PRESSURE BAR 1 10.0000 KG 1.01000 2 1.00000 KG 1.02000 3 1.00000 KG 1.03000 4 1.00000 KG 1.04000 5 1.00000 KG 1.05000 6 1.00000 KG 1.06000 7 1.00000 KG 1.07000 8 1.00000 KG 1.08000 9 1.00000 KG 1.09000 10 0.0 CUM 1.10000 **** STOP CRITERION **** RUN UNTIL MASS FRACTION IN STAGE LIQUID FALLS ABOVE STOP CRITERION

《化工流程模拟实训—Aspen Plus教程(孙兰义主编)》配套PPS课件第7章 分离单元模拟PartB

第7章分离单元模拟Part B 作者:武佳孙兰义

第7章分离单元模拟Part B ?7.1 概述 ?7.2 精馏塔的简捷设计模块DSTWU ?7.3 精馏塔的简捷校核模块Distl ?7.4 精馏塔的严格计算模块RadFrac ?7.5 塔板和填料的设计与校核 ?7.6 连续萃取模块Extract ?7.7 吸收示例

7.1 概述 模块说明功能适用对象 DSTWU 使用Winn-Underwood-Gilliland 方法的多组分精馏的简捷设计模 块 确定最小回流比、最小理论板数以 及实际回流比、实际理论板数等 仅有一股进料和两股产品的简 单精馏塔 Distl 使用Edmister方法的多组分精馏 的简捷校核模块 计算产品组成 仅有一股进料和两股产品的简 单精馏塔 RadFrac 单个塔的两相或三相严格计算模 块 精馏塔的严格核算和设计计算 普通精馏、吸收、汽提、萃取 精馏、共沸精馏、三相精馏、 反应精馏等 Extract液-液萃取严格计算模块液-液萃取严格计算萃取塔 MultiFrac严格法多塔蒸馏模块对一些复杂的多塔进行严格核算和 设计计算 原油常减压蒸馏塔、吸收/汽提 塔组合等 SCFrac简捷法多塔蒸馏模块确定产品组成和流率、估算每个塔 段理论板数和热负荷等 原油常减压蒸馏塔等 PetroFrac石油蒸馏模块对石油炼制工业中的复杂塔进行严 格核算和设计计算预闪蒸塔、原油常减压蒸馏塔、催化裂化主分馏塔、乙烯装置初馏塔和急冷塔组合等 RateFrac非平衡级速率模块精馏塔的严格核算和设计计算 蒸馏塔、吸收塔、汽提塔、共

DSTWU是多组分精馏的简捷设计模块,针对相对挥发度近似恒定的物系开发,用于计算仅有一股进料和两股产品的简单精馏塔。 DSTWU模块用Winn-Underwood-Gilliland方法进行精馏塔的简捷设计计算。

精馏塔控制系统设计

Hefei University 《化工仪表及自动化》过程考核之三——设计 题目:精馏塔控制系统设计, 系别: 班级: 姓名: 学号: 教师: 日期:

目录 Hef e i Un iv ers ity (1) 化工班:《化工仪表及自动化》 (1) 过程考核之三——设计 (1) 一、概述 (3) 二、内容 (3) 三、说明 (3) 1、工作要求 (3) 2、物料 (3) 3、精馏过程的控制方案设计 (4) 四、设备选型 (5) 1、测控仪表选型 (5) 2、执行机构选型 (5) 五、总结 (5) 六、参考文献 (5)

精馏塔控制系统设计 一、概述 精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。影响精馏塔温度不稳定的因素主要是来自外界来的干扰。 二、内容 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 本文主要内容是结合课本所学仪表自动化知识,掌握测控仪表,了解二元精馏系统流程仪表的位号和特点,仔细研究二元精馏的工艺流程图,熟悉工艺流程依次设计一套完整的控制方案,使系统能对二元精馏的工艺过程进行有效地控制。 三、说明 1、工作要求 精馏塔控制系统主要分为三部分控制:塔釜温度控制精馏塔塔釜温度是产品成分的间接质量指标,要求温度检测点在系统受到干扰时温度变化灵敏,因此塔内测温点设置在灵敏板上,通过控制再沸器蒸汽流量来实现温度的稳定。 2、物料

