发动机振动测试技术研究

发动机振动测试技术研究
发动机振动测试技术研究

硕士研究生课程论文

发动机振动测试系统研究

任课教师:XXX

学生姓名:XXX

年级:2013级

学生编号:

专业:车辆工程

时间:2014年1月10日

发动机振动测试系统研究

摘要:发动机振动是影响汽车性能的重要因素,会严重影响汽车的平顺性以及其

他性能。因此对发动机振动的测试、信号处理以及分析是发动机测试中十分重要的环节。本文简述了发动机振动测试的意义,对发动机测试的方法、信号采集与分析的基本理论和测试系统的基本组成做了简要介绍。

关键词:发动机振动;振动测试;测试系统

Study on Engine Vibration Test System

Abstract: The vehicle vibration is the important factor which influences vehicle functions and this kind of vibration will seriously influence the performances and functions of the whole vehicle. So, vehicle vibration measurement, signal processing and analysis is a very important part.The significance of engine vibration test, basic theory of acquisition and analysis methods of the engine test signals and the constitute of the test system is introduced briefly in this thesis.

Key words:engine vibration;vibration test;test system

目录

1绪论 (3)

1.1本文研究的背景及意义 (3)

1.2发动机测试设备发展现状 (3)

2发动机振动测试技术概述 (5)

2.1振动测试技术概述 (5)

2.1.1 发动机振动分析 (5)

2.1.2 振动测试技术概述 (6)

2.2发动机振动测试参数 (6)

3振动信号的采集与分析方法 (8)

3.1测试信号的采集 (8)

3.1.1 模拟信号数字化方法 (8)

3.1.2 采样定理理论 (8)

3.2试验数据的时域分析方法 (8)

3.2.1时域数据的预处理 (8)

3.2.2数据的数字滤波处理 (9)

3.3傅立叶变换 (9)

4振动测试系统的组成 (11)

4.1振动传感器 (11)

4.1.1惯性式传感器 (11)

4.1.2压电式加速度传感器 (11)

4.1.3应变式加速度传感器 (12)

4.2滤波器 (12)

4.3模数转换(A/D转换) (12)

结论 (14)

参考文献 (14)

1 绪论

1.1本文研究的背景及意义

随着汽车行业的快速发展,汽车作为现代化交通工具的重要性越来越突出,同时人们对汽车驾乘的舒适性也越来越关注,对汽车的振动的研究也越来越多。在整车振动系统中,发动机动力总成作为一个激励源同时也是受迫振动体的特殊子系统。发动机的整机振动情况不但会降低其本身工作寿命,同时还影响汽车行驶平顺性和乘坐舒适性。

目前世界上绝大多数汽车采用的都是往复活塞式内燃机,这种内燃机运转时将产生激振力和力矩,这种激振力及力矩包括曲柄连杆机构的惯性力及力矩、气体压力引起的倾覆力矩、曲轴和机体弹性变形引起的力矩和工作过程中的气体脉冲力。由于受到这些不平衡的周期性变化的力和力矩的作用。发动机将产生整机振动和曲轴的扭转振动[1]。这些振动不但对发动机本身的振动和噪声有很大的影响,还会对车辆整体振动产生严重的不良影响,不但会降低乘车的舒适性还会带来环境污染等问题,此外,发动机的振动还会引起周围机器的损坏[2]。

为了解决和改善发动机的这种振动问题,必须采取有效的主动与被动减振、隔振措施,以削减、消除发动机各种振动,提高车辆的综合指标。而在采取措施之前,必须对振动进行评价、分析,因此振动测试技术在发动机消振中显得非常有意义。本课题研究的目的就是通过对发动机的振动测试,掌握发动机的振动状态以对发动机的振动进行评价、分析。

发动机由于结构复杂,运动不间断,以及受燃料燃烧和摩擦等原因的影响,许多零部件处在高温、高压和强烈振动的恶劣条件下工作,造成发动机运行的故障率较高。发动机振动信号是发动机技术状况和过程征兆的信息载体,因此,对发动机实行必要的振动监测和故障诊断有着越来越重要的意义。就发动机振动技术而言,无论是国内还是国外都还没有达到完全成熟的高度实用的阶段,但是发展和研究发动机振动测试技术并没有因此而降低。

1.2 发动机测试设备发展现状

发动机结构复杂测试参数繁多,测试不同参数使用的设备不尽相同,导致测试系统硬件搭建困难,同时对测试系统软件编写造成较大的难度,由于试验现场恶劣的条件,高噪声,高温、高电磁干扰等问题对测试结果会造成不利影响。早期的发动机测试台架在测试过程中的试验操作、数据采集、数据分析、数据输出大多依靠人工完成。现代的测控系统是现代化学科与计算机技术融合的系统,能够自动完成传统人工完成的内容,更加智能和高效。

国外发动机测试设备厂商主要有:A VL 公司,德国皮尔堡公司、德国申克公司等。其中A VL 公司采用搭积木的方式,搭载了模块化的软硬件测试系统,提高了发动机台架搭建的效率,具有适用范围广,测试系统精度高,应用广泛的特点。国内的发动机测试与设备研发工作起步较晚,上世纪70年代,在交通部带领下,对发动机检测技术进行了研究讨论,并开始发动机点火正时灯和汽缸漏气量检测仪等设备的开发工作。进入80年代,随着时代的进步和电脑技术的提高,科技领域高速进步带动了发动机测试技术的发展,与此同时我国的汽车工业也开始蓬勃发展,对汽车发动机的产量的质量的要求也与日俱增,国内对汽柴油发动机测试台的需求越来越大。

近年来,我国已经具备了研发和生产大型的测试设备的能力,如汽车底盘测功机、四轮定位仪、制动检测台、发动机综合分析仪、悬挂检测台、灯光检测仪、排气分析仪等,打破了国外垄断测试设备的现象。

