基于指标气体增长率分析法测定煤自燃特征温度_邓军

基于指标气体增长率分析法测定煤自燃特征温度_邓军
基于指标气体增长率分析法测定煤自燃特征温度_邓军

煤质化验指标

煤质化验指标

煤质化验指标 水分。 煤中水分分为内在水分、外在水分、结晶水和分解水。 煤中水分过大是,不利于加工、运输等,燃烧时会影响热稳定性和热传导,炼焦时会降低焦产率和延长焦化周期。 现在我们常报的水份指标有: 1、全水份(Mt),是煤中所有内在水份和外在水份的总和,也常用Mar表示。通常规定在8%以下。 2、空气干燥基水份(Mad),指煤炭在空气干燥状态下所含的水份。也可以认为是内在水份,老的国家标准上有称之为“分析基水份”的。 灰分 指煤在燃烧的后留下的残渣。 不是煤中矿物质总和,而是这些矿物质在化学和分解后的残余物。 灰分高,说明煤中可燃成份较低。发热量就低。 同时在精煤炼焦中,灰分高低决定焦炭的灰分。 能常的灰分指标有空气干燥基灰分(Aad)、干燥基灰分(Ad)等。也有用收到基灰分的(Aar)。 挥发份(全称为挥发份产率)V 指煤中有机物和部分矿物质加热分解后的产物,不全是煤中固有成分,还有部分是热解产物,所以称挥发份产率。 挥发份大小与煤的变质程度有关,煤炭变质量程度越高,挥发份产率就越低。在燃烧中,用来确定锅炉的型号;在炼焦中,用来确定配煤的比例;同时更是

汽化和液化的重要指标。 常使用的有空气干燥基挥发份(Vad)、干燥基挥发份(Vd)、干燥无灰基挥发份(Vdaf)和收到基挥发份(Var)。 其中Vdaf是煤炭分类的重要指标之一。 固定碳 不同于元素分析的碳,是根据水分、灰分和挥发份计算出来的。 FC+A+V+M=100 相关公式如下:FCad=100-Mad-Aad-Vad FCd=100-Ad-Vd FCdaf=100-Vdaf 全硫St 是煤中的有害元素,包括有机硫、无机硫。1%以下才可用于燃料。部分地区要求在0.6和0.8以下,现在常说的环保煤、绿色能源均指硫份较低的煤。 常用指标有:空气干燥基全硫(St,ad)、干燥基全硫(St.d)及收到基全硫(St,ar)。煤的发热量 煤的发热量,又称为煤的热值,即单位质量的煤完全燃烧所发出的热量。煤的发热量时煤按热值计价的基础指标。煤作为动力燃料,主要是利用煤的发热量,发热量愈高,其经济价值愈大。同时发热量也是计算热平衡、热效率和煤耗的依据,以及锅炉设计的参数。 煤的发热量表征了煤的变质程度(煤化度),这里所说的煤的发热量,是指用

煤矿采空区遗煤自燃治理措施方法

煤矿采空区遗煤自燃治理措施方法 目前,矿井火灾是长期威胁煤矿工人生命安全最大的灾害,矿井经济效益受到了严重的影响和损害。据徐若友可研究表明我国的主要成煤地层分布在石炭纪和二叠纪的煤层中,具有煤炭自燃倾向煤层达70%以上。近年来,随着煤炭生产技术不断提高、生产工艺不断改进,新技术的不断推广和应用,建设了很多的高产高效矿井,在煤矿高回报的同时,也带来了煤漏风多,通风阻力大,遗留浮煤多,采空区面积大幅增加等多种易引起煤炭自燃的不利因素。 煤炭的自燃过程分为潜伏期、自热阶段、自燃阶段和熄灭四个阶段。煤的自然发火期是从煤层被开采破碎与空气接触之日起到出现发火和冒烟等自燃现象或温度上升至自燃点为止所经历的时间段,以月或天为单位,煤的自然发火期包括潜伏期和自热期,其时间的长短取决于煤的内部结构及其物理化学性质、被开采后的堆积状态参数、裂隙或空隙度、通风供氧、蓄热和散热等外部环境。 采空区遗煤的松散程度、漏风强度将随工作面推进而发生变化,进而使遗煤蓄热、放热环境发生变化,工作面推进速度对遗煤自燃环境影响很大。浮煤量是采空区内遗煤自燃发火的一个物质基础。只有足够厚度的煤层才会引发自燃;松散煤体空隙率是影响漏风强度的主要因素。 徐州吉安研发的普瑞特防灭火技术集凝胶、黄泥灌浆、三相泡沫、氮气和阻化剂的防灭火优点于一体,特别是继承了泡沫的扩散性能和凝胶良好的固水特性。一方面,水浆生成泡沫之后,缓慢形成凝胶,能把大量的水固结在凝胶体内,避免了浆液中大量水流失或者溃浆的缺点,大幅度提高了浆水在采空区里的滞留率;另一方面,形成的凝胶能以泡沫为载体对采空区的高、中、低位火源或浮煤大范围全方位的覆盖,且能固结90%以上水分并形成凝胶层,防火时能持久保持煤体湿润并隔绝氧气,灭火时能长久地吸热降温,防止火区复燃。

煤炭燃烧特性指标

煤炭燃烧特性指标 几乎所有的煤炭特性指标都与煤炭的燃烧特性是相关的,反之,也没有一个能完全、全面表征煤炭燃烧特性的指标。与此同时,不同的煤炭特性指标对于煤炭燃烧特性的重要性,也随着煤炭燃烧方式的不同而异,并具有相当的差别。作为影响煤炭燃烧特性或者说过程最明显的指标是煤炭的挥发份和粘结性或者说膨胀系数。前者表征着煤炭在燃烧过程中的以气相完成的份额和其对后续固相燃烧过程的影响;后者则关系到煤炭颗粒因形态、尺寸和反应表面积的变化而使其自身的燃烧特性受到的影响。而前者和后者有时又是具有密切联系的。与煤炭燃烧特性有关的还有挥发份的释出特性、焦炭的反应性、煤炭的热稳定值、重度等,以及煤炭在堆放过程中的风化、自燃特性和可磨度。 煤炭颗粒在受热过程中的熔融软化、胶质体和半焦的形式几乎所有的烟煤在受热升温的过程中与挥发份释出的同时,都会出现胶质体,呈塑性和颗粒的软化现象。煤炭颗粒间的粘结就是因颗粒胶体间的相互粘结而产生的,因此煤炭的粘结性也就于其所呈现胶体的条件相关。当一个按一定升温速度,经历着受热过程的煤炭颗粒进行观察时,考虑到在此受热过程中热量总是从表面传向颗粒核心的,在同一时间内表面温度也总高于核心。可以发现不同的烟煤,在表面温度达到320~350℃以前,颗粒的形态变化一般觉察不到,只