过程控制课程设计-精馏塔的均匀控制系统设计

目录 1 精馏塔控制系统介绍 (1) 1.1精馏塔原理 (1) 1.2控制要求及干扰因素 (1) 2 设计任务及要求 (2) 3 均匀控制系统 (2) 3.1均匀控制概念 (2) 3.2均匀控制系统特点 (4) 4设计方案选择 (5) 4.1方案一简单均匀控制 (5) 4.2方案二串级均匀控制 (5) 5 系统各器件选型 (7) 5.1检测转换元件的选择、性能参数 (7) 5.2调节阀气开气关式选择 (9) 6.系统仿真与分析 (11) 7.小结与体会 (12) 参考文献 (13)

精馏塔的均匀控制系统设计 1 精馏塔控制系统介绍 1.1 精馏塔原理 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断地向下降液中转移,蒸汽愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 1.2 控制要求及干扰因素 为了保证精馏生产工序安全、高效持续进行,改造生产工艺提出如下控制要求: (1) 保证产品质量。以塔顶产品的纯度作为质量参数进行控制,构建质量控制系统。 (2) 保证平稳生产。首先要使精馏塔的进料参数保持稳定;其次为了维持塔的物料平衡,要控制塔顶和塔底产品采出量,使其和等于进料量;再次塔内的储液量

精馏塔PID控制系统简介

精馏塔PID控制系统简介 一、PID控制系统 单回路控制系统通常是指由一个检测元件及一个变送器、一个控制器、一个执行器、一个被控对象所组成的一个闭合回路的控制系统,又称简单控制系统或单参数控制系统。单回路控制系统是所有过程控制系统中最简单、最基本、应用最广泛和最成熟的一种,约占控制回路的80%以上,适用于被控对象滞后时间较小、负荷和干扰变化不大、控制质量要求不很高的场合。控制器在冶金、石油、化工、电力等各种工业生产中应用极为广泛。要实现生产过程自动控制,无论是简单的控制系统,还是复杂的控制系统,控制器都是必不可少的。控制器是工业生产过程自动控制系统中的一个重要组成部分。它把来自检测仪表的信号进行综合,按照预定的规律去控制执行器的动作,使生产过程中的各种被控参数,如温度、压力、流量、液位、成分等符合生产工艺要求。主要介绍在工业控制中有一定影响力的DDZ-Ⅲ型控制器的控制规律、构成原理和使用方法。 二、控制器的控制规律: 在自动控制系统中,由于扰动作用的结果使被控参数偏离给定值,从而产生偏差,控制器将偏差信号按一定的数学关系,转换为控制作用,将输出作用于被控过程,以校正扰动作用所造成的影响。被控参数能否回到给定值上,以怎样的途径、经过多长时间回到给定值上来,即控制过程的品质如何,不仅与被控过程的特性有关,而且也与控制器的特性,即控制器的规律有关。 所谓控制器的控制规律,就是指控制器的输出信号与输入信号之间随时间变化的规律。这种规律反映了控制器本身的特性。 控制器的基本控制规律由比例(P)、积分(I)、微分(D)三种。这三种控制规律各有其特点。 三、精馏塔主要测量控制点的测控方法、装置和设备的报警连锁简介 1、塔釜上升蒸汽量的控制: 塔釜上升蒸汽量是由塔釜加热电压来决定的,控制塔釜加热电压即可控制塔釜上升蒸汽量

精馏塔的计算

4.3 塔设备设计 4.3.1 概述 在化工、石油化工及炼油中,由于炼油工艺和化工生产工艺过程的不同,以及操作条件的不同,塔设备内部结构形式和材料也不同。塔设备的工艺性能,对整个装置的产品产量、质量、生产能力和消耗定额,以及“三废”处理和环境保护等各个方面,都用重大的影响。 在石油炼厂和化工生产装置中,塔设备的投资费用占整个工艺设备费用的25.93%。塔设备所耗用的钢材料重量在各类工艺设备中所占的比例也较多,例如在年产250万吨常压减压炼油装置中耗用的钢材重量占62.4%,在年产60-120万吨催化裂化装置中占48.9%。因此,塔设备的设计和研究,对石油、化工等工业的发展起着重要的作用。本项目以正丁醇精馏塔的为例进行设计。 4.3.2 塔型的选择 塔主要有板式塔和填料塔两种,它们都可以用作蒸馏和吸收等气液传质过程,但两者各有优缺点,要根据具体情况选择。 a.板式塔。塔内装有一定数量的塔盘,是气液接触和传质的基本构件;属逐级(板)接触的气液传质设备;气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气液相密切接触而进行传质与传热;两相的组分浓度呈阶梯式变化。 b.填料塔。塔内装有一定高度的填料,是气液接触和传质的基本构件;属微分接触型气液传质设备;液体在填料表面呈膜状自上而下流动;气体呈连续相自下而上与液体作逆流流动,并进行气液两相的传质和传热;两相的组分浓度或温度沿塔高连续变化。 4.3.2.1 填料塔与板式塔的比较: 表4-2 填料塔与板式塔的比较

