精馏塔塔釜温度控制系统的设计

精馏塔塔釜温度控制系统的设计
精馏塔塔釜温度控制系统的设计

辽宁工业大学

过程控制系统课程设计(论文)题目:精馏塔塔釜温度控制系统的设计

院(系):

指导教师:(签字)

起止时间:

课程设计(论文)任务及评语

院(系):电气工程学院教研室:自动化

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要

本系统利用工业生产过程控制采用串级控制系统实现精馏塔塔釜温度控制系统。通过选用铂铑10-铂热电偶传感器、ZMAP-16P DN15气动调节阀、DT2031数字调节器、热电偶温度变送器来实现。系统设计主要包括控制方案的设计和系统各仪表选型,软件设计,系统仿真四大部分。软件设计采用DCS组态来完成,并完成了系统监控画面。系统仿真采用MATLAB进行仿真,并得出仿真图。本系统便是基于工业生产过程控制采用串级控制系统实现精馏塔塔釜温度控制系统,通过对工业生产过程控制,来实现对精馏塔塔釜温度的控制。此次设计就是要设计一个精馏塔塔釜温度的串级控制系统。要求当物料进入精馏塔时,塔釜的温度可控并且温度恒定,保证生产的连续性。

关键词:精馏;温度控制;PID

目录

第1章绪论 (1)

第2章控制方案的设计 (3)

2.1设计要求 (3)

2.2方案设计 (3)

2.2.1 塔釜温度的前馈控制 (4)

2.2.2 塔釜温度的串级控制 (5)

2.2.3 塔釜温度的反馈控制 (6)

第3章系统各仪表选型 (8)

3.1温度传感器的选择 (8)

3.2执行器的选择 (8)

3.3调节器的选择 (9)

3.4压力变送器的选择 (9)

3.5温度变送器的选择 (10)

3.6控制器的正反作用选择 (10)

第4章软件设计 (11)

4.1系统控制流程图 (11)

4.2DCS组态 (11)

第5章系统仿真 (14)

5.1PID控制器的参数整定 (14)

5.2凑试法确定PID参数 (14)

5.3切线法确定被控对象的传函 (15)

5.4系统MATLAB仿真分析 (17)

第6章课程设计总结 (19)

参考文献 (20)

第1章绪论

精馏塔是进行精馏的一种塔式汽液接触装置。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。

蒸气由塔底进入。蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。

蒸馏的基本原理是将液体混合物多次部分气化和部分冷凝,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。

近年来出现的超重力精馏技术,利用高速旋转产生的数百至千倍重力的超重力场代替常规的重力场,极大地强化气液传质过程,将传质单元高度降低1个数量级。从而使巨大的塔设备变为高度不到2米的超重力精馏机,达到增加效率、缩小体积的目的。超重力精馏改变了传统的塔设备精馏模式,只要在室内厂房里就可以实现连续精馏过程。对社会的发展而言可节省钢材资源,延长地球资源的使用年限;对企业的发展而言,可以节约场地与空间资源,减少污染排放,提高产品质量,改善经营管理模式,降低生产劳动强度,增加生产的安全性。

精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,也就是说在提馏段上升的轻组分的易挥发组分逐渐增多,难挥发组分逐渐减少,而下降液相中易挥发组分逐渐减少,难挥发组分逐渐增多,从而实现分离的目的,满足化工连续化生产的需要。

精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻约分流失,提高物料的回收率;也可减少残余物料的污染作用。影响精馏塔温度不稳定的因素主要是来自外界来的干扰(如进料流量,温度及成分等的变化对温度的影响)。一般情况下精馏塔塔釜的温度,我们是通过控制精馏塔釜内灵敏板的温度来控制的。灵敏板是当外界条件或负荷

改变时精馏塔内温度变化最灵敏的一块塔板。以往调节只是采用灵敏板温度调节器单一回路调节,调节反应慢,时间滞后,对精馏操作而言,产品的纯度很难保证。

从上述干扰分析来看,有些干扰是可控的,有些干扰是不可控的。从而选择一种可靠并且稳定的控制系统来控制精馏塔塔釜的温度是非常重要的。

第2章控制方案的设计

2.1设计要求

精馏塔塔釜温度控制系统的设计要求如下:

1.塔釜温度控制在800±0.5℃;

2.生产过程中蒸汽压力变化剧烈,而且幅度大,要保证精馏塔正常工作;

3.塔釜及相关期间要经济实用。

2.2方案设计

精馏塔的干扰因素:

1.进料量波动的影响;

2.进料成分波动的影响;

3.进料温度波动的影响;

4.蒸汽压力波动的影响;

5.回流量和冷剂量波动的影响。

精馏塔的扰动如图2-1:

图2-1系统扰动

根据扰动的分析,系统设计方案主要考虑前馈,反馈和串级三种控制方案。

首先介绍什么叫静态前馈控制,即静态前馈控制的原理。所谓静态前馈控制

原理就是指前馈控制器的输出信号仅仅随着输入信号(干扰信号)d 大小的函数,而与时间因子t 无关。因此,前馈控制作用可以简化为:

(2-1) 通常将上式的关系近似的表示为线性关系,则前馈控制器就仅仅参考器静态

放大系数作为矫正的依据,即: 0/)(K K K s W d f t -== (2-2)

式中,d K ,0K 分别为干扰通道和控制通道的放大系数,一般来说f K 可以用

实验方法来获得,如果有条件列写对象有关参数的静态方程,则可以通过计算来确定。

在精馏塔塔釜的温度控制中,扰动可以测量但是不好控制,并且干扰幅度较

大。蒸汽压力的变化是塔釜温度的主要干扰量,控制对象则是塔釜的温度。

塔釜温度前馈控制的系统框图和塔釜温度前馈控制工节结点图如2-2、2-3所

示:

图2-2塔釜温度前馈控制的系统框图

)

(d f M f =

串级控制系统就是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。整个系统包括两个控制回路,主回路和副回路。副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。

为了提高精馏效率和保证产品纯度,我们采用灵敏板温度调节器与再沸器加热蒸汽流量调节器串级控制系统来对灵敏板温度进行控制。其中灵敏板温度调节器是主调节器,再沸器加热蒸汽流量调节器是副调节器。塔釜温度串级控制工艺结点图如2-4所示:塔釜温度串级控制示意图如图2-5所示:

图2-4塔釜温度串级控制工艺节点图

图2-5塔釜温度串级控制的系统框图

通过实际改造和使用,串级调节与单回路控制相比较,串级控制有许多优点:

1、抗干扰性强。由于主回路的存在,进入副回路的干扰影响大为减小。同时,由于串级控制系统增加了一个副回路,具有主、副两个调节器,大大提高了调节器的放大倍数,从而也就提高了对干扰的克服能力,尤其对于进入副回路的干扰。表现更为突出。