有煤化程度低的气煤才可观察到表面开始有挥发份气体释出。在温度到350~420℃时,可以观察到在颗粒表面出现了一层带有气泡的液相膜,表面上也逐渐失去原来的棱角,这层膜就是胶质体。当温度为500~550℃时,一方面因颗粒内部温度升高,使胶质体层向内层发展,以及外部的胶质体层因挥发份释出被蒸干转化为半焦,即从表面到中心由半焦壳、胶质体和原有的煤三层所构成,但这种形态所保持的时间是短暂的。随着受热的继续,胶质体的发展和体积的膨胀,半焦外壳出现裂口,胶质体流出。其后是胶质体向颗粒中心区域的发展,流出的胶质体被蒸干转变为半焦,直到整个颗粒都经历胶质体和半焦的形成。整个的过程如图3-2-2所示:试验证明软化温度越低的煤种,挥发份开始释出的时间越早。因此软化温度Tp(对于不同的烟煤表面开始出现液相膜的温度)和再固化温度TK(呈现最大塑性的温度TMAX以及被蒸干再次呈固体形状的温度)都是表明煤炭流变特性的指标,同样也间接表明了于煤炭燃烧特性密切相关的问题。 Ⅰ软化开始阶段Ⅱ开始形成半焦的阶段Ⅲ煤粒强烈软化和半焦破 裂阶段

煤矿采空区煤自燃的规律

煤矿采空区煤自燃的规律 大量统计资料表明,采空区是井下自然发火几率最高的区域,易自燃的地点包括开切眼、停采线、进回风顺槽、联络巷、残留煤柱边缘、厚煤层下部分层等等,其中开切眼、停采线、联络巷和进回风顺槽发火几率最高。一般情况下,采空区自然发火位置大多在采空区内的漏风通道即开切眼、停采线、进回风顺槽内侧、联络巷处以及采空区中部与地表有裂隙连通处。这主要是由于采空区有漏风的地方,具备自燃的条件。根据各种漏风情况划分采空区自燃有以下几种类型:(1)采空区与地表裂隙贯通处 浅埋藏煤层开采,受井下开采的影响,地表容易塌陷,形成裂隙,并与采空区串通,构成持续稳定的漏风通道,为采空区遗煤氧化提供新鲜空气流。所以采空区内与地表连通的漏风裂隙是浅埋藏采空区经常发生自燃火灾的地方。 (2)回采工作面后方 由于回采速度太慢或因故停采,进入回采面的新鲜风流不断地漏入其后方采空区内造成连续定点供氧条件,从而引起采空区浮煤自燃。 (3)综放工作面的切眼、停采线 高产高效综采工作面的切眼和停采线都不放顶煤,所以这两个地点的浮煤非常的后,漏风量比较大。因此,切眼、停采线附近采空区容易发生自燃。 (4)采空区废弃风巷 进回风巷煤柱随回采的不断推进,逐渐报废留弃在采空区中。巷道特别是有联络巷存在的地方,不易冒压实,巷道密闭不严实时,成为漏风通道,造成长时间漏风供氧,引起自燃。 (5)回采期间采空区二道 对于综放开采来说,两道及切眼不放顶煤,浮煤较厚,易引起自燃。 徐州吉安矿业科技有限公司研发的普瑞特防灭火技术集凝胶、黄泥灌浆、三相泡沫、氮气和阻化剂的防灭火优点于一体,特别是继承了泡沫的扩散性能和凝胶良好的固水特性。一方面,水浆生成泡沫之后,缓慢形成凝胶,能把大量的水固结在凝胶体内,避免了浆液中大量水流失或者溃浆的缺点,大幅度提高了浆水在采空区里的滞留率;另一方面,形成的凝胶能以泡沫为载体对采空区的高、中、低位火源或浮煤大范围全方位的覆盖,且能固结90%以上水分并形成凝胶层,防火时能持久保持煤体湿润并隔绝氧气,灭火时能长久地吸热降温,防止火区复燃。

煤粉特性及自燃爆炸的条件

1煤粉特性及自燃爆炸的条件 煤粉发生自燃和爆炸是由于煤的特性在加工成煤粉后所具有的特性以及煤粉所处的环境条件所决定的。 1.1煤粉的流动性 它的尺寸一般为0~50微米,其中20~50微米的颗粒占多数。干的煤粉能吸附大量的空气,它的流动性很好,就像流体一样很轻易在管道内输送。由于干的煤粉流动性很好,它可以流过很小的空隙。因此,制粉系统的严密性要好。 1.2煤粉的自燃与爆炸 积存的煤粉与空气中的氧长期接触氧化时,会发热使温度升高,而温度的升高又会加剧煤粉的进一步氧化,若散热不良时会使氧化过程不断加剧,最后使温度达到煤的燃点而引起煤粉的自燃。在制粉系统中,煤粉是由输送煤粉的气体和煤粉混合成的云雾状的混合物,它一旦碰到火花就会使火源扩大而产生较大的压力(2~3倍大气压),从而造成煤粉的爆炸。 影响煤粉爆炸的因素很多,如挥发分含量,煤粉细度,气粉混合物的浓度,温度湿度和输送煤粉的气体中氧的成分比例等。 一般说来挥发分含量VR<10%(无烟煤),是没有爆炸危险的。而VR>25%的煤粉(如烟煤等),很轻易自燃,爆炸的可能性也很大。 煤粉越细越轻易自燃和爆炸,粗煤粉爆炸的可能性较小。例如烟煤粒度大于 0.1毫米几乎不会爆炸。因此,挥发分大的煤不能磨得过细。 煤粉浓度是影响煤粉爆炸的重要因素。实践证实,最危险得浓度在 1.2~ 2.0kg/m3,大于或小于该浓度时爆炸的可能性都会减小。在实际运行中一般是很难避免危险浓度的。制粉设备中沉积煤粉的自燃性往往是引爆的火源。气