4.3.2.2 塔型选择一般原则: 选择时应考虑的因素有:物料性质、操作条件、塔设备性能及塔的制造、安装、运转、维修等。 (1)下列情况优先选用填料塔: a.在分离程度要求高的情况下,因某些新型填料具有很高的传质效率,故可采用新型填料以降低塔的高度; b.对于热敏性物料的蒸馏分离,因新型填料的持液量较小,压降小,故可优先选择真空操作下的填料塔; c.具有腐蚀性的物料,可选用填料塔。因为填料塔可采用非金属材料,如陶瓷、塑料等; d.容易发泡的物料,宜选用填料塔。 (2)下列情况优先选用板式塔:

Aspen间歇精馏模拟教程

Aspen间歇精馏模拟教程 Use this Getting Started section to become familiar with the steps to set up a batch simulation using Aspen Batch Modeler. You will be modeling a system to recover methanol from a mixture of methanol and water. The objective is to separate methanol from the mixture with a purity of 99%. This mixture is not ideal given the polarity of the molecules; therefore, for a working pressure of 1atm, you will choose NRTL to model its physical properties. There are four steps in this process. Click a step to go the instructions for the step. Step 1 – Set up the Properties for Aspen Batch Modeler Step 2 – Enter structural data and specifications for the Aspen Batch Modeler block Step 3 – Enter Operating Steps Step 4 – Run the simulation and view the results Step 1 - Set up the Properties for Aspen Batch Modeler We want to define a Properties file that has the following defined. Components Property Method Water NRTL Methanol To define this Properties file, follow the steps below. To set up the Problem Definition file from within Aspen Batch Modeler: 1. Start Aspen Batch Modeler. 2. On the Species form, click Edit Using Aspen Properties.

精馏塔控制系统

第6章精馏塔控制系统 6.1 概述 精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。精馏的目的是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。 轻组分的转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相,并提供精馏所需的回流。 精馏过程是一个复杂的传质传热过程。表现为:过程变量多,被控变量多,可操纵的变量也多;过程动态和机理复杂。因此,熟悉工艺过程和内在特性,对控制系统的设计十分重要。 6.1.1 精馏塔的控制要求 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。 精馏过程是在一定约束条件下进行的。因此,精馏塔的控 制要求可从质量指标、产品产量、能量消耗和约束条件四方面 考虑。 1.质量指标 精馏塔的质量指标是指塔顶或塔底产品的纯度。通常,满 足一端的产品质量,即塔顶或塔底产品之一达到规定纯度,而 另一端产品的纯度维持在规定范围内。所谓产品的纯度,就二 元精馏来说,其质量指标是指塔顶产品中轻组分含量和塔底产 品中重组分含量。对于多元精馏而言,则以关键组分的含量来 表示。关键组分是指对产品质量影响较大的组分,塔顶产品的 关键组分是易挥发的,称为轻关键组分;塔底产品的关键组分 是不易挥发的,称为重关键组分。产品组分含量并非越纯越好, 原因是,纯度越高,对控制系统的偏离度要求就越高,操作成 本的提高和产品的价格并不成比例增加,因此纯度要求应与使图6.1-1 精馏塔示意图 用要求适应。 2.物料平衡控制 进出物料平衡,即塔顶、塔底采出量应和进料量相平衡,维持塔的正常平稳操作,以及上下工序的协调工作。物料平衡的控制是以冷凝罐(回流罐)与塔釜液位一定(介于规定的上、下限之间)为目标的。 3.能量平衡和经济平衡性指标 要保证精馏塔产品质量、产品产量的同时,考虑降低能量的消耗,使能量平衡,实现较好的经济性。 4.约束条件 精馏过程是复杂传质传热过程。为了满足稳定和安全操作的要求,对精馏塔操作参数有一定的约束条件。 气相速度限:精馏塔上升蒸汽速度的最大限。当上升速度过高时,造成雾沫带,塔板上的液体不能向下流,下层塔板的气相组分倒流到上层塔板,出现液泛现象。 最小气相速度限:指精馏塔上升蒸汽速度的最小限值。当上升蒸汽速度过低时,上升蒸汽不能托起上层的液相,造成漏夜,使板效率下降,精馏操作不能正常进行。