2 发动机振动测试技术概述

2.1 振动测试技术概述

2.1.1 发动机振动分析

所谓振动系统,是对一般机器或结构系统的一类抽象数学模型,当研究的目的是关于这个系统的振动性能时,所抽象的系统模型,就称为振动系统。一个振动系统,从外界输入一定形式的激励就呈现一定形式的输出,该输入通常称为激励,输出称为响应。而输出特性不仅取决于输入特性,还取决于振动系统的振动特性。输入、输出和系统的振动特性这三者之间的关系如图 2.1 所示。

图2.1 振动系统原理框图

在工程技术当中,研究振动问题就是在激励、响应和系统特性这三者中知道其二求其三的问题。在已知激励条件和系统振动特性的情况下,求系统的响应,这就是所谓的振动分析问题。在已知系统振动特性和系统响应的情况下,求系统的激励状态,这就是所谓的振动环境预测问题。在已知系统激励和系统响应的情况下确定系统的振动特性,这就是所谓的振动特性测试或系统识别问题。

发动机的激励由离心力、往复惯性力、离心力矩和惯性力矩以及颠覆力矩组成等。发动机的振动类型主要包括:发动机的结构振动、部件和曲轴扭振、以及整机振动等。发动机所受的激励通常通过对各缸激励合成,得到发动机质心坐标系下的空间力系,如图2.2所示。一般燃气压力所产生的激振力矩比惯性力产生的激振力矩大很多,因而计算时常应用忽略惯性力部分,而仅使用燃气压力部分。

图2.2 发动机质心坐标系下的空间力系

2.1.2 振动测试技术概述

振动测试是通过传感器、放大仪器以及显示或记录仪表测量运动机械或工程结构在外界激励(包括环境激励)或运行工况中其重要部位的位移、速度、加速度等运动量,从而了解机械或结构的工作状态。振动测试主要作用是在现场或实验室对振动系统的实物或模型进行响应测量、动态特性参数测定以及载荷识别。响应侧量是己知激励条件和系统振动特性时,求振动系统的响应;动态特性参数测定是己知系统激励和系统响应时,确定系统的振动特性;载荷识别是己知系统振动特性和系统响应时,求系统的激励状态。

一般来说,振动测试与分析系统由两大部分组成。一部分是传感器测量装置,包括各种压力传感器、振动传感器及其有关测量部分,其作用是对表征机械运行状态的振动响应进行测量,如位移、速度、加速度等,并转换为标准的电压或电流信号输出;另一部分是振动信号采集、显示、处理及分析系统,其作用是采集信号并进行具体振动信号的显示、分析和处理。

而实际的振动实验系统通常由三部分组成:激振系统、测量系统以及分析系统。激振系统中所用的设备称为激振设备,例如实验室中常用的振动台、现场激振时常用的偏心激振器,都属于激振设备,用来激发被测结构或机械振动,然后通过振动测试与分析系统对其响应进行测量。

机械系统在工作中总会产生振动,而且振动信号中蕴含了系统运行的各种状态信息,振动测试能够获得机械运行状态比较全面的信息。因此,振动测试在机械设备状态监测、故障诊断和振动与噪声控制中具有重要意义。

2.2 发动机振动测试参数

使汽车、机械运行过程中产生振动的激振力很多都具有周期性。根据傅利叶

变换公式,任何复杂的周期振动都可以分解为若干个简谐振动之和。对于简谐振动来说,只要通过测量确定振动的三个特性参数,即振幅、频率和相位,就可以确定整个运动。振动的振幅是振动物体离开平衡位置的最大距离,描述了物体振动幅度的大小和振动的强弱,单位用m或cm表示。

频率是物体单位时间内完成振动的次数,是描述振动物体往复运动频繁程度的量,常用符号f表示,单位为赫兹,用Hz来表示。每个振动体都对应由它本身性质决定的一个或几个固有频率,当振动频率为这个频率时,振动振幅是最大的。

所谓相位就是表示物体振动部分相对于其他振动部分或其他固定部分位置的一个量,单位是角度,用o表示。相位是振动的一个重要特征,可用于判断共振点、谐波分析等。

为了分析振动对机械结构的影响,我们需要知道振动的位移、速度和加速度。谐振动的三个特性参数具有确定的函数关系,可以相互推导,因此得到位移、速度和加速度三个参数中的任何一个量,便可以推算出其它的量[3]。

振动信号总是混杂着噪声信号,其会对信号分析造成影响,甚至造成信号失真,因此,在信号采集前须对信号进行放大及滤波处理,去除振动噪声后,再进行分析,保证分析的准确性。

3振动信号的采集与分析方法

3.1 测试信号的采集

3.1.1 模拟信号数字化方法

随着计算和信号分析技术的进步,数字化的测试信号已经得到广范的应用。测试信号处理流程如图3.1所示。由于测试的模拟信号中存在干扰,需要对模拟信号进行滤波后,通过A/D 转换后可以获得计算机可分析处理的数字信号。

图3.1 测试信号处理流程

3.1.2 采样定理理论

在采样过程中,采样频率高过高会增加数据量不便于存储,采样频率低,不利于对数据进行精密分析,有可能会造成信息缺失,并产生混叠现象,影响分析的精度。

只有试验中采样频率相比采样信号频率成分高2倍以上时,采样结果才能与试验真实结果较为接近,该原理即为采样定理。采样定理可以有效控制频率混叠现象,对满足采样定理信号进行傅里叶逆变,可以获得采集点的时域信号。

3.2 试验数据的时域分析方法

3.2.1 时域数据的预处理

预处理发动机振动信号可以使振动信号更真实的体现,试验采集的振动信号以电压为主,需要将电压值转换为可分析的数字信号。如果测量量为加速度信号,需要通过标定变换,将电压值处理成加速度信号。试验中信号干扰会造成试验测试数据与实际结果产生偏差。同时在对信号进行积分时会产生影响结果的趋势项,因此需要对采集到的信号进行预处理以去除趋势项。