粉混合物温度越高,危险性就越大。煤粉爆炸的实质是一个强烈的燃烧过程,是在 0.01~ 0.15s的瞬间大量煤粉忽然燃烧产生大量高温烟气因急速膨胀而形成的压力波以及高速向外传播而产生的很大的冲击力和声音。 潮湿煤粉的爆炸性较小,对于褐煤和烟煤,当煤粉水分稍大于固有水分时一般没有爆炸危险。 2制粉系统爆炸原因分析 引爆点主要在轻易长期积煤或积粉的位置,制粉系统处于封闭状态,引爆的火源主要是磨煤机入口积煤,细粉分离器水平段入口管积粉,粗粉分离器积粉自燃,根据制粉系统的运行工况和爆炸情况分析,主要原因如下。 2.1煤粉细度,风粉浓度及燃煤成分 煤粉爆炸的前期往往是自燃。一定浓度的风粉气流吹向自燃点时。不仅加剧了自燃,而且会引起燃烧,而接触到明火的风粉气流随时都会产生爆炸。造成流动煤粉爆炸的主要原因是风粉气流中的含氧量,煤粉细度,风粉混合物的浓度和温度。 煤粉越细,爆炸的危险性就越大。粗煤粉爆炸的可能性就小些,当煤粉粒度大于 0.1mm时几乎不会爆炸。当煤粉浓度大于3~4kg/m3 (空气)或小于 0.32- 0.47kg/m3 时不轻易引起爆炸。因为煤粉浓度太高,氧浓度太小;而煤粉浓度太低,缺少可燃物。只有煤粉浓度为

煤矿采空区煤体自燃原因分析

煤矿采空区煤体自燃原因分析 火灾作为矿井生产中的常见灾害之一,对井下生产安全有着严重影响。根据相关统计显示,中国八成以上煤层存在自然发火倾向,矿井火灾总量中九成左右由煤炭自燃引发。通过对以往各大科研院校针对煤层自燃现象开展的各项研究的深入分析,可发现采空区煤炭自燃的出现主要受到煤层自燃倾向、煤体粒度、回采面推进速度、漏风量等因素影响。 1、煤层自燃倾向 煤炭自身就是典型的可燃物,其自身节理裂隙的发育又为O2提供了可依附的环境,使其能发生氧化并产生热量,当周围环境具备良好的聚热条件时,煤炭便会不断聚热升温,最终达到其着火点后便会发生煤炭自燃。通常来说,煤炭种类的不同使得其物理特性也存在相异性,因此将煤炭的吸氧能力作为其自燃能力的表征数据,在实际生产中可借助专业的监测设备,对所采煤层煤体吸氧能力进行测定,并结合其它辅助修正指标,可实现对煤炭自燃发火能力的有效确定,从而为井下火灾防治提供参考和指导。 2、煤体粒度 井下生产回采作业中,支架上部煤体会在支架的反复支撑中发生破碎,并在作业过程中难以避免地落入采空区内。此时,煤体破碎程度越大,落入采空区浮煤粒度越小,则其越容易发生氧化,进而引发自燃现象。 煤样粒径越小,其对O2的吸附能力越强,氧化并发生自燃的概率也越高。这不仅解释了破碎煤体与采空区浮煤容易发生自然发火现象的原因,同时也为更加有效认识和防范采空区浮煤自燃提供了理论指导。 3、回采面推进 通过对回采面漏风量、推进距离、采空区温度等数据的监测显示,采空区内温度的变化同回采面的推移距离存在一定关系。当回采面正常推移时,采空区内浮煤的氧化升温时间相对有限,温度未达到着火点便随着回采面的推移而进入窒息带。但当回采面推移无法正常开展或速度较慢时,采空区浮煤便会长时间置于氧化升温带,从而持续增温至着火点,诱发自燃发火现象。通常,在生产作业时,遭遇断层、褶曲等特殊地质条件时,回采面推移必然会放慢速度,这便会导致此时采空区火灾的发生几率大幅提升。 预防为主一直是采空区火灾防治的基础原则。有效落实预防为主的原则,必须充分借助先进的科学技术,针对采空区自然发火的条件和原因,构建相应的自然发火措施。徐州吉安研发的普瑞特防灭火技术集凝胶、黄泥灌浆、三相泡沫、氮气和阻化剂的防灭火优点于一体,特别是继承了泡沫的扩散性能和凝胶良好的固水特性。一方面,水浆生成泡沫之后,缓慢形成凝胶,能把大量的水固结在凝胶体内,避免了浆液中大量水流失或者溃浆的缺点,大幅度提高了浆水在采空区里的滞留率;另一方面,形成的凝胶能以泡沫为载体对采空区的高、中、低位火源或浮煤大范围全方位的覆盖,且能固结90%以上水分并形成凝胶层,防火时能持久保持煤体湿润并隔绝氧气,灭火时能长久地吸热降温,防止火区复燃。

煤在氧化升温过程中

煤在氧化升温过程中,会释放出CO、CO2、烷烃、烯烃以及炔烃等指性气体。这些气体的产生率随煤温上升而发生规律性的变化,能预测和反映煤自然发火状态。CO贯穿于整个煤自然发火过程中,一般在50℃以上就可测定出来,出现时浓度较高;烷烃(乙烷、丙烷)出现的时间几乎与CO同步,贯穿于全过程,但其浓度低于CO,而且在不同煤种中有不同的显现规律;烯烃较CO和烷烃出现得晚,乙烯在110℃左右能被测出,是煤自然发火进程加速氧化阶段的标志气体,在开始产生时,浓度略高于炔烃气体;炔烃出现的时间最晚,只有在较高温度段才出现,与前两者之间有一个明显的温度差和时间差,是煤自然发火步入激烈氧化阶段(也即燃烧阶段)的产物。因此,在这一系列气体中,选择一些气体作为指标气体,以及准确检测,就能可靠判断自然发火的征兆和状态。 1 指标气体及其选择 目前,国内外可作为煤自然发指标气体主要有CO、C2H6、CH4、C2H4、C2H2、△O2(△O2为氧气消耗量)等及其生成的辅助性指标。早在“七·五”期间,国家攻关项目《各煤种自然发火标志气体指标研究》的研究中,对我国各矿区有代表性的煤种进行了自然发火气体产物的模拟试验,得出了指标气体与煤种及煤岩之间的关系。 1)随着煤种的不同,煤自然发火氧化阶段(缓慢氧化阶段、加速氧化阶段、激烈氧化阶段)的温度范围、气体产物和特性都不同; 2)各煤种从缓慢氧化阶段的气体产物优选为灵敏指标的为:褐煤、长焰煤、气煤、肥煤以烯烃或烷比为首选,以CO及其派生的指标为辅,而焦煤、贫煤和瘦煤则以CO及其派生的指标为首选,C2H4或烯烷比为辅;无烟煤和高硫煤唯一依据是CO及其派生指标; 3)C2H4可用于气体分析法中表征低变质程度煤着火征兆的灵敏指标,同时也可以作为判断煤自然发火熄灭程度的指标;C2H4/ C2H2比值可以更准确地表征煤着火温度的最高温度点,结合其他参数可用于判断着火前的时间。 因此,必须充分认识到CO并非唯一的煤自然发火气体指标。它还有许多不足:检测温度范围极宽;CO产生量同煤温之间的关系不明确,特别是在现场复杂条件下,受风流、煤体原生气体组分、测点选择及生产过程等因素影响,难以确定煤氧化自燃的发展阶段,使预测预报的准确率和精度降低。 2 煤自燃指标气体灵敏度的提高技术 由于指标气体在井下气流中不浓度非常小,低于现有检测仪器的检测精度,使得某些本应可以有效反映井下煤自燃状态的指标气体就可能因检测不出或测不准而无法利用。采用气体的吸附与浓缩技术,可提高检测气体的灵敏度,改善现有指标气体预报准确度不高的缺陷。 2.1 气体的吸附与浓缩原理 利用多孔性吸附介质对煤自燃过程中产生的气体的选择吸附性能,对气体进行吸附浓缩,达到可检测的目的。可用于气体吸附的多孔介质种类比较多,但活性炭具有对有机物的吸附效率高、再生能力好、价格低廉等特点,故采用果壳类活性炭作为吸附剂来吸附浓缩煤