精馏塔精馏段温度比值控制方案设计

目录 1. 精馏塔控制系统介绍 (1) 1.1精馏塔原理 (1) 2. 精馏塔精馏段控制分析 (2) 2.1精馏塔精馏段的控制要求 (2) 2.2精馏塔精馏段的扰动分析 (3) 2.3精馏塔被控变量的选择 (6) 3. 比值控制系统 (7) 3.1 比值控制系统简介 (7) 3.2 比值控制系统的设计 (7) 4. 精馏塔精馏段温度比值控制系统设计 (9) 4.1精馏塔精馏段比值控制系统参数的选择 (9) 4.2控制参数的确定 (9) 4.3现场仪表选型,编制有关仪表信息的设计文件 (9) 4.4系统方块图 (10) 5. 分析被控对象特性,选择控制算法(调节器控制规律的确定) (11) 5.1比值系数的确定 (11) 6. 精馏塔精馏段温度控制分析 (12) 7. 系统仿真与参数整定 (14) 7.1 控制系统的Simulink仿真框图 (14) 7.2 PID参数整定 (14) 8. 课程设计总结 (18) 9. 参考文献 (19)

1.精馏塔控制系统介绍 1.1精馏塔原理 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔和填料塔两种主要类型。根据操作方式又可分为连续精馏塔和间歇精馏塔。 蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发组分不断地向蒸汽中转移,蒸汽中的难会发组分不断地向下降液中转移,蒸汽越接近塔顶,其易挥发组分浓度越高,而下降液越接近塔底,其难挥发组分则越富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。蒸馏的基本原理是将液体混合物部分气化,利用其中各组分挥发度不同的特性,实现分离目的的单元操作。蒸馏按照其操作方式可分为:简单蒸馏,闪蒸,精馏,特殊精馏等。 1.2精馏装置的作用 (1)精馏段的作用 加料版以上的塔段为精馏段,其作用是逐板增加上升气相中的易挥发组分的浓度。 (2)提馏段的作用 包括加料版在内的以下塔板为提馏段,其作用是逐板提取下降的液相中易挥发组分。 (3)塔板的作用 塔板是供气液两相进行传质和传热的场所。每一块塔板上气液两相进行双向传质,只要有足够的塔板数,就可以将混合液分离成两个较纯净的组分。 (4)再沸器的作用 其作用是提供一定流量的上升蒸气流。 (5)冷凝器的作用 其作用是提供塔顶液相产品并保证有适当的液相回流。回流主要补充塔板上易挥发组分的浓度,是精馏连续定态进行的必要条件。精馏是一种利用回流使混合液得到高纯度分离的蒸馏方法。

精馏塔的设计(毕业设计)

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

过程控制课程设计

… 辽宁工业大学 过程控制系统课程设计(论文) ¥ 题目:精馏塔塔内压力控制系统设计 、 院(系): 》 专业班级: 学号: 学生姓名: 指导教师:

起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院 教研室:测控技术与仪器 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 学生姓名 专业班级 设计题目 精馏塔塔内压力控制系统设计 课 程 设 计 ( 论 文 ) 任 务 设计任务 设计精馏塔塔内压力控制系统设计,精馏塔塔内压力的单位阶跃响应曲线实验数据如下: 设计要求 1、根据实验数据辨识对象的数学模型,设计一个无差控制系统,确定控制方案并绘制原理结构图、方框图; 2、 选择传感器、变送器、控制器、执行器,给出具体型号和参数; 3、确定控制器的控制规律以及控制器正反作用方式;对设计的控制系统进行仿真,整定运行参数。 4、若设计由数字控制系统实现应给出系统硬件电气连接图及程序流程图; 5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000 字以上。 技术参数 测量范围:0-5大气压,控制压力:1±大气压 ,超调量小于等于25%; 工作计划 1、布置任务,查阅资料,理解掌握系统的控制要求。(2天 ) 2、确定系统的控制方案,绘制原理结构图、方框图。(1天 ) 3、选择传感器、变送器、控制器、执行器,给出具体型号和参数。(2天 ) 4、确定控制器的控制规律以及控制器正反作用方式( 1天),调节阀的气开 气关形式以及流量特性选择。( 1天) 5、上机实现系统的模拟运行或仿真、答辩。(2天 ) 6、撰写、打印设计说明书(1天 ) 指导教师评语及成绩 平时: 论文质量: 答辩: 指导教师签字: 总成绩: 年 月 日