2、及时性好。串级控制对克服容量滞后大的对象特别有效。

3、适应能力强。串级控制系统就其主回路来看,它是一个定值控制系统,但其副回路对主调节器来说,却是一个随动控制系统,主调节器能够根据对象操作条件和负荷的变化情况不断纠正副调节器的给定值,以适应操作条件和负荷的变化。

通过采用串级控制系统,塔釜温度控制更加平稳,产品纯度很高,随着控制系统软件和硬件的不断发展和完善,计算机集散型控制系统的应用和普及,精馏塔的分离质量将会越来越好,分离精度也将会越来越高。

2.2.3塔釜温度的反馈控制

在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。

反馈控制系统由控制器、控制对象和反馈通路组成如图2-3所示。图中带叉号的圆圈为比较环节,用来将输入与输出相减,给出偏差信号。这一环节在具体系统中可能与控制器一起统称为调节器。以炉温控制为例,受控对象为炉子;输出变量为实际的炉子温度;输入变量为给定常值温度,一般用电压表示。炉温用热电偶测量,代表炉温的热电动势与给定电压相比较,两者的差值电压经过功率放大后用来驱动相应的执行机构进行控制。塔釜温度反馈控制的系统框图和塔釜温度反馈控制的工艺节点图如图2-6、2-7所示:

图2-6 塔釜温度反馈控制的系统框

由于前馈控制因不含时间因子,比较简单,在一般情况下,不需要专用的补偿器,单元组合仪表便可以满足使用要求。由于本设计主要考虑物料、压力等物理量对精馏塔釜温度的影响,并且干扰变化剧烈,幅度大,有时从0.5Mpa突然下降到0.3Mpa,压力变化40%。干扰幅度较大,所以应用串级控制系统。

第3章系统各仪表选型

3.1温度传感器的选择

热电偶作为温度传感元件,能将温度信号转换成电动势(mV)信号,配以测量毫伏的指示仪表或变送器可以实现温度的测量指示或温度信号的转换。具有稳定、复现性好、体积小、响应时间较小等优点、热电偶一般用于500°C以上的高温,可以在1600°C高温下长期使用。

热电阻也可以作为温度传感元件。大多数电阻的阻值随温度变化而变化,如果某材料具备电阻温度系数大、电阻率大、化学及物理性能稳定、电阻与温度的关系接近线性等条件,就可以作为温度传感元件用来测温,称为热电阻。热电阻分为金属热电阻和半导体热敏电阻两类。大多数金属热电阻的阻值随其温度升高而增加,而大多数半导体热敏电阻的阻值随温度升高而减少。

铂铑10-铂热电偶传感器测温范围在0~1600℃,WRP型铂铑10-铂热电偶性能可靠、耐高温、抗氧化,可长期工作在0~1600℃环境下。

3.2执行器的选择

执行器在控制系统中夜起着重要的作用,它直接实施控制系统的动作就好像人体的五官和手脚一样,大脑是调节器,而手就是执行器。执行器是一种现场类仪表因此它的精度、使用寿命、抗干扰和环境的适应能力等就是人们所关注的指标。

控制器的动作是由调节器的输出信号通过各种执行机构来实现的,在由电信号作为控制信号的控制系统中,目前广泛使用的是以下三种控制方式:

1.按动力来源分,有气动和电动两大类;

2.按动作极性分,有正作用和反作用两大类;

3.按动作特性分,有比例和积分两大类。ZMAP-1.6Mpa气开式

ZMAP-16P DN15气动调节阀PN1.6MPa。特点:

1.采用平衡式阀芯结构,轴向不平衡力小,允许压差大,稳定性好。

2.套筒互换性强,拆装方便,容易维修。

3.全金属阀芯结构适用多种工作场合,达到IV级泄漏标准,ZXMQ型软密封结构阀芯达到VI级泄漏标准。

4.阀体按流体力学原理设计成等截面低流阻流道,可调范围大,固有可调比为50,额定流量系数增大30。

5.执行机构采用多弹簧结构,高度减少30。重量减轻30。

6.ZJHPW型波纹管密封型调节阀,对移动的阀杆形成了完全的密封,堵绝流体外漏。

7.ZJHPJ型调节阀带有保温夹套,用于流体冷却后易结晶、凝固造成堵塞的场合

3.3调节器的选择

调节器是控制系统的大脑和指挥中心,是整个控制系统的核心所在,输入信号进入调节器,并且按照调节器的控制规律进行计算,即进行大脑的信号处理,运算处理的结果作为调节器的输出信号控制执行机构的动作,完成指挥控制系统的任务。

DT2031数字调节器是基于电动单元组合仪表进行升级,采用数字化控制技术的新型过程控制仪表,是一种智能型调节器,仪表的内部有功能强大的微处理器,根据不同要求进行组态设定。

DT2031数字调节器是基于电动单元组合仪表进行升级,采用数字化控制技术的新型过程控制仪表,是一种智能型调节器,仪表的内部有功能强大的微处理器,根据不同要求进行组态设定。实现具有微分前馈功能的PID,PI,PD,P控制方案,操作,组态,设定方便,性能价格比高,可用于电力、冶金、石油、化工等领域的自动化控制。

DT2031数字调节器支持4-20mA、0-10mA信号输入,输出;外部给定电压和跟踪电压可选择1-5V或0-10V。

3.4压力变送器的选择

压力变送器也称差变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。

压力变送器测量原理是:流程压力和参考压力分别作变送器用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半

导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级

电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的

标准电流电压信号。压力变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPa)和微差压变送器(0~30KPa)两种。

HSL-3051型压力变送器,传感器是采用引进国外先进技术生产的高精度小型化智能传感器,在转换原理上利用数字化补偿技术对温度、静压进行补偿,提高了测量精度,降低了温度漂移。具有长期稳定性好,可靠性高,自诊断能力强等特点。以其极高的性能价格比,而成为变送器市场的主流产品。

详细参数

供电电源:15-36 VDC(标定电压24VDC)

输出信号:(4-20)mA(二/三线制)、带Hart协议

工作温度:放大器工作在-29℃— +93℃; 敏感元件工作在-40℃— +104℃

3.5温度变送器的选择

热电偶温度变送器由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,最后放大转换为4-20mA电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。当热电偶断丝或接解不良时,变送器会输出最大值(28mA)以使仪表切断电源。

在量程范围内输出4-20mA直流信号,与热电偶或热电阻的输入信号成线性或与温度成线性。智能型温度变送器输出4-20mA直流信号同时叠加符合hart标准协议通信;隔离式温度变送器:输入与输出相隔离,隔离电压500V,增加了抗共模干扰能力,更适合与计算机连网使用。

3.6控制器的正反作用选择

控制阀:气开式取“+”号,气关式取“-”号;