防治沿空巷道顶板煤炭及相邻采空区煤炭自燃的措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.防治沿空巷道顶板煤炭及相邻采空区煤炭自燃的措 施正式版

防治沿空巷道顶板煤炭及相邻采空区煤炭自燃的措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成 的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度 与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 1、搞好煤炭自燃的监测 在沿空巷道的顶板及其与采空区相邻的一帮,每隔一定距离打一个检测孔,每个孔埋设WZP 铂热电阻温度探头和束管,用测温仪联接温度探头,直接读得每个钻孔中的温度值。通过束管抽出钻孔中的气体,利用色谱仪分析每个钻孔的O2 、CO、CH4 、CO2 、N2 的浓度值。从工作面准备到工作面回采期间按时进行测定,根据对测定参数进行分析处理的结果,及时采取预防措施。 2、对沿空巷道实行锚网支护

(1) 对沿空巷道顶板采用高强度组合锚杆支护,树脂锚杆剂锚固,锚固形式为全长锚固,并铺设菱形金属网、W钢带,以主动加固煤体。同时采用顶角加长锚杆以加固巷道顶板薄弱带。 (2) 巷道2 帮采用高强度锚杆支护,树脂锚固剂锚固,并铺设双抗金属网、钢筋梯,以加固相邻采空区侧的小煤柱和实体煤。 通过现场观察,锚网支护使巷道变形量大大降低,减少了沿空巷道顶板煤炭及采空区侧小煤柱的裂隙,使漏风量大大减少,对控制沿空巷道顶板煤炭自燃和相邻采空区煤炭自燃十分有利。 3、喷浆堵漏

煤自燃火灾指标气体预测预报的几个关键问题探讨

煤自燃火灾指标气体预测预报的几个关键问题探讨煤在氧化升温过程中,会释放出CO、CO2、烷烃、烯烃以及炔烃等指性气体。这些气体的产生率随煤温上升而发生规律性的变化,能预 测和反映煤自然发火状态。CO贯穿于整个煤自然发火过程中,一般 在50℃以上就可测定出来,出现时浓度较高;烷烃(乙烷、丙烷) 出现的时间几乎与CO同步,贯穿于全过程,但其浓度低于CO,而且在不同煤种中有不同的显现规律;烯烃较CO和烷烃出现得晚,乙烯 在110℃左右能被测出,是煤自然发火进程加速氧化阶段的标志气体,在开始产生时,浓度略高于炔烃气体;炔烃出现的时间最晚,只有 在较高温度段才出现,与前两者之间有一个明显的温度差和时间差,是煤自然发火步入激烈氧化阶段(也即燃烧阶段)的产物。因此,在这一系列气体中,选择一些气体作为指标气体,以及准确检测,就 能可靠判断自然发火的征兆和状态。 1指标气体及其选择 目前,国内外可作为煤自然发指标气体主要有CO、C2H6、CH4、C2H4、C2H2、△O2(△O2为氧气消耗量)等及其生成的辅助性指标。早在“七·五”期间,国家攻关项目《各煤种自然发火标志气体指标研究》

的研究中,对我国各矿区有代表性的煤种进行了自然发火气体产物 的模拟试验,得出了指标气体与煤种及煤岩之间的关系。 1)随着煤种的不同,煤自然发火氧化阶段(缓慢氧化阶段、加速氧 化阶段、激烈氧化阶段)的温度范围、气体产物和特性都不同; 2)各煤种从缓慢氧化阶段的气体产物优选为灵敏指标的为:褐煤、 长焰煤、气煤、肥煤以烯烃或烷比为首选,以CO及其派生的指标为辅,而焦煤、贫煤和瘦煤则以CO及其派生的指标为首选,C2H4或烯烷比为辅;无烟煤和高硫煤唯一依据是CO及其派生指标; 3)C2H4可用于气体分析法中表征低变质程度煤着火征兆的灵敏指标,同时也可以作为判断煤自然发火熄灭程度的指标;C2H4/C2H2比值可以更准确地表征煤着火温度的最高温度点,结合其他参数可用于判 断着火前的时间。 因此,必须充分认识到CO并非唯一的煤自然发火气体指标。它还有 许多不足:检测温度范围极宽;CO产生量同煤温之间的关系不明确,特别是在现场复杂条件下,受风流、煤体原生气体组分、测点选择

故县联营煤矿采空区遗煤自燃治理通用版

安全管理编号:YTO-FS-PD674 故县联营煤矿采空区遗煤自燃治理通 用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

故县联营煤矿采空区遗煤自燃治理 通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、概况 襄垣故县联营煤矿属低瓦斯矿井,生产能力为 600Kt/a。主采3号煤层,埋藏深度较浅,距地表150m 左右,地表漏风情况较严重。3号煤层为特低硫、低灰、高热值的瘦煤。 201综放面东为已封闭的井田边界探巷,西为202准备工作面。工作面长126m,走向长553m。该工作面投产于20xx年12月1日,截至20xx年6月29日发现火情之时,工作面推进320m,距停采线尚有233m。 二、201综放面火情及发展趋势 20xx年6月29日,监测201综放面上隅角CO浓度为18PPm,瓦斯浓度为0.56%。至7月7日,CO浓度上升至35PPm,在9天内递增17 PPm。但是未见烟雾和明火,说明采空区内遗煤处于氧化自燃阶段,而未进入燃烧阶段,必须采取有效措施进行处理。 三、发火原因及火源位置的判断