各个测物理量的单位和数值都不尽相同,这些数据在采集之后由系统自动形成二进制码,为了便于查看,将具有单位和数值的数据与这些二进制数据联系起

来,叫做标定的变换。标定变化对于不同的传感器有不同的方法,对于电压数据,可以直接乘以传感器的灵敏度,如果采集信号为整型数字量,标定变换是需要先整型数字量转化为电压数字量,再乘以传感器的灵敏度得到物理单位数据。3.2.2 数据的数字滤波处理

由于在发动机试验中,试验环境较差造成测试信号存在较多干扰,影响测试的准确性。通常采用滤波和屏蔽等措施,对试验数据进行处理,过滤干扰信号,改善采样信号品质。过去对数据进行滤波处理可以通过硬件滤波器实现。数字技术的发展,已经可以实现计算机软件的滤波功能,即数字滤波。数字滤波一般依靠计算机程序,去除采集信号中的干扰和不关心成分,且便于编写和修改,已经成为主流的滤波方法。

3.3 傅立叶变换

傅利叶变换在数学上的基本应用就是将满足一定条件的函数展开为一系列三角函数的线性组合[4]。傅利叶变换在最初是用来作为热处理的解析工具,现在被广泛应用于各个行业,特别是机械行业,并且应用的领域不断扩大。20世纪60年代提出的快速傅利叶变换(FFT)方法,结合现代电子计算机强大的数学运算能力,使得大量信号数据的傅利叶分析成为现实,是一种实用性极强的信号分析方法。

利叶级数是分析周期信号频率成分的算法。设周期信号为:

(3.1)式中,T 称为信号的周期。那么我们任意截取该信号一段,可以展开为:

(3.2)

式中:

称为第 k 阶圆频率,而 则称为基频, 为傅利叶级数的

第 k 阶分量,式(3.1)和(3.2)实现了信号从时域到频域的转变。 02w T

π=k w k k a b 、

4振动测试系统的组成

一般的振动测试系统硬件部分主要包括振动传感器,信号调理器,信号采集仪,上位机,如图4.1所示[5]。

图4.1 硬件组成图

4.1 振动传感器

振动传感器是一种能感受机械振动参量(振动位移、速度、加速度等)并将其转换成可识别信号的传感器,属于一种机电转换装置,是振动测试的关键部件。

4.1.1 惯性式传感器

所谓惯性式传感器,实质上就是一个单自由度有阻尼的弹簧质量系统,利用其强迫振动特性进行振动测量,它包括一个质量块m,一组刚度为k 的弹簧和阻尼c,阻尼包括材料内阻尼或人为设置的电磁阻尼、油阻尼等。常用的电磁式传感器和压电式加速度传感器都属于这一类。这种传感器直接固定在被测振动体上,不需要相对固定点。

图4.2为惯性式传感器的结构原理图。单自由度的弹簧质量系统安装在一个刚性外壳里面,可以根据质量块和刚性外壳的相对运动来计算振动体的振动量。

图4.2 惯性式传感器的结构原理图

4.1.2 压电式加速度传感器

压电式加速度传感器是利用某些物质(如石英晶体)的压电效应,在加速度传感器感受到振动体的振动时,压电元件承受质量块的压力而产生与加速度成正比

例的电压或电荷,实现了由机械信号向电信号的转换。

4.1.3 应变式加速度传感器

应变式加速度传感器属于惯性式传感器,其结构如图4.3所示,主要构造包括基座、应变片、应变梁、质量块、硅油和外壳等。质量块5通过应变梁2连接基座1,应变片6粘贴在应变梁上。外壳4的内部充满硅油3,通过硅油粘度的调节来提供合适的阻尼。

图4.3 应变式加速度传感器结构示意图

4.2 滤波器

传感器采集到的信号除了需要的频率信号外,还有很多高频信号,由采样定理可知,如果信号的频率大于采样频率的1/2,则在对信号进行时频变换时,信号频谱会出现混叠现象,无法恢复原始的时域信号。所以在采集信号前,要将信号经过低通滤波器进行滤波。

低通滤波器即允许低频信号通过,将高频信号衰减的电路。如图4.3所示为一简单的RC 滤波电路。

图4.3 RC 滤波电路图

4.3 模数转换(A/D转换)

模数转换(Analog-to-Digital Converters,ADC)亦称模拟—数字转换,与数/模(D/A)转换相反,将连续的模拟量(如电压、电流等)通过取样转换成离散的数字量。一般情况下,为了保证时变电压的数字化精度,数据采集系统在模数转

换之前会对电压进行采样保持。

数据采集系统中模数转换基本参数是精度(即分辨率)和速度,分辨率用其输出二进制数码的位数来表示。位数越多,量化误差小,分辨力越高,模数转换一般为8位、12位和16位,典型的12位100 KHz模数转换输入范围为-5V至5V,满量程数为212,即4096,0位对应2048点。如10V范围除以4096点,则可知最小有效位幅值为1/212,约为2.44mV,同样输入范围的16位转换器总点数为216,即65536,最小有效位为1/216,约为153μV。工作频率通常处于数十Hz到1MHz之间。

模数转换有很多类型,比较常见的有 4 种类型:并行转换器,逐次逼近转换器,压频变换型转换器和积分型转换器,其中最常用的为并行转换器和逐次逼近转换器。不同类型的模数转换器的速度、分辨率和精度不同。

结论

发动机的振动不仅影响其本身工作性能,还会影响汽车驾乘的舒适性。为了解决发动机的振动问题,有必要对发动机进行试验研究,掌握发动机的整体振动状态。

本文简述了发动机振动测试的意义,对发动机测试的方法、信号采集与分析的基本理论和测试系统的基本组成做了简要介绍。具体的实验方案设计及实验的实施还有待深入。

参考文献

[1] 王辉. 直列四缸发动机的振源分析与仿真. 北京:机械工程与自动化,2009.5

[2] 刘成,颜伏伍. 车用发动机振动测试方法的新进展. 柴油机,2006,28(6)

[3] Hwang S. J. Modeling and simulation of a Power train-vehicle system with

automatic transmission[J].International Journal of Vehicle Design. 2000,23(1): 145-160.