控制器:正作用取“+”号,反作用取“-”号;

对象:当控制阀的物料或能量增加的时候,若被控量随之增加取“+”号,反之取“-”号;

变送器:一般为正环节;

气开阀随着控制信号的增大而开度增大,当无压力控制信号的时候,阀门处于全关闭状态;

当物料及蒸汽压力加大的时候阀门处于气开状态;

当物料流量增加的时候,输出物料也会增加,同时精馏塔本身容量的限制会控制这个流量的大小,所以控制器选择反作用,调节器即为正作用。

第4章软件设计

4.1系统控制流程图

本系统利用工业生产过程控制采用串级控制系统实现精馏塔塔釜温度控制系统。通过选用温度传感器采入塔釜温度设定值和实际值,在通过计算机计算控制器输出值,然后发出命令驱动执行机构。系统的控制流程图如图4-1所示:

图4-1系统控制流程图

4.2DCS组态

DCS是分布式控制系统的英文缩写(Distributed Control System),在国内自控行业又称之为集散控制系统。是相对于集中式控制系统而言的一种新型计算

机控制系统,它是在集中式控制系统的基础上发展、演变而来的。

DCS系统是随着现代大型工业生产自动化的不断兴起和过程控制要求的日益复杂应运而生的综合控制系统,它是计算机技术、系统控制技术、网络通讯技术和多媒体技术相结合的产物,可提供窗口友好的人机界面和强大的通讯功能。是完成过程控制、过程管理的现代化设备。

通过组态软件根据不同的流程应用对象进行软硬件组态,即确定测量与控制信号及相互间连接关系、从控制算法库选择适用的控制规律以及从图形库调用基本图形组成所需的各种监控和报警画面,从而方便地构成所需的控制系统。

如图4-2为组态画面,图4-3为系统监控画面,图4-4为总貌画面设置,图4-5为趋势组态设置。

图4-2组态画面

图4-3系统监控画面

图4-4总貌画面设置

图4-5趋势组态设置

第5章系统仿真

5.1PID控制器的参数整定

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。

比例I/微分D=2,具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P太短,会震荡,永远也打不到设定要求。

温度T: P=20~60%,T=180~600s,D=3-180s

压力P: P=30~70%,T=24~180s,

液位L: P=20~80%,T=60~300s,

流量L: P=40~100%,T=6~60s。

5.2凑试法确定PID参数

增大比例系数Kn一般将加快系统的响应,在有静差的情况下有利于减小静差。但过大的比例系数会使系统有较大的超调,并产生振荡,使稳定性变坏。增T有利于减小超调,减小振荡,使系统更加稳定,但系统静差的消除大积分时间

1

T亦有利于加快系统响应,使超调量减少,稳定性增将随之减慢。增大微分时间

D

加,但系统对扰动的抑制能力减弱,对扰动有较敏感的响应。

在凑试时,可参考以上参数对控制过程的影响趋势,对参数实行先比例,后积分,在微分的整定步骤。

5.3切线法确定被控对象的传函

获取被控对象的数学模型是进行控制系统设计的先决条件,只有得到被控对象的数学模型,才能分析对象的动态特性,进而设计出合理的控制系统通常将获取对象数学模型的过程称为建模。常用的建模方法有两种,即理论建模法和实验建模法。理论建模主要是通过对对象机理的分析,并在一定的假设条件下求出其动态方程,然后进行线性化处理。该方法比较复杂,一般只用于描述新研制对象的动态特性。对于热工被控对象,较多的采用实验的方法测定其动态特性,然后根据其动态特性求取其数学模型,这也是工程中常用的行之有效的方法。

目前应用较多的是阶跃响应曲线法,即当对象处于稳定状态时,在对象的输入端人为的加以阶跃扰动信号,同时观察被调量的响应特性曲线,然后由该曲线求出被控对象的传递函数。

由阶跃响应曲线求取对象的近似传递函数有切线法、两点法、半对数法等多种方法,每种方法都具有各自的特点,应根据实际情况使用。限于篇幅,在这里简单介绍切线法求对象的近似传递函数。如表5-1所示:根据表中信息可以得出:

主对象中的K=5,T=3,所以:

副对象中的K=2,T=2,所以:

表5-1用切线法求有自平衡能力对象的传递函数

丙酮水连续精馏塔设计说明书吴熠

课程设计报告书丙酮水连续精馏浮阀塔的设计学院化学与化工学院 专业化学工程与工艺 学生姓名吴熠 学生学号 指导教师江燕斌 课程编号 课程学分 起始日期

目录 \ "" \ \ \

第部分设计任务书 设计题目:丙酮水连续精馏浮阀塔的设计 设计条件 在常压操作的连续精馏浮阀塔内分离丙酮水混合物。生产能力和产品的质量要求如下: 任务要求(工艺参数): .塔顶产品(丙酮):, (质量分率) .塔顶丙酮回收率:η=0.99(质量分率) .原料中丙酮含量:质量分率(*) .原料处理量:根据、、返算进料、、、 .精馏方式:直接蒸汽加热 操作条件: ①常压精馏 ②进料热状态q=1 ③回流比R=3R min ④加热蒸汽直接加热蒸汽的绝对压强 冷却水进口温度℃、出口温度℃,热损失以计 ⑤单板压降≯ 设计任务 .确定双组份系统精馏过程的流程,辅助设备,测量仪表等,并绘出工艺流程示意图,表明所需的设备、管线及有关观测或控制所必需的仪表和装置。 .计算冷凝器和再沸器热负荷。塔的工艺设计:热量和物料衡算,确定操作回流比,选定板型,确定塔径,塔板数、塔高及进料位置 .塔的结构设计:选择塔板的结构型式、确定塔的结构尺寸;进行塔板流体力学性能校核(包括塔板压降,液泛校核及雾沫夹带量校核等)。 .作出塔的负荷性能图,计算塔的操作弹性。 .塔的附属设备选型,计算全套装置所用的蒸汽量和冷却水用量,和塔顶冷凝器、塔底蒸馏釜的换热面积,原料预热器的换热面积与泵的选型,各接管尺寸的确定。

第部分设计方案及工艺流程图 设计方案 本设计任务为分离丙酮水二元混合物。对于该非理想二元混合物的分离,应使用连续精馏。含丙酮(质量分数)的原料由进料泵输送至高位槽。通过进料调节阀调节进料流量,经与釜液进行热交换温度升至泡点后进入精馏塔进料板。塔顶上升蒸汽使用冷凝器,冷凝液在泡点一部分回流至塔内,其余部分经产品冷却后送至储罐。该物系属于易分离物系(标况下,丙酮的沸点°),塔釜为直接蒸汽加热,釜液出料后与进料换热,充分利用余热。 工艺流程图