煤的自燃发展过程

煤的自燃发展过程 煤炭自燃一般是指:煤在常温环境下会与空气中的氧气通过物理吸附、化学吸附和氧化反应而产生微小热量,且在一定条件下氧化产热速率大于向环境的散热速率,产生热量积聚使得煤体温度缓慢而持续地上升,当达到煤的临界自热温度后,氧化升温速率加快,最后达到煤的着火点温度而燃烧起来,这样的现象和过程就是煤的自燃(或称之为煤的自然发火、煤矿的自燃火灾)。 根据现有的研究成果,认为煤炭的氧化和自燃是基链反应,一般将煤炭自燃过程大体分为3个阶段:即低温氧化阶段、自热阶段、燃烧阶段。 (1)低温氧化阶段 煤在低温情况下与空气接触时,吸附空气中的氧(O2)而生成不稳定的氧化物羟基(—OH)与羧基(—COOH),并放出少量的热。这一阶段既观测不到煤体温度的变化,也体验不到周围环境温度的上升,煤的氧化进程平稳而缓慢,是一个十分隐蔽的氧化过程,但煤的质量有所增加,其增加质量相当于所吸附氧的质量,化学性质变得活泼,着火点温度降低,很难发现其外部特征,故称为潜伏期或准备期。由于煤的自燃需要热量的聚积,在该阶段因环境起始温度低,煤的氧化速度慢,产生的热量较小,因此需要一个较长的蓄热过程,它的长短取决于煤的自燃倾向性的强弱和外部条件。 (2)自热阶段 经过低温氧化阶段之后,煤的氧化速度加快,发热量急剧增加。如果热量来不及散失和导出,就会使煤的自热加速,不稳定的氧化物分解成水(H2O)、二氧化碳(CO2)、一氧化碳(CO)。氧化产生的热量使煤温继续升高。据硏究,煤的温度毎升高10℃,氧化速度就增加2~3倍,当超过自热的临界温度(60~80℃),煤温上升速度急剧加快,氧化进程加速,开始出现煤的干馏,生成芳香族的碳氢化合物(C x H y)、氢(H2)、一氧化碳(CO)等可燃性气体。这时的特征是:空气中的氧含量减少,一氧化碳(CO)、二氧化碳(CO2)含量增加,煤中的水分被蒸发,空气的温度升高并出现雾气,支架及巷道壁上有水珠,这就是煤的自热期(3)燃烧阶段 如果煤的自热温度继续升高,当温度达到着火点温度(300~500℃)时,就会发生燃烧现象。此时,生成水(H2O)和其他碳氢化合物,同时一氧化碳(CO)大量增加,出现烟雾及特殊的火灾气味(如煤油味、松节油味)。当温度达到800 ~2000℃时,煤的燃烧可出现明火。

预防采空区、冒高处、煤柱破坏区自然发火措施

预防采空区、冒高处、煤柱破坏区自然发火安全技术措施为预防井下采空区、冒高处、煤柱破坏区自然发火事故的发生,确保矿井的安全生产和职工的生命财产安全,特制定如下安全技术措施。 一、预防采空区自然发火 (一)回采期间 1、回采管理 (1)要提高工作面回采率,回采中严禁丢底、顶煤,减少采空区遗煤量。木料等可燃材料应回收干净,不得埋入采空区。 (2)利用工作面风巷埋设的防火灌浆管路对采空区进行随采随灌。 (3)工作面距停采线最后40m范围内,保证机、风巷均衡回采,防止因局部推进迟缓而造成采空区自然发火。 (4)到工作面停采时,生产单位要打开支架的侧护板,同时要保证联网质量及支架的初撑力,收作铺网要保证延至架后,落地压茬为准,有效防止采空区漏风。 2、隅角管理 (1)工作面上、下隅角必须充填背实,减少采空区漏风。 (2)当工作面回采至停采线60m后,采煤区每间隔10m施工一道隔离袋墙,对上、下隅角进行封堵。封堵范围:下隅角由机巷下帮至第 1 架 架尾,上隅角由风巷上帮至最后1 架架尾。至停采收作线,工作面机巷、风巷共施工隔离袋墙14道(机、风巷各7道)。已施工的隔离袋墙严禁拆除,以减少采空区供氧条件。 3、隔离袋墙设置要求 (1)施工隔离袋墙前,由采煤区提前联系通风区,通风区安排专人现场监督施工,保证施工质量符合要求。 (2)隔离袋墙采用碎矸等不燃性材料装袋垒砌,宽度不小于2m,墙 面竖缝要错开,逐层垒砌,严禁出现阶梯墙面,并与巷帮、顶板及架尾接实,保证四周封堵严密。 (3)在施工隔离袋墙前,必须对灌浆管(注氮管)进行确认,不得将灌浆

(注氮管)预留管口封于隔离袋墙之中;管路要靠帮靠底,不得悬 空。 4、职责划分及要求(1)通风区加强采区主要风门监管、巡查与维护,确保通风系统稳定、可靠。采煤区要加强机、风巷的维护,保证通风断面,降低通风阻力。 (2)通风区在风巷距停采线80m处进一步加强灌浆管路管理。工作面每推进20m距离再加埋1趟DN50mi灌浆管路,(即分别在80m 60m 40m和20m的位置加埋一趟灌浆管路),并及时利用所埋灌浆管路,对采空区进行灌浆,消除采空区浮煤的蓄热环境;在机巷距停采线80m、60m、40m和20m位置各加埋一趟注氮管路,以便于发现发火隐患时,可以及时利用管路进行注氮消除隐患;距停采线20m时在工作面每10架架间埋设一根防火措施管,延至架前挂牌管理。 ( 3)在埋设工作面的灌浆、注氮管路时,采煤区要保证上、下隅角留有足够空间,并将埋设管路路线预先清理好,为铺设灌浆、注氮管路创造施工条件。 (4)通风区对延接好的灌浆、注氮管路进行编号、挂牌管理,牌板字迹清晰明显,易于识别。生产单位负责保护好管路,严禁浮煤、碎矸掩埋灌浆、注氮管路,发现损坏时,立即汇报处理。 (5)工作面风巷迈步式压埋2趟检测束管,迈步步距为20m距停采线20m 时在下隅角加埋一路取样检测束管,编号、挂牌管理。铺网结束前,瓦斯检查工每班通过束管对采空区气体情况进行检测,每周取气样进行化验分析。 (二)收作期间措施 1 、通风及瓦斯管理 ( 1)通风区在收作前负责指定机、风巷局部通风机安装位置,保运区负责将局部通风机安装到位,做到“三专三闭锁”。 ( 2)工作面拆除期间,施工单位必须保证留巷有效通风断面不低于3m;控制工作面风量在500nVmin左右,并满足回风流甲烷浓度不超过0.3%、温度不超过26C 的要求。 ( 3)施工单位要管理好通风设施,严禁人为损坏,通风区加强维护。 (4)当工作面负压通风不能满足要求时,必须开启进、回风侧局部通风机,施工单位必须安设专职司机看管局部通风机。