[4] 周林, 殷侠. 数据采集与分析技术[M]. 西安:电子科技大学出版社, 2005

[5] 舒歌群,高文志,刘月辉. 动力机械振动与噪声[M]. 天津: 天津大学出版社.

2008

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

发动机振动测试技术研究

硕士研究生课程论文 发动机振动测试系统研究 任课教师:XXX 学生姓名:XXX 年级:2013级 学生编号: 专业:车辆工程 时间:2014年1月10日 发动机振动测试系统研究 摘要:发动机振动是影响汽车性能的重要因素,会严重影响汽车的平顺性以及其

他性能。因此对发动机振动的测试、信号处理以及分析是发动机测试中十分重要的环节。本文简述了发动机振动测试的意义,对发动机测试的方法、信号采集与分析的基本理论和测试系统的基本组成做了简要介绍。 关键词:发动机振动;振动测试;测试系统 Study on Engine Vibration Test System Abstract: The vehicle vibration is the important factor which influences vehicle functions and this kind of vibration will seriously influence the performances and functions of the whole vehicle. So, vehicle vibration measurement, signal processing and analysis is a very important part.The significance of engine vibration test, basic theory of acquisition and analysis methods of the engine test signals and the constitute of the test system is introduced briefly in this thesis. Key words:engine vibration;vibration test;test system

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验 随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦) (6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法

振动测试常见小知识

振动测试常见小知识问答 1什么是振动? 振动是机械系统中运动量(位移,速度和加速度)的振荡现象。 2振动的目的? 振动试验的目的是模拟一连串振动现象,测试产品在寿命周期中,是否能承受运输或使用过程的振动环境的考验,也能确定产品设计和功能的要求标准。振动试验的精义在于确认产品的可靠性及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析使其成为高水平,高可靠性的产品。 3.振动分几种? 振动分正弦振动和随机振动两种。 4.什么是正弦振动? 能用一项正弦函数表达式表达其运动规律的周期运动。 例如凡是旋转、脉动、振荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动均是正弦振动。 5.正弦振动的目的? 正弦振动试验的目的是在试验室内模拟电工电子产品在运输、储存、使用过程中所遭受的振动及其影响,并考核其适应性。 6.正弦振动的试验条件由什么确定? 正弦振动试验的验条件(严酷等级)由振动频率范围、振动量、试验持续时间(次数)共同确定. 7.什么是振动频率范围? 振动频率范围表示振动试验由某个频率点到某个频率点进行往复扫频。 例如:试验频率范围5-50Hz,表示由5Hz到50Hz进行往复扫频。 8.什么是频率? 频率:每秒振动的次数.单位:Hz。 9.什么是振动量? 振动量:通常通过加速度和位移来表示. 加速度:表示速度对时间倒数的矢量。加速度单位:gn或m/s2 位移:表示物体相对于某参考系位置变化的矢量。位移单位:mm 10.什么是试验持续时间(次数)? 振动时间表示整个试验所需时间, 次数表示整个试验所需扫频循环次数. 11.什么是扫频循环?

扫频循环:在规定的频率范围内往返扫描一次: 例如:5Hz→50Hz→5Hz,从5Hz扫描到50Hz后再扫描到5Hz。 12.什么是重力加速度? 重力加速度:物体在地球表面由于重力作用所产生的加速度。 1gn=10m/s2(GB/T 2422-1995 电工电子产品环境试验术语) 13.扫描方式(sweep mode)分几种? 线性扫描:是线性的,即单位时间扫过多少赫兹,单位是Hz/s或Hz/min,这种扫描用于细找共振频率的试验. 对数扫描:频率变化按对数变化,扫描率可以是oct/min ,对数扫描的意思是相同的时间扫过的频率倍频程数是相同的 14.什么是扫描速度(sweep speed)?分几种? 扫描速度(sweep speed):指从最低频率扫描到最高频率的速度. 1)oct/min:多少倍频程每分钟. 例:1oct/min,5Hz到10Hz需1分钟,10Hz到20Hz需1分钟。 2)min/sweep:多少分钟每次扫频. 例:5-500Hz,扫描速度:1分钟/sweep,表示从5Hz到500Hz需1分钟。 3)Hz/s:多少Hz每秒. 例:5-10Hz,扫描速度:1Hz/s,表示5Hz到6Hz需1秒,6Hz到7Hz需1秒。 15.振动试验中试验几个方向?怎么区分方向? 除有关规范另有规定外,应在产品的三个互相垂直方向上进行振动试验。 一般定义产品长边为X轴向,短边为Y轴向,产品正常摆放上下为Z轴向。 16.什么是交越频率? 交越频率:在振动试验中由一种振动特性量变为另一种振动特性量的频率。如交

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

振动测试技术资料

拱桥振动测试 姓名:刘沛 学号:0214185 班级:研14-1班 课程:振动测试技术 年月:2015年7月18日

目录 一振动测试概述 (1) 1 振动分类及描述 (1) 2 振动基本参量表示方法 (1) 3 振动测试仪器分类及配套使用 (3) 4 窗函数的分类及用途 (4) 5 信号采集及分析过程中出现的问题,怎样解决? (7) 二、惯性式速度型与加速度型传感器 (8) 1 惯性式速度传感器的分类 (8) 2 压电式加速度传感器 (9) 三振动特性参数的常用量测方法 (12) 1 振动基本参数的量测 (12) 2 简谐振动频率的量测 (12) 3 机械系统固有频率的测量 (12) 4 简谐振动幅值的测量: (12) 5衰减系数的测量: (13) 6结构动力特性参数量测 (13) 7 稳态正弦激振及测试 (13)

8 瞬态激振及测试 (14) 9 随机激振及测试 (15) 四题目(结构设计) (16) 1 结构设计资料及试验要求 (16) 2.试验目的 (18) 3.试验方法 (18) 4 结果分析 (20) 五概念 (22) 1 功率谱 (22) 2 自相关函数 (22) 3 互相关函数 (23) 4 相干函数 (23) 5 传递函数 (24) 六模态分析 (26) 1 概念 (26) 2 方法分类及理解 (26)