精馏塔计算方法

目录 1 设计任务书 (1) 1.1 设计题目……………………………………………………………………………………………………………………………………………………………………… 1.2 已知条件……………………………………………………………………………………………………………………………………………………………………… 1.3设计要求………………………………………………………………………………………………………………………………………………………………………… 2 精馏设计方案选定 (1) 2.1 精馏方式选择………………………………………………………………………………………………………………………………………………………………… 2.2 操作压力的选择………………………………………………………………………………………………………………………………………………………………… 2.4 加料方式和加热状态的选择…………………………………………………………………………………………………………………………………………………… 2.3 塔板形式的选择………………………………………………………………………………………………………………………………………………………………… 2.5 再沸器、冷凝器等附属设备的安排…………………………………………………………………………………………………………………………………………… 2.6 精馏流程示意图………………………………………………………………………………………………………………………………………………………………… 3 精馏塔工艺计算 (2) 3.1 物料衡算………………………………………………………………………………………………………………………………………………………………………… 3.2 精馏工艺条件计算……………………………………………………………………………………………………………………………………………………………… 3.3热量衡算………………………………………………………………………………………………………………………………………………………………………… 4 塔板工艺尺寸设计 (4) 4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………

精馏塔控制系统课程设计

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔提馏段温度控制系统设计 院(系):电气工程学院 专业班级:自动化082 学号: 080302051 学生姓名:曹威 指导教师: 起止时间:2011.06.27-2011.07.04

课程设计(论文)任务及评语 院(系):电气工程学院教研室:测控技术与仪器 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用串级控制系统能有效地去除蒸汽压强的波动对温度的影响。使用超驰控制系统控制釜液输出端,在塔釜温度较低时,塔底不出料只有当温度达到低线以上,液位控制器取代温度控制器以后,才有出料排出。 关键词:提馏段温度串级控制超驰控制

目录 第1章绪论 (1) 第2章控制方案 (2) 2.1 基本原理 (2) 2.1.1物料平衡关系 (2) 2.2设计方案 (3) 2.2.1控制方案类型 (3) 2.2.2控制方案的选择 (4) 第3章系统各仪表选择 (8) 3.1 检测变送器的原理 (8) 3.1.1 温度变送器的选择 (8) 3.1.2 流量变送器的选择 (9) 3.1.3 液位变送器的选择 (10) 3.2 执行器的选择 (10) 3.3 调节器的选择 (10) 3.4 调节器与执行器、检测变送器的选型 (12) 第4章系统仿真 (13) 4.1串级控制系统matlab仿真分析 (13) 4.2液位控制系统仿真分析 (14) 第5章课程设计总结 (16) 参考文献 (17)

推荐-精馏装置DCS组态控制系统设计课程设计书 精品

洛阳理工学院 过程控制工程 课程设计说明书 设计题目精馏装置DCS控制 系统设计

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。 影响物料平衡因素包括进料量和进料成分变化,顶部馏出物及底部出料变化;影响能量平衡因素主要包括进料温度或热焓变化,再沸器加热量和冷凝器冷却量变化,及塔的环境温度变化。采用PID控制系统能有效地去除蒸汽压强的波动对温度的影响。 关键词:精馏温度PID控制

目录 2.2.2.单回路控制系统的选用原则 2.3精馏塔精馏段温度控制系统设计方案错误!未定义书签。 2.3.1.精馏塔精馏段被控变量的选择 7 2.3.2.精馏段温度控制系统温度检测点选择 8

一精馏装置的工作原理 1 精馏装置的概述 (1)精馏的简介 精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。 影响精馏塔温度不稳定的因素主要是来自外界来的干扰(如进料流量,温度及成分等的变化对温度的影响)。一般情况下精馏塔塔釜的温度,我们是通过控制精馏塔釜内灵敏板的温度来控制的。灵敏板是当外界条件或负荷改变时精馏塔内温度变化最灵敏的一块塔板。以往调节只是采用灵敏板温度调节器单一回路调节,调节反应慢,时间滞后,对精馏操作而言,产品的纯度很难保证。精馏塔是一个多输入多输出的对象,它由很多级塔板组成,内在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。 精馏过程是一个复杂的传质传热过程。表现为:过程变量多,被控变量多,可操纵的变量也多;过程动态和机理复杂。因此,熟悉工艺过程和内在特性十分重要。 (2)精馏原理以及工业流程 精馏操作分为连续精馏和间歇精馏,本设计的研究对象是连续精馏的过程。连续

相关文档
最新文档