煤矿采空区遗煤自燃机理

煤矿采空区遗煤自燃机理 煤矿采空区一般是指在煤矿开采过程中,煤炭或煤矸石等被开采运出矿井后 留下的空洞或空腔。从上世纪80年代开始,煤矿开采研究者提出了采空区三带” 划分理论。在该理论中,采空区被划分为散热带、自燃带、窒息带。散热带一般 紧贴开采工作面,漏风量大,氧气比较充足,由于相对通风,因此热量难以持续 积聚,达不到煤自燃的程度;自燃带位于散热带后面,离开采工作面有一定距离, 漏风流速、漏风量和孔隙率相对变小,导致该区域遗煤氧化产生的热量难以被带 走,随着煤氧化的持续,当热量积聚到一定程度,一旦该区域温度突破自燃点, 煤就会自燃;窒息带属于相对稳定的区域,它处于自燃带再往里的位置,远离开 采工作面,岩石孔隙率小,由于氧气浓度很低,煤氧化时又要消耗氧气,最终导 致氧气浓度极低,煤氧化反应产生的热量小,热量容易被空气带走,遗煤难以到 达自燃点,发生自燃的概率极小。 煤矿中遗煤自燃,通常情况下需要满足以下3个条件:①遗煤具有自燃倾向 性;②具有持续且足够的氧气;③有持续的热源。由于自燃带区域风量逐渐减小, 不能充分带走遗煤氧化产生的热量,热能积聚,少量氧气又促进遗媒加剧氧化, 温度持续升高,最终导致遗煤自燃。自燃带是采空区火灾发生重点监测预警的区 域。 根据煤自燃的特征划分,自燃带的遗煤自燃,一般需要经历3个时期:潜伏 期、氧化期、燃烧稳定期。在潜伏期,有自燃倾向的煤吸附空气中的氧,生成不 稳定的氧化物附在表面,开始氧化时产生热量较少,由于及时散发热量,煤温增 加不明显,但化学活性增强,煤的自燃温度稍有下降。潜伏期的长短取决于煤的 种类。一般来说,褐煤的潜伏期较短,烟煤的潜伏期较长。随着潜伏期的持续, 煤氧化慢慢深入,长时间的热量积累促进遗煤氧化加速,从潜伏期进入了氧化期。 遗煤加速氧化过程中,将产生一些氧化物,如H2O、CO、CO2等。通过对这些标志性的氧化物进行实时监测,可以进行早期遗煤氧化程度的研究。持续氧化促 进温度升高,一般遗煤快速氧化的临界温度为60~80℃,一旦临界温度被超越, 遗煤氧化速度会加剧,生成若干种碳氢可燃气体。经过氧化期的加速氧化,遗煤 的温度会急剧上升,当遗煤的温度超过自燃温度后就开始自燃,进入燃烧稳定期。 煤的自燃温度取决于煤的品种,褐煤的自燃温度为267~300℃,而无烟煤在400℃ 左右时才会燃烧。遗煤燃烧将对煤矿的安全造成严重的威胁。 徐州吉安研发的普瑞特防灭火技术集凝胶、黄泥灌浆、三相泡沫、氮气和阻 化剂的防灭火优点于一体,特别是继承了泡沫的扩散性能和凝胶良好的固水特 性。一方面,水浆生成泡沫之后,缓慢形成凝胶,能把大量的水固结在凝胶体内, 避免了浆液中大量水流失或者溃浆的缺点,大幅度提高了浆水在采空区里的滞留 率;另一方面,形成的凝胶能以泡沫为载体对采空区的高、中、低位火源或浮煤 大范围全方位的覆盖,且能固结90%以上水分并形成凝胶层,防火时能持久保持 煤体湿润并隔绝氧气,灭火时能长久地吸热降温,防止火区复燃。

防治采空区自燃发火设计方案及措施

防治采空区自燃发火设计方案及措施 一、采面生产衔接情况: 我矿正常生产时有1个回采工作面,4201综采工作面预计2014年7月初结束回采。4202综采工作面预计2014年7月上旬正式开始回采,预计2015年7月份底回采完毕。 二、采空区发火重点预防区域 工作面和下列地段有煤层自燃发火的可能: 1、4202综采工作面2014年7月份投产,计划2015年7月份采完,如果采空区浮煤清理不干净,再者工作面推进速度缓慢,采空区封闭不严实,工作面采空区就有可能发送自燃发火。 2、4201工作面采空区也存在有自燃发火的可能。 三、防治采空区自燃发火设计方案 (一)、概况: 现我矿主采4#煤层,自燃等级Ⅱ级,属自燃煤层,矿井采煤工作面采空区采用以喷洒阻化剂、黄泥灌浆、注凝胶为防灭火方法,以及束管监测预报系统、传感器监测系统和人工检测的防灭火系统。 (二)、黄泥灌浆防灭火 灌浆防灭火技术已在我国有自燃发火危险的矿井中得到普遍应用,也取得了良好的效果。灌入的泥浆能够吸热降温,对煤体有包裹作用,起到隔氧降温目的,同时能胶结顶板、降低采空区空隙率、增加漏风阻力。 1、灌浆防灭火特点 灌浆就是将水和浆材按适当的比例混合,制成一定浓度的浆液,