设备选型-精馏塔设计说明书

第三章设备选型-精馏塔设计说明书3.1 概述 本章是对各种塔设备的设计说明与选型。 3.2设计依据 气液传质分离用的最多的为塔式设备。它分为板式塔和填料塔两大类。板式塔和填料塔均可用作蒸馏、吸收等气液传质过程,但两者各有优缺点,根据具体情况进行选择。设计所依据的规范如下: 《F1型浮阀》JBT1118 《钢制压力容器》GB 150-1998 《钢制塔式容器》JB4710-92 《碳素钢、低合金钢人孔与手孔类型与技术条件》HG21514-95 《钢制压力容器用封头标准》JB/T 4746-2002 《中国地震动参数区划图》GB 18306-2001 《建筑结构荷载规范》GB50009-2001 3.3 塔简述 3.3.1填料塔简述 (1)填料塔

填料塔是以塔内的填料作为气液两相间接触构件的传质设备,由外壳、填料、填料支承、液体分布器、中间支承和再分布器、气体和液体进出口接管等部件组成。 填料是填料塔的核心,它提供了塔内气液两相的接触面,填料与塔的结构决定了塔的性能。填料必须具备较大的比表面,有较高的空隙率、良好的润湿性、耐腐蚀、一定的机械强度、密度小、价格低廉等。常用的填料有拉西环、鲍尔环、弧鞍形和矩鞍形填料,20世纪80年代后开发的新型填料如QH—1型扁环填料、八四内弧环、刺猬形填料、金属板状填料、规整板波纹填料、格栅填料等,为先进的填料塔设计提供了基础。 填料塔适用于快速和瞬间反应的吸收过程,多用于气体的净化。该塔结构简单,易于用耐腐蚀材料制作,气液接触面积大,接触时间长,气量变化时塔的适应性强,塔阻力小,压力损失为300~700Pa,与板式塔相比处理风量小,空塔气速通常为0.5-1.2 m/s,气速过大会形成液泛,喷淋密度6-8 m3/(m2.h)以保证填料润湿,液气比控制在2-10L/m3。填料塔不宜处理含尘量较大的烟气,设计时应克服塔内气液分布不均的问题。 (2)规整填料 塔填料分为散装填料、规整填料(含格栅填料) 和散装填料规整排列3种,前2种填料应用广泛。 在规整填料中,单向斜波填料如JKB,SM,SP等国产波纹填料已达到国外MELLAPAK、FLEXIPAC等同类填料水平;双向斜波填料如ZUPAK、DAPAK 等填料与国外的RASCHIG SUPER-PAK、INTALOX STRUCTURED PACKING 同处国际先进水平;双向曲波填料如CHAOPAK等乃最新自主创新技术,与相应型号的单向斜波填料相比,在分离效率相同的情况下,通量可提高25% -35%,比国外的单向曲波填料MELLAPAK PLUS通量至少提高5%。上述规整填料已成功应用于φ6400,φ8200,φ8400,φ8600,φ8800,φ10200mm等多座大塔中。 (3)板波纹填料 板波纹填料由开孔板组成,材料薄,空隙率大,加之排列规整,因而气体通过能力大,压降小。其比表面积大,能从选材上确保液体在板面上形成稳定薄液

精馏塔提馏段的温度控制系统

南华大学 过程控制仪表课程设计 设计题目精馏塔提馏段的温度控制系统学生XXX 专业班级自动化X X X 学号XXXXXXXXXX 指导老师XXX 2012年6月25日

目录 1.系统简介与设计目的 (2) 2.控制系统工艺流程及控制要求 (3) 3.设计方案及仪表选型 (4) 3.1控制方案的确定 (4) 3.2控制系统图、方框图 (5) 4.各个环节仪表的选型,仪表的工作原理以及性能指标 (7) 4.1检测元件 (7) 4.1.1铠装热电偶特点 (7) 4.1.2铠装热电偶主要技术参数 (7) 4.2变送器 (7) 4.2.1变送器主要技术指标 (7) 4.3调节器 (8) 4.4执行器 (8) 4.4.1电/气阀门定位器作用 (8) 5.绘制仪表盘电气接线图,端子接线图 (10)

6.仪表型号清单 (11) 7.设计总结 (12) 参考文献 (13) 1.系统简介与设计目的 精馏操作是炼油、化工生产过程中的一个十分重要的环节。精馏塔的控制直接影响到工厂的产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以 来一直受到人们的高度重视。精馏塔是一个多输入多输出的对象,它由很多级塔 板组成,在机理复杂,对控制要求又大多较高。这些都给自动控制带来一定的困难。同时各塔工艺结构特点有千差万别,这需要深入分析特性,结合具体塔的 特点,进行自动控制方案设计和研究。精馏塔的控制最终目标是,在保证产品质 量的前提下,使回收率最高,能耗最小,或使总收益最大。在这个情况为了更好 实现精馏的目标就有了提馏段温度控制系统的产生。

按提馏段指标的控制方案,当塔釜液为主要产品时,常常按提馏段指标控制。 如果是液相进料,也常采用这类方案。这是因为在液位相进料时,进料量的变化, 首先影响到塔底产品浓度,塔顶或精馏段塔板上的温度不能很好地反映浓度的变 化,所以采用提馏段控制温度比较及时。另外如果对釜底出料的成分要求高于塔 顶出料,塔顶或精馏段板上温度不能很好反映组分变化和实际操作回流比大于几 倍最小回流比时,可采用提馏段控制。提馏段温度是衡量质量指标的间接指标,而以改变再沸器加热量作为控手段的方案,就是提馏段温控。 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

精馏塔设计指导书

简单填料精馏塔设计 设计条件与任务: 已知F 、xF 、xD 、xw 或F 、xF 、xD 和η,塔顶设全凝器,泡点回流,塔底间接(直接)蒸汽加热。 1 全塔物料衡算求产品流量与组成 (1)常规塔 全塔总物料衡算 总物料 F = D + W 易挥发组分 F χF = D χD + W χW 若以塔顶易挥发组分为主要产品,则回收率η为 D F Dx Fx η= 式中 F 、D 、W ——分别为原料液、馏出液和釜残液流量,kmol/h ; χF 、χD 、χW ——分别为原料液、馏出液和釜残液中易挥发组分的摩尔分率。 由(3-1)和(3-2)式得: W D W F x x x x F D --= (2) 直接蒸汽加热 总物料 * 0F S D W +=+ 易挥发组分 ** 00F D W Fx S y Dx W x +=+ 式中 V 0 ——直接加热蒸汽的流量,kmol/h ; У0 ——加热蒸汽中易挥发组分的摩尔分率,一般У0=0; W * ——直接蒸汽加热时釜液流量,kmol/h ; χ*W ——直接蒸汽加热时釜液中易挥发组分的摩尔分率。 2 计算最小回流比 设夹紧点在精馏段,其坐标为(xe,ye)则 min D e e e x y R y x -= - 设夹紧点在提馏段,其坐标为(xe,ye) min min (1)(1)e W e W y x R D qF L V R D q F x x -+==+--- 基础数据:气液相平衡数据