一振动测试概述 1 振动分类及描述 按照运动的表现形式,振动可以分为确定性和非确定性振动(即随机振动)。确定性振动又分为周期性和非周期性振动。周期性振动分为简谐振动和复杂周期振动。非周期运动又分为准周期和瞬态振动。非确定性振动分为平稳随机和非平稳随机,平稳随机又分为各态历经和非各态历经。按振动激励类型分类,振动可分为随机自由振动和随机强迫振动。按振动位移的特征分类,振动可分为:横向振动(振动体上的质点在垂直于轴线的方向产生位移的振动)、纵向振动(振动体的质点沿轴线方向产生位移的振动)和扭转振动(振动体上的质点沿轴线方向产生位移的振动)。周期运动的最简单形式是简谐振动。这种振动的表示方法及特点是描述其他振动形式的基础。一般的周期运动可以借助傅里叶级数表示成一系列简谐振动的叠加,该过程称为谐波分析。非周期运动则需要通过傅里叶积分作谐波分析。 2 振动基本参量表示方法 工程振动测试的主要参数有位移、速度、加速度、激振力、振幅、振动频率、阻尼比及结构的振动模态等。其中前五个参数属于时域测试参数。 下面分别来说明振动基本参量的表示方法及其含义: (1)振幅(A):振幅就是振动过程中振动物体离开平衡位置的最大距离。振动的幅度有三种表示法,即峰值、平均值和有效值。 (2)周期(T):从振动波形来看,连续两次波峰或者波谷之间耗费的时间就是一个振动周期,也就是完成一次振动所需的时间。 (3)频率(f):单位时间内振动循环的次数f,单位是赫兹(Hz)。频率是振动特性的标志,是分析振动原因的重要依据。周期T是物体完成一个振动

振动基础知识

精心整理 基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。

(六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动 d=Dsin(2πt/T+Φ) D T f ω和f ω f 将式( d 振动三要素:振幅D、频率f和相位Φ(八)、表示振动的参数:位移、速度、加速度振动位移:d=Dsin t D

π) 振动速度:v=Dωcosωt=Vsin(ωt+ 2 V=Dω 振动加速度:a=-Dω2sinωt=Asin(ωt+π) A=-Dω2 (九)振动三要素在工程振动中的意义 1、振幅 ○振幅~物体动态运动或振动的幅度。 ★振幅是振动强度和能量水平的标志,是评价机器运转状态优劣的主要指标。 即“有没有问题看振幅”。 ○峰峰值、单峰值、有效值 振幅的量值可以表示为峰峰值(pp)、 单峰值(p)、有效值(rms)或平均值(ap)。 峰峰值是整个振动历程的最大值,即正峰 与负峰之间的差值;单峰值是正峰或负峰 的最大值;有效值即均方根值。 ○振动位移、振动速度、振动加速度 振幅分别用振动位移、振动速度、振 动加速度值加以描述、度量,三者相互之间可以通过微分或积分进行换算。在振动测量中,除特别注明外,习惯上: ○振动位移的量值为峰峰值,单位是微米[μm]或毫米[mm]; ○振动速度的量值为有效值(均方根值),单位是毫米/秒[mm/s]; ○振动加速度的量值是单峰值,单位是米/秒平方[m/s2]或重力加速度[g],1[g]=9.81[m/s2]。 ○峰峰值、有效值、单峰值三者之间的量值关系 单峰值=峰峰值/2,有效值=0.707峰峰值(峰峰值=1.414有效值) 平均值=0.637峰峰值,平均值应用较少。 △在低频范围内,振动强度与位移成正比; △在中频范围内,振动强度与速度成正比; △在高频范围内,振动强度与加速度成正比。 频率低意味着振动体在单位时间内振动的次数少、过程时间长,速度、加速度的数值相对

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

微振动的高精度测量原理

微振动的测量原理及其应用 吴志超(机械与电子工程学院电子信息工程)指导教师:许海峰 摘要:振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。 对振动的研究意义非常重大。通过掌握振动的基本理论和分析方法,用以确定和限制振动时,工程结构和机械产品的性能、寿命及安全的有害影响;本文介绍了接触式和非接触式两种微振动的测量原理,可以运用振动理论去创造和设计新型振动设备、仪表及自动化装置。主题词:微振动;测量原理;应用 Abstract:Vibration refers to describe the system state parameters (such as displacement, voltage) in its benchmark fluctuation variations of process. In its narrow sense means mechanical vibration, namely the mechanical system of vibration. Electromagnetic vibration habit is called on oscillation. Mechanical system can maintain vibration, must have the flexibility and inertia. Due to its equilibrium elasticity, system deviation position, can produce reply force, prompting system; return to its original position Because of inertia, system in return balance position process accumulated the kinetic energy, so that the system across to the other side movement balance position. Because of elasticity and inertia mutual influence, just cause system vibration. The vibration research significance of very significant. Through mastery of vibration of basic theory and analysis method to determine and restrictions vibrating engineering structural and mechanical product performance, the life and the safety of harmful influence; This paper introduces the contact and contact-less two micro vibration measuring principle of vibration theory, and can be used to create and design a new vibration equipment,