沿输浆管路借助于自然压差或泥浆泵输送到井下,然后通过钻孔或专门的灌浆引管向可能或已经发生自燃的区域灌注,以防止自燃火灾的发生或治理火区。其主要作用是(1)利用浆液的渗透作用和粘着力可使浆液覆盖在煤体表面,其中的固体物沉淀后可充填于浮煤缝隙之间,包裹浮煤,从而隔绝氧气与煤体的接触,防止氧化;(2)浆液中的水分有助于增加煤的外在水分,抑制煤自热氧化的发展,同时有利于已经自热煤体的散热。 灌浆防灭火技术在我国具有自燃发火危险的矿井得到了普遍应用,并取得了较好的防灭火效果,由于综放工作面开采的4-1号煤层为自燃煤层,设计采用灌浆防灭火技术。 2、采用灌浆防灭火的适用条件 1、煤层为自燃-容易自然煤层。 2、煤层采用仰斜开采的方法。 由于综放工作面煤层为自燃煤层,开采方式也是仰斜开采,故该方法适用于本矿。但由于这种方法具有以下缺点:(1)浆体只流向地势低处,不能向高处堆积,对高位火作用有限;(2)不能均匀覆盖浮煤,容易形成“拉沟”现象;(3)易跑浆和溃浆,恶化工作环境,影响煤质。故综放工作面在使用时应与其他防灭火方法配合使用。 灌浆防灭火方法主要注重于“灭”,即煤层出现自燃发火征兆时而使用,若煤层无自燃发火征兆时,主要以喷洒阻化剂方法为主,但灌浆系统应每隔7-10运行一次,以保证该系统的可靠性。 3、灌浆材料选择 灌浆材料必须满足以下要求: 1、不含可燃物或助燃物;

采空区防止煤炭自燃的安全措施正式样本

文件编号:TP-AR-L1865 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 采空区防止煤炭自燃的 安全措施正式样本

采空区防止煤炭自燃的安全措施正 式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 目前矿井所开采的二1煤层,自燃发火倾向为Ⅲ 类,属不易自燃煤层,煤尘无爆炸危险性。为了做到 防患与未然。特制定本安全措施。 一、采煤工作面的基本情况 12070采煤工作面已经结束。12110工作面已经 形成生产能力,12110采煤工作面布置在12070采煤 工作面下方。因采掘布置,12110工作面的上副巷是 利用12070采煤工作面的下副巷沿空留巷形成的,现 12110工作面的通风路线是:12110下副巷→12110 工作面→12110上副巷(12070下副巷)→原12070

采煤工作面→原12070上副巷→12采区回风巷→总回风巷。 二、引起煤层自燃发火的主要因素 采空区自燃主要发生在回采工作面采空区及采空区上部的氧化带。本矿井开采的煤层主要为中厚煤层,采空区自燃发火危险性大。 根据本矿实际,造成煤层自燃发火的主要因素有: 1、采空区浮煤多,氧化自燃。 2、由于12110采煤面回风经过原12070下副巷和原12070采煤工作面,因此造成12110采煤工作面通风困难。 3、12110部分回风有可能经过12070采空区。 三、采空区防灭火措施 1、对原12070下副巷及12070采煤工作面有空

煤粉特性及自燃爆炸的条件

煤粉特性及自燃爆炸的条件 煤粉为可燃物质,乙类火灾危险品,粉尘具燃爆性,着火点在300℃~500℃之间,爆炸下限浓度34 g/m3~47g/m3(粉尘平均粒径:5μm~10μm)。高温表面堆积粉尘(5mm厚)的引燃温度:225℃~285℃,云状粉尘的引燃温度580℃~610℃。 煤粉在运输过程中,经外界的干扰如设备运转的震动、碰撞或风作用悬浮到空气形成粉尘,如场所内作业人员防护用品佩带不全,很容易引起尘肺病等职业病危害。当煤粉在空气中达到一定浓度,在外界高温、碰撞、摩擦、振动、明火、电火花的作用下会引起爆炸,爆炸后产生的气浪会使沉积的粉尘飞扬,造成二次爆炸事故。煤尘爆炸与其在空气中的含量及含氧浓度有关,烟煤在110-2000mg/m3。能形成爆炸性混合物,空气中煤尘含量在300-400 mg/m3爆炸威力最大,这是因为混合物中煤尘与空气的比例适中,煤粉能充分燃烧。煤粉爆炸后不仅产生冲击波伤人和破坏建筑物,同时产生大量的一氧化碳,使人中毒死亡。煤尘的燃烧爆炸特特性见表1。 表1 煤尘的燃烧爆炸特性 煤粉尘种类 引燃温度(℃) 高温表面积尘 引燃温度(℃) 云状粉尘 爆炸下限 (g/m3) 粉尘粒径 (μm) 褐煤粉 260 -49D68 2D3 有烟煤粉 235 595 41D57 5D11 无烟煤粉 >430 >600 -100D130 贫煤粉 285 680 34D45 5D7

1、煤粉的流动性 它的尺寸一般为0~50微米,其中20~50微米的颗粒占多数。干 的煤粉能吸附大量的空气,它的流动性很好,就像流体一样很轻易在管 道内输送。由于干的煤粉流动性很好,它可以流过很小的空隙。因此, 制粉系统的严密性要好。 2、煤粉的自燃与爆炸 积存的煤粉与空气中的氧长期接触氧化时,会发热使温度升高,而 温度的升高又会加剧煤粉的进一步氧化,若散热不良时会使氧化过程不 断加剧,最后使温度达到煤的燃点而引起煤粉的自燃。在制粉系统中, 煤粉是由输送煤粉的气体和煤粉混合成的云雾状的混合物,它一旦碰到 火花就会使火源扩大而产生较大的压力(2~3倍大气压),从而造成煤 粉的爆炸。 影响煤粉爆炸的因素很多,如挥发分含量,煤粉细度,气粉混合物 的浓度,温度湿度和输送煤粉的气体中氧的成分比例等。 2.1、一般说来挥发分含量VR<10%(无烟煤),是没有爆炸危险的。而VR>25%的煤 粉(如烟煤等),很轻易自燃,爆炸的可能性也很大。 2.2、煤粉越细越轻易自燃和爆炸,粗煤粉爆炸的可能性较小。例如烟煤粒度大于 0.1毫米几乎不会爆炸。因此,挥发分大的煤不能磨得过细。 2.3、煤粉浓度是影响煤粉爆炸的重要因素。实践证实,最危险得浓度在 1.2~ 2.0kg/m3,大于或小于该浓度时爆炸的可能性都会减小。在实际运行中一般是很难避 免危险浓度的。制粉设备中沉积煤粉的自燃性往往是引爆的火源。气粉混合物温度 越高,危险性就越大。煤粉爆炸的实质是一个强烈的燃烧过程,是在0.01~0.15s 的瞬间大量煤粉忽然燃烧产生大量高温烟气因急速膨胀而形成的压力波以及高速向 外传播而产生的很大的冲击力和声音。