3 确定操作回流比 min (1.1~2.0)R R = 4 计算精馏段、提馏段理论板数 ① 理想溶液 图解法或求出相对挥发度用逐板计算法求取。 ② 非理想溶液 相平衡数据为离散数据,用图解法或数值积分法求取 精馏段 1 1 R D f N x R x n n dx N dN x x += =-? ? 因 111 D n n x R y x R R += +++ 所以 ()/D f x R x n n D n dx N y x x y R = ---? (4) 提馏段 1 1 S f W N x S x n n dx N dN x x += =-? ? 因 11 W n n x R y x R R +'+= -'' 蒸汽回流比(1)(1)(1)(1)V R D q F D F R R q W W W W +--'= ==+-- 所以 ()/(1) f w x S x n n n w dx N y x y x R = '---+? (5) 式(4)、(5)中塔板由下往上计数。 5 冷凝器和再沸器热负荷 冷凝器的热负荷 ()C DV DL Q V I I =- 再沸器的热负荷 B C D W F Q Q DI WI FI =++- 待求量:进料温度t F 、塔顶上升蒸汽温度t DV (与x D 对应的露点温度)、回流温度t DL (与x D 对应的泡点温度)、再沸器温度tw (与x W 对应的泡点温度)。 物性数据: ① 各组分在平均温度下的液相热容、气相热容或汽化热。 ② 各组分的热容方程常数 如 2 3 p c A BT CT DT =+++ ③ 由沃森公式计算汽化热 21 0.38211( )1r V V r T H H T -?=?-

精馏塔温度控制系统设计.doc

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 090302074 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而且大多数控制对象在运行的同时自身的结构也在发生变化。所以仅用前馈并不能达到良好的控制品质。这时就需要加入反馈,反馈的特点是根据偏差来决定控制输入,不管对象的模型如何,也不管外界的干扰如何,只要有偏差,就根据偏差进行纠正,可以有效的消除稳态误差。解决前馈不能控制的不可测干扰。 前馈反馈综合控制在结合二者的优点后,可以提高系统响应速度 关键词:提馏段温度前馈-反馈串级控制

精馏塔设计

精馏塔设计 目录 § 1 设计任务书 (1) § 1.1 设计条件 (1) § 2 概述 (1) § 2.1 塔型选择 (1) § 2.2 精馏塔操作条件的选择 (3) § 2.3 再沸器选择 (4) § 2.4 工艺流程 (4) § 2.5 处理能力及产品质量 (4) § 3 工艺设计 (5) § 3.1 系统物料衡算热量衡算 (5) § 3.2 单元设备计算 (9) § 4 管路设计及泵的选择 (28) § 4.1 进料管线管径 (28) § 4.2 原料泵P-101的选择 (31) § 5 辅助设备的设计和选型 (32)

§ 5.1 贮罐………………………………………………………………………………… 32 § 5.2 换热设备…………………………………………………………………………… 34 § 6 控制方案…………………………………………………………………………………… 34 附录1~………………………………………………………………………………………… 35 参考文献………………………………………………………………………………………… 37 后 记 (38) §1 设计任务书 §1.1 设计条件 工艺条件:饱和液体进料,进料量丙烯含量x f =65%(摩尔百分数) 塔顶丙烯含量D x =98%,釜液丙烯含量w x ≤2%,总板效率为0.6。 操作条件:建议塔顶压力1.62MPa (表压) 安装地点:大连 §2 概述 蒸馏是分离液体混合物(含可液化的气体混合物)常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛的应用。其中,简单蒸馏与平衡蒸馏只能将混合物进行初步的分离。为了获得较高纯度的产品,应

板式精馏塔设计方案

板式精馏塔设计方案 一、设计方案确定 1.1 精馏流程 精馏装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等,为保持塔的操作稳定性,流程中用泵直接送入塔原料,乙醇、水混合原料液经预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后经分配器一部分回流,一部分经过冷却器后送入产品储槽,塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后为冷却水循环利用。 塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业中以错流式为主,常用的错流式塔板有:泡罩塔板,筛孔塔板,浮阀塔板。泡罩塔板是工业上应用最早的塔板,其主要的优点是操作弹性较大,液气比围较大,不易堵塞;但由于生产能力及板效率底,已逐渐被筛孔塔板和浮阀塔板所替代。筛孔塔板优点是结构简单,造价低,板上液面落差小,气体压强底,生产能力大;其缺点是筛孔易堵塞,易产生漏液,导致操作弹性减小,传质效率下降。而浮阀塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了前述两种塔板的优点。浮阀塔板结构简单,制造方便,造价底;塔板开孔率大,故生产能力大;由于阀片可随气量变化自由升降,故操作弹性大;因上升气流水平吹入液层,气液接触时间长,故塔板效率较高。但浮阀塔板也有缺点,即不易处理易结焦、高粘度的物料,而设计的原料是乙醇-水溶液,不属于此类。故总结上述,设计时选择的是浮阀塔板。 1.2设计方案论证及确定 1.2.1 生产时日及处理量的选择:设计要求塔年处理11.5万吨乙醇—水溶液系统,年工作日300d,每天工作24h。 1.2.2 选择用板式塔不用填料塔的原因:因为精馏塔精馏塔对塔设备的要求大致如下: (1)生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。

精馏塔温度控制系统设计

精馏塔温度控制系统设计 The Standardization Office was revised on the afternoon of December 13, 2020

辽宁工业大学过程控制系统课程设计(论文)题目:精馏塔温度控制系统设计 院(系):电气工程学院 专业班级:自动化093 学号: 0 学生姓名:杨昌宝 指导教师:(签字) 起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院教研室:自动化

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要 随着石油化工的迅速发展,精馏操作的应用越来越广,分流物料的组分越来越多,分离的产品纯度越来越高。采用提馏段温度作为间接质量指标,它能够较直接地反映提馏段产品的情况。将提馏段温度恒定后,就能较好地确保塔底产品的质量达到规定值。所以,在以塔底采出为主要产品、对塔釜成分要求比对馏出液高时,常采用提馏段温度控制方案。由于精馏塔操作受物料平衡和能量平衡的制约,鉴于单回路控制系统无法满足精馏塔这一复杂的、综合性的控制要求,设计了基于串级控制的精馏塔提馏段温度控制系统。 精馏塔的大多数前馈信号采用进料量。当进料量来自上一工序时,除了多塔组成的塔系中可采用均匀控制或串级均匀控制外,还有用于克服进料扰动影响的控制方法前馈—反馈控制。 前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。如果与参考值有偏差,那么就提前给出控制信号,使干扰获得补偿,稳定输出,消除误差。前馈的缺点是在使用时需要对系统有精确的了解,只有了解了系统模型才能有针对性的给出预测补偿。但在实际工程中,并不是所有的干扰都是可测的,并不是所有的对象都是可得到精确模型的,而