机械工程测试技术基础教学大纲

《机械工程测试技术基础》课程教学大纲 课程代码: 课程英文名称:Foundation of Mechanical Measure Engineering 课程总学时:40 讲课:32 实验:8 上机:0 适用专业:机械设计制造及其自动化,机械电子工程 大纲编写(修订)时间:2016 一、大纲使用说明 (一)课程的地位及教学目标 1.《机械工程测试技术基础》课程适用于机械设计制造及自动化专业本科(四年学制),是学生的专业基础必修课。在机械制造领域,无论是在机械系统研究过程分析还是机械自动加工控制系统中,工程测试技术应用及其普遍,所以掌握必要的测试技术基础知识和技术基础,对做好机械制造专业的工作尤为重要。 2.课程教学内容方面侧重于测试技术基本知识、基本理论和基本方法,着重培养学生运用所学知识解决实际测量问题的实践能力。因此,本门课程的教学目标是:掌握非电量电测法的基本原理和测试技术;常用的传感器、中间变换电路及记录仪器的工作原理及其静、动态特性的评价方法;测试信号的分析、处理方法。培养学生能够根据测试目的选用合适的仪器组建测试系统及装置,使学生初步掌握进行动态测试所需的基本知识和技能;掌握位移、振动、温度、力、压力、噪声等常见物理量的测量和应用方法;掌握计算机测量系统、虚拟仪器等方面的基础知识;并能了解掌握新时期测试技术的更新内容及发展动向,为进一步研究和处理机械工程技术问题打好基础。 (二)知识、能力及技能方面的基本要求 1.要求掌握物理学上的电磁学理论知识、控制工程基础中的系统分析方法、电工学的电路分析理论。 2.要求掌握电工实验独立动手能力和仪器的操作能力。 3.掌握测试技术基本知识、基本技能,具备检测技术工程师的基本素质与能力,能应对生产和科研中遇到的测试系统设计以及传感器的选型、调试、数据处理等方面的问题,初步形成解决科研、生产实际问题的能力。 (三)实施说明 本课程是一门技术基础课,研究对象为机械工程中常见动态机械参数,主要讲授有关动态测试与信号分析处理的基本理论方法;测试装置的工作原理、选择与使用。为后续专业课、选修课有关动态量的实验研究打基础,并直接应用于生产实践、科学研究与日常生活有关振动噪声、力、温度等参量的测试中。 1.从进行动态测试工作所必备的基本知识出发,学生学完本课程后应具备下列几方面的知识: (1)掌握信号的时域和频域的描述方法,重点阐述建立明确的频谱概念,掌握信号强度的表达式、频谱分析和相关分析的基本原理和方法,了解功率谱密度函数及应用和数字信号分析的一些基本概念。明白波形图、频谱图的含义,具备从示波器、频谱分析仪中读取解读测量信息的能力。 (2)测试装置的基本特性部分:掌握系统传递函数、频响函数以及一、二阶系统的静动态特性的描述及测试方法,掌握测试装置的基本特性评价方法和不失真条件,并能正确运用于测试装置分析和选择。

振动测试技术模态实验报告

研究生课程论文(2016-2017学年第二学期) 振动测试技术 研究生:

模态试验大作业 0 模态试验概述 模态试验(modal test)又称试验模态分析。为确定线性振动系统的模态参数所进行的振动试验。模态参数是在频率域中对振动系统固有特性的一种描述,一般指的是系统的固有频率、阻尼比、振型和模态质量等。 模态试验中通过对给定激励的系统进行测量,得到响应信号,再应用模态参数辨识方法得到系统的模态参数。由于振动在机械中的应用非常普遍。振动信号中包含着机械及结构的内在特性和运行状况的信息。振动的性质体现着机械运行的品质,如车辆、航空航天设备等运载工具的安全性与舒适性;也反映出诸如桥梁、水坝以及其它大型结构的承载情况、寿命等。同时,振动信号的发生和提取也相对容易因此,振动测试与分析已成为最常用、最基本的试验手段之一。 模态分析及参数识别是研究复杂机械和工程结构振动的重要方法,通常需要通过模态实验获得结构的模态参数即固有频率、阻尼比和振型。模态实验的方法可以分为两大类:一类是经典的纯模态实验方法,该方法是通过多个激振器对结构进行激励,当激振频率等于结构的某阶固有频率,激振力抵消机构内部阻尼力时,结构处于共振状态,这是一种物理分离模态的方法。这种技术要求配备复杂昂贵的仪器设备,测试周期也比较长;另一类是数学上分离模态的方法,最常见的方法是对结构施加激励,测量系统频率响应函数矩阵,然后再进行模态参数的识别。 为获得系统动态特性,常需要测量系统频响函数。目前频响函数测试技术可以分为单点激励单点测量( SISO)、单点激励多点测量( SIMO) 、多点激励多点测量( MIMO)等。单点激励一般适用于较小结构的频响函数测量,多点激励适用于大型复杂机构,如机体、船体或大型车辆机构等。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分。瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。按激励力性质的不同,频响函数测试分为稳态正弦激励、随机激励及瞬态激励三类,其中随机激励又有纯随机、伪随机、周期随机之分,瞬态激励则有快速正弦扫描激励、脉冲激励和阶跃激励等几种方式。 振动信号的分析和处理技术一般可分为时域分析、频域分析、时频域分析和时间序列建模分析等。这些分析处理技术从不同的角度对信号进行观察和分析,为提取与设备运行状态有关的特征信息提供了不同的手段。信号的时域分析包括时域统计分析、时域波形分析和时域相关分析。对评价设备运行状态和