防治采空区自燃发火设计方案及措施

防治采空区自燃发火设计方案及措施一、采面生产衔接情况: 我矿正常生产时有1个回采工作面,4201综采工作面预计2014年7月初结束回采。4202综采工作面预计2014年7月上旬正式开始回采,预计2015年7月份底回采完毕。 二、采空区发火重点预防区域 工作面和下列地段有煤层自燃发火的可能: 1、4202综采工作面2014年7月份投产,计划2015年7月份采完,如果采空区浮煤清理不干净,再者工作面推进速度缓慢,采空区封闭不严实,工作面采空区就有可能发送自燃发火。 2、4201工作面采空区也存在有自燃发火的可能。 三、防治采空区自燃发火设计方案 (一)、概况: 现我矿主采4#煤层,自燃等级Ⅱ级,属自燃煤层,矿井采煤工作面采空区采用以喷洒阻化剂、黄泥灌浆、注凝胶为防灭火方法,以及束管监测预报系统、传感器监测系统和人工检测的防灭火系统。(二)、黄泥灌浆防灭火 灌浆防灭火技术已在我国有自燃发火危险的矿井中得到普遍应用,也取得了良好的效果。灌入的泥浆能够吸热降温,对煤体有包裹作用,起到隔氧降温目的,同时能胶结顶板、降低采空区空隙率、增加漏风阻力。 1、灌浆防灭火特点 灌浆就是将水和浆材按适当的比例混合,制成一定浓度的浆液,

沿输浆管路借助于自然压差或泥浆泵输送到井下,然后通过钻孔或专门的灌浆引管向可能或已经发生自燃的区域灌注,以防止自燃火灾的发生或治理火区。其主要作用是(1)利用浆液的渗透作用和粘着力可使浆液覆盖在煤体表面,其中的固体物沉淀后可充填于浮煤缝隙之间,包裹浮煤,从而隔绝氧气与煤体的接触,防止氧化;(2)浆液中的水分有助于增加煤的外在水分,抑制煤自热氧化的发展,同时有利于已经自热煤体的散热。 灌浆防灭火技术在我国具有自燃发火危险的矿井得到了普遍应用,并取得了较好的防灭火效果,由于综放工作面开采的4-1号煤层为自燃煤层,设计采用灌浆防灭火技术。 2、采用灌浆防灭火的适用条件 1、煤层为自燃-容易自然煤层。 2、煤层采用仰斜开采的方法。 由于综放工作面煤层为自燃煤层,开采方式也是仰斜开采,故该方法适用于本矿。但由于这种方法具有以下缺点:(1)浆体只流向地势低处,不能向高处堆积,对高位火作用有限;(2)不能均匀覆盖浮煤,容易形成“拉沟”现象;(3)易跑浆和溃浆,恶化工作环境,影响煤质。故综放工作面在使用时应与其他防灭火方法配合使用。 灌浆防灭火方法主要注重于“灭”,即煤层出现自燃发火征兆时而使用,若煤层无自燃发火征兆时,主要以喷洒阻化剂方法为主,但灌浆系统应每隔7-10运行一次,以保证该系统的可靠性。 3、灌浆材料选择 灌浆材料必须满足以下要求: 1、不含可燃物或助燃物;

采空区自燃三带的划分

采空区自燃三带的划分 【摘要】采空区自燃三带的划分是防范采空区自燃的重要基础。在进行采空区空间自燃三带划分时,应当综合考虑影响煤炭自然发火的主要影响因素,氧气浓度的指标和浮煤厚度分布的情况,还要把采空区三维空间氧气浓度场与浮煤厚度分布范围相叠加起来,才可划分出综放采空区的空间自燃三带。本文就采空区自燃三带的划分问题,通过对采空区遗煤的空间分布的分析,对自燃三带作出了解释,最后以煤氧复合理论为依据,对采空区自燃三带作出了划分,即“散热带”、“氧化升温带”、“窒息带”。 【关键词】自燃“三带”;划分指标;空间分布 引言 作为高产量、高效率的采煤技术,综放开采已在国内普遍使用。大幅度提高煤炭生产效率及产量是人们所关注的。但与此同时,这项技术为采空区也带来了巨大的安全隐患。比如,遗留下大量的浮煤,推广速度过快、在采空区的自然区域范围内的不严格规划,等等,这些情况让采空区的自然发火问题空前严重。矿区的安全一直是相关部门注重的首要问题,而综放开采则严重威胁着矿区的安全。我们应该清楚的认识到,矿区工作应该是在安全的基础上去实现高产高效的目的。采空区分为三带,而煤炭的自燃一般发生在自然带。因此,为了确保工作人员的人身安全,应该科学合理地确定采空区自燃三带的范围,可以增强防灭火措施的针对性,提高防灭火工程的效果,有效预防自然发火事故,将对预防采空区的自然发火及保障综放面的安全生产具有十分重要的现实意义。 一、采空区遗煤的空间分布状态 根据资料及实际运用可知,综放的主要特点如下:随着工作面的推进,在压力的作用下,顶煤不断地被破坏、冒落并最终被放出;接着是直接顶岩层发生垮落,由于采出空间的增大,采空区不能被首先先垮落的下位直接顶充满,以至于顶板岩层的垮落会继续向上发展,直到充满采空区或形成较为稳定的结构;紧接着就是基本顶的垮落。根据现场观测,顶煤的冒落一般伴随着下位直接顶的冒落,又因为受到冒落顶煤和矸石的限制,开始冒落时,下位直接顶冒落较规则;但是,随着顶煤的放出,已冒落的下位直接顶岩块呈不规则排列;在工作面放煤的后期,这部分冒落的矸石会混入顶煤一起落下,在实际放煤工作中,保障煤质是关键,为了达成目的,一般操作是将放煤口关闭,停止放煤。这样在采空区空间高度上形成了浮煤的不同分布状态,自上而下形成了冒落矸石带、矸石与浮煤混合带、浮煤带等3个带。 综放开采工作面的采空区浮煤在空间高度上呈现条带状分布,底部浮煤厚度相对均匀,上部的矸石与浮煤混合带厚度因人工控制放煤具有一定的随机性,导致其厚度分布不均匀,但是总体上,矸石与浮煤混合带的厚度要小于下部的浮煤带。

相关文档
最新文档