精馏塔提留段温度单回路控制

精馏原理以及工业流程 精馏操作分为连续精馏和间歇精馏,本设计的研究对象是连续精馏的过程。连续精馏的流程装置如下图所示,其操作过程是:原料液经预热加热到一定温度后,进入精馏塔中的进料板,料液在进料板上与自塔上部下降的回流液体汇合后,在逐板下流,最后流入塔底再沸器中,液体在逐板下降的同时,它与上升的蒸汽在每层塔板上相互接触,同时进行部分汽化和部分冷凝的质量和能量的传递过程。操作时,连续从再沸器中取出的部分液体作为塔底产品,部分液体汽化产生上升蒸汽,从塔底回流入塔内出塔顶蒸汽进入冷凝器中被冷凝成液体,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品。 图连续精馏装置工艺流程图 精馏塔的特性 精馏塔的特性分为静态特性和动态特性,以二元简单精馏过程为例,说明精馏塔的基本关系。 1.2.1精馏塔的静态特性 一个精馏塔,进料与出料应保持物料平衡,即总物料量以及任一组分都符合物料平衡关系。图所示的精馏过程,其物料平衡关系为: 总物料平衡 B D F += () 轻组分平衡 B D f x B x D z F ?+?=? ()

由式()和()联立可得: B B f D x x z D F x +-= )( B D f D x x z x F D --= () 式中 F 、D 、B ——分别为进料、顶馏出液和底馏出液流量; f z 、D x 、B x ——分别为进料、顶馏出液和底馏出液中轻组分含量。 从上述关系可看出:当F D 增加时将引起顶、底馏出液中轻组分含量减少,即D x 、B x 下降。而当F B 增加时将引起顶、底馏出液中轻组分含量增加。即D x 、B x 上升。 然而,在F D (或F B )一定,且f z 一定的条件下并不能完全确定D x 、B x 的数值,只能确定D x 与B x 之间的比例关系,也就是一个方程只能确定一个未知数。要确定D x 与B x 两个因数,必须建立另一个关系式:能量平衡关系。 在建立能量平衡关系时,首先要了解一个分离度的概念。所谓分离度s 可用下式表示: ) 1()1(D B B D x x x x s --= () 从上 式可见:随着分离度s 的增大,而B x 减小,说明塔系统的分离效果增大。影响分离度s 的因素很多,诸如平均挥发度、理论塔板数、塔板效率、进料组分、进料板位置以及塔内上升蒸汽量V 和进料量F 的比值等。对于一个既定的塔来说: ) (F V f s ≈ () 式()的函数关系也可用一近似式表示: β =F V In )1()1(D B B D x x x x -- () 式中β为塔的特性因子。 由式()、()可以看出,随着F V 增加,s 值提高。也就是D x 增加,B x 下降,分离效果提高了。由于V 是由再沸器施加热量来提高的,所以该式实际是表示塔的能量对产品成分的影响,故称为能量平衡关系式。而且由上述分析可见:F V 的增大,塔的分离效果提高,能耗也将增加。

化工原理课程设计说明书-板式精馏塔设计

前言 化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。 板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。 【精馏塔设计任务书】 一设计题目 精馏塔及其主要附属设备设计 二工艺条件

真空精馏塔设计说明书

本科生毕业设计 年产15000吨马来酸二甲酯项目真空精馏塔设计说明书 学院化工学院 专业化学工程与工艺 年级2010级 姓名杨豪帆 指导教师张国亮李阳于涛 2014年2 月20日

摘要 马来酸二甲酯是一种重要的有机化工原料。为了满足经济发展对马来酸二甲酯的需求,开展了此年产15000吨马来酸二甲酯项目,本设计中,对真空分离塔进行了工艺设计、结构设计和强度设计校核。在工艺设计中,涉及了塔径、塔高、填料层高度及压降的计算。在结构设计中,对塔设备的内件、支座、接管及附件等进行选型和设计。除此之外,本设计叙述了过程控制方案和开停车方案并给出设备的管道仪表流程简图。对温度、压力、原料配比、通气速率、反应时间等因素进行了敏感性分析。考虑到对环境和社会的影响,还进行了HAZOP分析和环境影响评价,形成了一份较为完整的设计。 关键词:真空分离塔,工艺设计,过程控制,分析。

ABSTRACT Dimethyl maleate is an important organic chemical raw material. This design focuses on the Dimethyl maleate project with annual production of 15000t, which includes process design, structural design and verification of strength design of vacuum separation tower. In the design of process, involving the calculations of diameter and height of tower, packed bed height and pressure drop. In the structural design,we design and select the internal equipment, bearings, and accessories of the tower. In addition, the design describes the way of process control and gives the Piping and instrumentation diagram, as well as the sensitivity analysis of temperature, pressure, material ratio, aeration rate, reaction time and other factors. Considering the impact on the environment and society, a HAZOP analysis and environmental impact assessment are also involved, Keyword: vacuum separation tower, process design, process control, analysis

甲醇精馏塔设计说明书

设计条件如下: 操作压力:105.325 Kpa(绝对压力) 进料热状况:泡点进料 回流比:自定 单板压降:≤0.7 Kpa 塔底加热蒸气压力:0.5M Kpa(表压) 全塔效率:E T=47% 建厂地址:武汉 [ 设计计算] (一)设计方案的确定 本设计任务为分离甲醇- 水混合物。对于二元混合物的分离,应采用连续精馏流程。设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却后送至储罐。 该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的2 倍。塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1、原料液及塔顶、塔底产品的摩尔分率 甲醇的摩尔质量:M A=32 Kg/Kmol 水的摩尔质量:M B=18 Kg/Kmol x F=32.4% x D=99.47% x W=0.28% 2、原料液及塔顶、塔底产品的平均摩尔质量 M F= 32.4%*32+67.6%*18=22.54 Kg/Kmol M D= 99.47*32+0.53%*18=41.37 Kg/Kmol M W= 0.28%*32+99.72%*18=26.91 Kg/Kmol 3、物料衡算 3 原料处理量:F=(3.61*10 3)/22.54=160.21 Kmol/h 总物料衡算:160.21=D+W 甲醇物料衡算:160.21*32.4%=D*99.47%+W*0.28% 得D=51.88 Kmol/h W=108.33 Kmol/h (三)塔板数的确定 1、理论板层数M T 的求取 甲醇-水属理想物系,可采用图解法求理论板层数 ①由手册查得甲醇-水物搦的气液平衡数据,绘出x-y 图(附表) ②求最小回流比及操作回流比 采用作图法求最小回流比,在图中对角线上,自点e(0.324 ,0.324)作垂线ef 即为进料线(q 线),该线与平衡线的交战坐标为(x q=0.324,y q=0.675) 故最小回流比为R min= (x D- y q)/( y q - x q)=0.91 取最小回流比为:R=2R min=2*0.91=1.82 ③求精馏塔的气、液相负荷 L=RD=1.82*51.88=94.42 Kmol/h V=(R+1)D=2.82*51.88=146.30 Kmol/h