汽车的振动测试技术

汽车的振动测试技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

汽车的振动测试技术 汽车供应商们采用先进的振动测试技术来保证汽车在行驶中的安静和平稳。汽车上的零件和组装件必须经受振动可控测试技术的检验。 汽车内部从仪表板到桌椅,从安全气囊传感器到引擎注油泵,诸多零部件都要经过精确振动模式和幅度的测试。 在有些情况下,要用振动测试法验证汽车的各种装置在一般路面条件下不会损坏。在另一些情况下,通过振动测试来识别机械发出的烦人的噪声。 在振动控制的工业中,开发成功的数字信号处理技术有可能在实验室和生产线上制造成更加贴近真实的振动环境。今天,振动测试除了使用随机波、正弦波和冲击波的传统方法,又增加了更加复杂的方法,比如随机波上加正弦波和波形复制。 正如名称所示,随机正弦波是把随机振动与正弦波结合起来形成复杂的振动形式;波形复制振动模仿出真实的汽车振动环境。随机正弦波振动把多个正弦波与具有宽频带的噪声结合在一起。正弦波振动可以是固定的或者是扫描式的谐波或非谐波振动,而且在整个频带内的振动幅度是可变的。就模仿在路面变化行驶中的随机振动的汽车来说,其引擎转速增加或减少时,随机正弦波振动是很好的测试方法。 实际应用 采用随机正弦波振动和波形复制方法对汽车进行测试,可真实地再现汽车行驶中的实际环境,用作设计验证和质量控制。 ?仪表板 许多汽车制造厂对仪表板组件进行振动测试以检查其发出的咯吱声和卡嗒声。这一项是新车购买者可能最不满意的地方,在保证金中占很大份额。 为了测试建造了专用振动台,它不使用风扇,为的是造成清静的环境来验证振动中的仪表板是否有咯吱声和卡嗒声。因为没有通风散热,只能在温升超过工作温度时做短时间的振动测试,然后测试要暂停一会儿让设备冷却下来。 除振动台外,所有能发出噪声的仪器设备,包括振动台的控制器都应放在测试室的列边。遥控面板和显示器要悬挂在测试装置的上面,便于工作人员能听见噪声并控制测试过程。 用于检验咯吱声和卡嗒声的振动模式,由随机波、扫描正弦波和代表负荷的多段波形所构成。其振动幅度要控制在汽车正常行驶中的额定实验值内。为了避免振动过于猛烈。要维修部件并做好紧固工作。 在振动测试中,操作人员起着关键性的作用,例如施加扫描式正弦波来重复加速引擎的振动模式,此时可能要加上几次扫频来发现异常的噪声。由于咯吱声和卡嗒声难于发现起因,操作者必须停止对仪表板做下一步的操作,并且用于动方式来控制振动频率和振幅,检查产生噪音的真正原因。这样才能找到产生噪声的机理,许多设备生产厂也采用这种方法作为质量控制的手段。

机械振动测试系统综述

机械振动测试系统综述 翟 慧 强 张 金 萍 于 玲 王 丹 (沈阳化工大学 机械工程学院,辽宁 沈阳 110142) 摘 要:机械振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的机械振动测试系统便成为测试技术的重要内容。本文首先概述了机械振动测试系统的发展历程。总结和分析了发展机械振动 测试系统的基本组成和应用理论。根据不同原理列举了几种机械振动测试系统的类型并对不同的机械振动 测试系统进行分析,探讨了他们的优点和不足。最后在此基础上分析了机械振动测试系统的几个发展趋势和 系统建设中仍然要注意的抗干扰问题和故障诊断问题。 关键词:机械振动测试系统;测试技术;抗干扰;故障诊断 1 引言 振动问题广泛存在于热门的生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试系统应运而生。 振动测试系统有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2]。无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,机械振动测试在理论方面也有了长足的发展,1656年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2机械振动测试系统的基本理论与组成 机械振动测试就是利用现代一些测试手段,对所研究物体的机械振动进行测量,并对测得的信号进行更细致的分析,以期获得在各种工作状态下物体的机械振动特性,从而判断物体的机械振动特性是否符合要求。 振动测试系统主要由传感器、信号调节部分、数模转换器、信号处理部分和数据记录部分、反馈部分等组成。传感器是将被测量转换成某种电信号的部件。是整个测试系统最重要的组成部分。信号调节部分是把传感器的输出信号转换成适合于进一步传输和处理的形式。经过加工处理使得原始信号更加便于分析和处理。这种信号的转换多数是电信号直接的转换。信号处理部分是对来自信号调节环节的信号进行各种运算和分析。这也是测试的核心意义所在,包括对时域和频域的分析,已得到各种参数。数模转换器是采用计算机等进行测试、控制系统时进行模拟信号与数字信号的相互转换的环节。测试系统的主要作用是更加便捷易懂的将初试信号转换成某种信号进行提取分析。因此最重要的是信号不能失真,不出现扰动。这就对测试系统提出了较为严格的要求[3]。 3.振动测试系统的分类 近几年来,振动测试理论与方法都有了很大的发展。目前振动测试方法按其原理不同可以分为四类。直观类、光学类、机械类和电测类。直观法操作简便,不受各种器材的限制。

发动机振动特性分析与试验

发动机振动特性分析与试验 作者:长安汽车工程研究院来源:AI汽车制造业 完善的项目前期工作预示着更少的项目后期风险,这也是CAE工作的重要意义之一。在整机开发的前期(概念设计和布置设计阶段),由于没有成熟样机进行NVH试验,很难通过试验的方法预测产品的NVH水平。因此,通过仿真的方法对整机NVH性能进行分析甚至优化显得十分重要。 众所周知,发动机NVH是个复杂的概念,包括发动机的振动、噪声以及个体对振动和噪声的主观评价等。客观地说,噪声与振动也相互联系,因为发动机一部分噪声由结构表面振动直接辐射,另一部分由发动机燃烧和进排气通过空气传播。除此之外,发动机附件(如风扇)也存在噪声贡献。本文仅考虑发动机结构振动问题,即在主轴承载荷、燃烧爆发压力和运动件惯性力的作用下,对发动机结构振动进行分析以及与试验的对比。发动机结构噪声的激励源主要包括燃烧爆发压力、气门冲击、活塞敲击、主轴承冲击、前端齿轮/链驱动和变速器激励等,这些结构振动又通过缸盖罩、缸盖、缸体和油底壳等传出噪声。 发动机结构振动分析方法简介 图1 发动机结构振动分析方法 如图1所示,发动机结构噪声分析方法包括以下几个步骤: 1. 动力总成FE建模及模态校核 建立完整的短发动机和变速器装配的有限元模型;对该有限元模型进行模态分析,通过分析结果判断各零件间连接是否完好;通过分析结果判断动力总成整体模态所在频率范围是否合理,零部件的局部模态频率是否合理,若存在整体或局部模态不合理的情况,需要对结构进行初步更改或优化。

2. 动力总成模态压缩 缩减有限元模型,得到动力总成的刚度、质量、几何以及自由度信息,用于多体动力学分析。 3. 运动件简化模型建立 发动机中的部分动件不用进行有限元建模,可作简化处理,形成梁-质量点模型,用于多体动力学分析。其中包括:活塞组、连杆组和曲轴及其前后端。 4. 动力总成多体动力学分析 在定义了动力总成各零部件间连接并且已知各种载荷的情况下,对动力总成进行时域下的多体动力学分析,并对得到的发动机时域和频域下的动态特性进行评判,同时,其输出用于结构振动分析。 5. 动力总成结构振动分析 基于多体动力学分析结果,对整个动力总成有限元模型进行强迫振动分析,得到发动机本体、变速器以及各种外围件的表面振动特性,进行评判和结构优化。 实例分析 1. 分析对象 以一款成熟的直列四缸1.5L发动机为平台,针对其结构振动问题,对其进行结构振动CAE 分析,并与其台架试验结果相比较。发动机的部分参数如下:缸径75mm,冲程85mm,缸间距84mm,最大缸压6MPa。 2. 坐标定义 为了便于以后叙述,对动力总成进行了坐标定义(见图2)。

振动基础知识分析

基本概念和基础知识 一、常见的工程物理量 力、压力、应力、应变、位移、速度、加速度、转速等 (一)力:力是物体间的相互作用,是一个广义的概念。物体承受的力可以有加载力,也可以有动态力,我们常测试的力主要是动态力,即给结构施加力,激发结构的某些特性,便于测试了解其结构特性,如模态试验用的力锤。 (二)应力应变:材料或构件在单位截面上所承受的垂直作用力称为应力。在外力作用下,单位长度材料的伸长量或缩短量,称为应变量。在一定的应力范围(弹性形变)内,材料的应力与应变量成正比,它们的比例常数称为弹性模量或弹性系数。 (三)振动位移:位移就是质量块运动的总的距离,也就是说当质量块振动时,位移就是质量块上、下运动有多远。位移的单位可以用μm 表示。进一步可以从振动位移的时间波形推出振动的速度和加速度值。

可以是静态位移,可以是动态位移。通常我们测试的都是动态位移量。有角位移、线位移等。 (四)振动速度:质量块在振荡过程中运动快慢的度量。质量块在运动波形的上部和下部极限位置时,其速度为0,这是因为质量块在这两点处,在它改变运动方向之前,必须停下来。质量块的振动速度在平衡位置处达到最大值,在此点处质量块已经加速到最大值,在此点以后质量块开始减速运动。振动速度的单位是用mm/s来表示。 (五)振动加速度:被定义为振动速度的变化率,其单位是用有多少个m/s2 或g来表示。由下图可见加速度最大值处是速度值最小值的地方,在这些点处质量块由减速到停止然后再开始加速。 (六)转速:旋转机械的转动速度 (七)简谐振动及振动三要素 振动是一种运动形式――往复运动

d=Dsin(2πt/T+Φ) D――振动的最大值,称为振幅 T――振动周期,完成一次全振动所需要的时间 f――单位时间内振动的次数,即周期的倒数为振动频率, f =1/T (Hz)(1) 频率f 又可用角频率来表示,即 ω=2π/T (rad/s) ω和f的关系为 ω=2πf (rad/s)(2) f =ω/2π(Hz)(3) 将式(1)、(2)、(3)代入式可得 d =D sin(ωt+Φ)=Dsin(2πft+Φ) 可以用正玄或余玄函数描述的振动过程称之为简谐振动

振动试验理论基础与方法培训

奥 申 检 测 振动试验理论基础与方法培训 主讲人:洪城明 上海奥申检测科技有限公司 培训目的: (1)基本了解振动试验相关的基础理论(2)掌握理解振动试验相关的核心理论 (3)了解振动试验设备结构、功能,掌握其主要参数范围 (4)了解振动试验传感器关键参数、掌握核查方法与使用注意点(5)理解并掌握正弦振动、随机振动的试验方法(6)理解并掌握冲击试验方法 (7)了解夹具要求、开发验证过程,掌握共振搜寻确认方法(8)掌握GMW17010对零件振动试验的要求、流程和方法

奥 申 检 测 1.1振动试验目的 在实验室内模拟一连串实际的振动现象,测试产品在寿命周期中,是否能承受运输、储存或使用过程的振动环境的考验。 1.2应用 (1)耐久测试——获得临界使用条件,确定产品设计和功能的使用边界、制定要求标准。 (2)质控测试——考核产品耐振动性能是否达标、提前筛检出不良品,确认质量和提升产品的可靠性。 (3)失效分析——模拟失效环境,分析失效模式,助力改进。 1.3测试原理 通过振动硬件(振动台、夹具、控制器、传感器),按照目标振动条件输入振动参数,对目标施加外部振动激励,目标产生振动响应,通过采集和分析响应信号,分析目标振动状态和耐振性。 2测试硬件 2.1振动试验台 2.1.1分类 振动试验设备分机械振动试验台、电液振动试验台、电动振动试验台、模拟汽车运输试验台。 (1) 机械式振动试验台:适宜于低频定振试验或低频定位移扫频试验。 (2) 电液式振动试验台:适宜于低频定振试验或中低频扫频试验及随机试验和冲击实验。 (3) 电动式振动试验台:适宜于任何形式的给定信号的振动及冲击试验。 (4) 模拟汽车运输试验台:可代替实际跑车试验 2.1.2电动振动台结构(振动台-振动发生器、控制器、功放、冷却器) 2.1.3电动振动台原理 励磁线圈如图示2-2在振动台台体内建立磁场,励磁线圈与直流电源相连,在环行气隙里产生一个高磁通量。动圈部件,包括台面、骨架和驱动线圈,悬挂在振动台的环行气隙里,当交流电流通过驱动线圈时,电磁力会在驱动线圈的绕组上产生,使得台面产生向上和向下的往复移动,如图示2-2中双向箭头处显示。台面的移动量取决于振动控制器输出的驱动信号的大小和频率以及扩展台面(如果有的话)的质量、所加的负载质量和台面悬挂系统的刚度。

相关文档
最新文档