精馏塔设备设计及选型

第四章设备设计及选型 4.1 设备设计标准 《钢制压力容器》GB150-98 《压力容器用钢板》GB6654-96 《化工装置用不锈钢大口径焊接钢管技术要求》HG20537.4-92 《安全阀的设置和选用》HG/T20570.2-95 《设备进、出管口压力损失计算》HG/T20570.9-95 《钢制化工容器设计基础规定》HG20580-98 《钢制化工容器材料选用规定》HG20581-98 《钢制化工容器强度计算规定》HG20582-98 《钢制化工容器结构设计规定》HG20583-98 《钢制化工容器制造技术规定》HG20584-98 《化工设备设计基础规定》HG/T20643-98 《压力容器无损检测》JB4730-2005 《钢制压力容器焊接工艺评定》JB4708-2000 《钢制压力容器焊接规程》JB/T4709-2000 《钢制压力容器产品焊接试板的力学性能检验》JB4744-2007 《压力容器用钢锻件》JB4726-2000 《石油化工塔型设备设计规范》SH 3030-1997 4.2 设备设计及选型 塔设备是化工、石油化工和炼油等生产中最重要的设备之一,塔可以使气液相或者液液相之间进行紧密接触,达到较为良好的相际传质及传热的目的。 在塔设备中常见的单元操作有:吸收、精馏、解吸和萃取等。此外工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等效果。

4.2.1 塔设备设计原则 具有适宜的流体力学条件,可使气液两相良好接触; 结构简单,处理能力大,压降低; 强化质量传递和能量传递。 4.2.2 塔设备的设计目标 作为主要用于传质过程的塔设备,首先必须使气液两相能充分接触,以获得较高的传质效率。此外,为满足工业生产的需要,塔设备还得考虑下列各项要求:(1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液、或液泛等破坏正常操作的现象; (2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期稳定操作; (3)流体流动的阻力小,即流体通过塔设备的压降小。这将大大节省生产中的动力消耗,以降低正常操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度; (4)结构简单、材料耗用量小,制造和安装容易。这可以减少基建过程中的投资费用; (5)耐腐蚀和不易堵塞,方便操作、调节和检修。 事实上,对于现有的任何一种塔器,都不可能完全满足上述所有要求,但是我们可以在某些方面做到独特之处。以此来达到较大的生产效率,提高企业的生产效益。 4.2.3 塔设备类型及选择 为了便于研究和比较,人们从不同角度对塔设备进行了分类。例如:按操作压力的不同可分为加压塔、常压塔、减压塔;按单元操作可分为精馏塔、吸收塔、解吸塔、萃取塔、反应塔和干燥塔;但最常用的分类是按塔的内件结构进行划分,分为板式塔和填料塔。 塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑的因素有:物料性质、操作条件、塔设备性能,以及塔设备的制造、安装、运转、维修等。

精馏塔控制系统设计

Hefei University 《化工仪表及自动化》过程考核之三——设计 题目:精馏塔控制系统设计, 系别: 班级: 姓名: 学号: 教师: 日期:

目录 Hef e i Un iv ers ity (1) 化工班:《化工仪表及自动化》 (1) 过程考核之三——设计 (1) 一、概述 (3) 二、内容 (3) 三、说明 (3) 1、工作要求 (3) 2、物料 (3) 3、精馏过程的控制方案设计 (4) 四、设备选型 (5) 1、测控仪表选型 (5) 2、执行机构选型 (5) 五、总结 (5) 六、参考文献 (5)

精馏塔控制系统设计 一、概述 精馏塔是化工生产中分离互溶液体混合物的典型分离设备。它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,从而实现分离的目的,满足化工连续化生产的需要。精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。维持正常的塔釜温度,可以避免轻组分流失,提高物料的回收率,也可减少残余物料的污染作用。影响精馏塔温度不稳定的因素主要是来自外界来的干扰。 二、内容 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 本文主要内容是结合课本所学仪表自动化知识,掌握测控仪表,了解二元精馏系统流程仪表的位号和特点,仔细研究二元精馏的工艺流程图,熟悉工艺流程依次设计一套完整的控制方案,使系统能对二元精馏的工艺过程进行有效地控制。 三、说明 1、工作要求 精馏塔控制系统主要分为三部分控制:塔釜温度控制精馏塔塔釜温度是产品成分的间接质量指标,要求温度检测点在系统受到干扰时温度变化灵敏,因此塔内测温点设置在灵敏板上,通过控制再沸器蒸汽流量来实现温度的稳定。 2、物料

过程控制课程设计-精馏塔的均匀控制系统设计

目录 1 精馏塔控制系统介绍 (1) 1.1精馏塔原理 (1) 1.2控制要求及干扰因素 (1) 2 设计任务及要求 (2) 3 均匀控制系统 (2) 3.1均匀控制概念 (2) 3.2均匀控制系统特点 (4) 4设计方案选择 (5) 4.1方案一简单均匀控制 (5) 4.2方案二串级均匀控制 (5) 5 系统各器件选型 (7) 5.1检测转换元件的选择、性能参数 (7) 5.2调节阀气开气关式选择 (9) 6.系统仿真与分析 (11) 7.小结与体会 (12) 参考文献 (13)

精馏塔的均匀控制系统设计 1 精馏塔控制系统介绍 1.1 精馏塔原理 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 蒸汽由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸汽中转移,蒸汽中的难挥发(高沸点)组分不断地向下降液中转移,蒸汽愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸汽进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸汽返回塔中,另一部分液体则作为釜残液取出。 蒸馏的基本原理是将液体混合物部分气化,利用其中各组份挥发度不同(相对挥发度)的特性,实现分离目的的单元操作。蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。 1.2 控制要求及干扰因素 为了保证精馏生产工序安全、高效持续进行,改造生产工艺提出如下控制要求: (1) 保证产品质量。以塔顶产品的纯度作为质量参数进行控制,构建质量控制系统。 (2) 保证平稳生产。首先要使精馏塔的进料参数保持稳定;其次为了维持塔的物料平衡,要控制塔顶和塔底产品采出量,使其和等于进料量;再次塔内的储液量

乙醇-水精馏塔设计说明

符号说明:英文字母 Aa---- 塔板的开孔区面积,m2 A f---- 降液管的截面积, m2 A T----塔的截面积 m C----负荷因子无因次 C20----表面力为20mN/m的负荷因子 d o----阀孔直径 D----塔径 e v----液沫夹带量 kg液/kg气 E T----总板效率 R----回流比 R min----最小回流比 M----平均摩尔质量 kg/kmol t m----平均温度℃ g----重力加速度 9.81m/s2 F----阀孔气相动能因子 kg1/2/(s.m1/2) h l----进口堰与降液管间的水平距离 m h c----与干板压降相当的液柱高度 m h f----塔板上鼓层高度 m h L----板上清液层高度 m h1----与板上液层阻力相当的液注高度 m ho----降液管底隙高度 m h ow----堰上液层高度 m h W----溢流堰高度 m h P----与克服表面力的压降相当的液注高度m H-----浮阀塔高度 m H B----塔底空间高度 m H d----降液管清液层高度 m H D----塔顶空间高度 m H F----进料板处塔板间距 m H T·----人孔处塔板间距 m H T----塔板间距 m l W----堰长 m Ls----液体体积流量 m3/s N----阀孔数目 P----操作压力 KPa △P---压力降 KPa △Pp---气体通过每层筛的压降 KPa N T----理论板层数 u----空塔气速 m/s V s----气体体积流量 m3/s W c----边缘无效区宽度 m W d----弓形降液管宽度 m W s ----破沫区宽度 m 希腊字母 θ----液体在降液管停留的时间 s υ----粘度 mPa.s ρ----密度 kg/m3 σ----表面力N/m φ----开孔率无因次 X`----质量分率无因次 下标 Max---- 最大的 Min ---- 最小的 L---- 液相的 V---- 气相的 m----精馏段 n-----提馏段 D----塔顶 F-----进料板 W----塔釜

苯-氯苯板式精馏塔工艺设计说明书

苯-氯苯板式精馏塔工艺设计设计说明书

苯-氯苯分离过程板式精馏塔设计 一、设计题目 试设计一座苯—氯苯连续精馏塔,要求年产纯度为99.8%的氯苯60000吨,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为38%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa (表压); 2.进料热状况,泡点进料; 3.回流比,2R min ; 4.塔釜加热蒸汽压力0.5MPa (表压); 5.单板压降不大于0.7kPa ; 6.年工作日300天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 6.塔的工艺计算结果汇总一览表; 7.生产工艺流程图及精馏塔工艺条件图的绘制; 8.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 ο 2.组分的液相密度ρ(kg/m 3 ) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14.1124-=ρ

式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103 kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01238.012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。

精馏塔控制系统

第6章精馏塔控制系统 6.1 概述 精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。精馏的目的是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。 轻组分的转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相,并提供精馏所需的回流。 精馏过程是一个复杂的传质传热过程。表现为:过程变量多,被控变量多,可操纵的变量也多;过程动态和机理复杂。因此,熟悉工艺过程和内在特性,对控制系统的设计十分重要。 6.1.1 精馏塔的控制要求 精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。 精馏过程是在一定约束条件下进行的。因此,精馏塔的控 制要求可从质量指标、产品产量、能量消耗和约束条件四方面 考虑。 1.质量指标 精馏塔的质量指标是指塔顶或塔底产品的纯度。通常,满 足一端的产品质量,即塔顶或塔底产品之一达到规定纯度,而 另一端产品的纯度维持在规定范围内。所谓产品的纯度,就二 元精馏来说,其质量指标是指塔顶产品中轻组分含量和塔底产 品中重组分含量。对于多元精馏而言,则以关键组分的含量来 表示。关键组分是指对产品质量影响较大的组分,塔顶产品的 关键组分是易挥发的,称为轻关键组分;塔底产品的关键组分 是不易挥发的,称为重关键组分。产品组分含量并非越纯越好, 原因是,纯度越高,对控制系统的偏离度要求就越高,操作成 本的提高和产品的价格并不成比例增加,因此纯度要求应与使图6.1-1 精馏塔示意图 用要求适应。 2.物料平衡控制 进出物料平衡,即塔顶、塔底采出量应和进料量相平衡,维持塔的正常平稳操作,以及上下工序的协调工作。物料平衡的控制是以冷凝罐(回流罐)与塔釜液位一定(介于规定的上、下限之间)为目标的。 3.能量平衡和经济平衡性指标 要保证精馏塔产品质量、产品产量的同时,考虑降低能量的消耗,使能量平衡,实现较好的经济性。 4.约束条件 精馏过程是复杂传质传热过程。为了满足稳定和安全操作的要求,对精馏塔操作参数有一定的约束条件。 气相速度限:精馏塔上升蒸汽速度的最大限。当上升速度过高时,造成雾沫带,塔板上的液体不能向下流,下层塔板的气相组分倒流到上层塔板,出现液泛现象。 最小气相速度限:指精馏塔上升蒸汽速度的最小限值。当上升蒸汽速度过低时,上升蒸汽不能托起上层的液相,造成漏夜,使板效率下降,精馏操作不能正常进行。

过程控制课程设计

… 辽宁工业大学 过程控制系统课程设计(论文) ¥ 题目:精馏塔塔内压力控制系统设计 、 院(系): 》 专业班级: 学号: 学生姓名: 指导教师:

起止时间:

课程设计(论文)任务及评语 院(系):电气工程学院 教研室:测控技术与仪器 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 学生姓名 专业班级 设计题目 精馏塔塔内压力控制系统设计 课 程 设 计 ( 论 文 ) 任 务 设计任务 设计精馏塔塔内压力控制系统设计,精馏塔塔内压力的单位阶跃响应曲线实验数据如下: 设计要求 1、根据实验数据辨识对象的数学模型,设计一个无差控制系统,确定控制方案并绘制原理结构图、方框图; 2、 选择传感器、变送器、控制器、执行器,给出具体型号和参数; 3、确定控制器的控制规律以及控制器正反作用方式;对设计的控制系统进行仿真,整定运行参数。 4、若设计由数字控制系统实现应给出系统硬件电气连接图及程序流程图; 5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000 字以上。 技术参数 测量范围:0-5大气压,控制压力:1±大气压 ,超调量小于等于25%; 工作计划 1、布置任务,查阅资料,理解掌握系统的控制要求。(2天 ) 2、确定系统的控制方案,绘制原理结构图、方框图。(1天 ) 3、选择传感器、变送器、控制器、执行器,给出具体型号和参数。(2天 ) 4、确定控制器的控制规律以及控制器正反作用方式( 1天),调节阀的气开 气关形式以及流量特性选择。( 1天) 5、上机实现系统的模拟运行或仿真、答辩。(2天 ) 6、撰写、打印设计说明书(1天 ) 指导教师评语及成绩 平时: 论文质量: 答辩: 指导教师签字: 总成绩: 年 月 日

相关文档
最新文档