温庄煤自燃指标气体产生规律及影响因素

温庄煤自燃指标气体产生规律及影响因素
温庄煤自燃指标气体产生规律及影响因素

火电厂煤堆自燃原因及防止方法

火电厂煤堆自燃原因及 防止方法 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

火电厂煤堆自燃原因及防止方法近几年,在火电厂实施职业健康安全管理体系过程中,都会把贮煤场煤堆的自燃识别为危险源,进行风险评价,找出治理措施,尽可能地防止煤堆自燃现象的发生。那么造成煤堆自燃的原因是什么呢应采取什么措施呢 众所周知,火力发电厂的主要燃料是煤炭。为了保证锅炉用煤,一般都建有一个或多个贮煤场,基本为露天堆放。这样煤与空气的接触,风化使煤的质量变坏,还会经常发生煤堆发热和自燃现象。普遍认为,煤的自燃是由煤氧复合作用而产生的。当煤体与空气接触后,空气中的氧便会随着空气的流动而进入煤体内部。平衡状态被破坏的煤表面分子与氧气接触,形成新的平衡状态,迅速与氧发生物理吸附、化学吸附及化学反应等一系列变化,产生并放出热量。当煤体释放的热量大于向环境散失的热量时,热量积聚使煤体温度上升,最终便导致煤体发生自燃。 煤体自燃发生机率的大小受水份、空气中氧气及散热条件的直接影响。以下几方面影响煤体自燃的因素: (1)水份对自燃的影响 在一定程度上,煤堆中一定量的水份对煤的自燃起到催化作用。当煤中水份处于引起自燃的临界范围内时,它可以促使煤各种放热反应的进行。如硫份的酸化等会产生大量的热量,产生的热量又加快了氧化反应过程,加剧了煤的自燃。但有研究表明,当煤中水份超过12%时,由于

水份的大量蒸发移走了热量,自燃趋势反而下降。潮湿空气中的水份大,会使煤对氧的吸附能力增强,对煤体的自燃也起到一定的促进作用。 (2)煤的挥发份对自燃的影响 煤中挥发份的主要成分是低分子烃类,如甲烷、乙烯、丙烯、—氧化碳、二氧化碳、硫化氢等。煤的挥发份大大地降低了煤体自燃的祸源温度。根据观察和统计表明,挥发分较高的煤,即使是同样条件下的露天存贮,发生自燃的机率也要比挥发分较低的煤大一倍。根据观察,高挥发分的煤种(Vad>28%以上),当温度达50~60℃时,一、二日内便会发生自燃,;较低挥发分的煤种(Vad (3)煤的硫份对自燃的影响煤中含有一定的硫份,硫在一定温度下化学性质会发生变化,生成氧化硫,氧化硫遇水生成稀硫酸,这一系列氧化反应过程为放热过程,从而提高了煤堆中的温度。因此,一般来说,含硫量高的煤更易发生自燃。 (4)气候条件对自燃的影响 经验表明,每年的秋后10~12月份是煤自燃的多发季节。这主要是煤堆在夏末秋初受到雨水和热带风暴伴随的大量降水的影响,煤层被雨水渗透。大量雨水在底部排出时,把煤中的灰分和末粉一起带走,煤层变得疏松,尤其在底部形成了许多空洞,这些空洞给热量的聚积提供了条件。秋后又是风高物燥的时节,大气密度比煤堆内空气密度大得多,所以渗入煤堆内的空气量增大,煤的氧化加剧。此时又经常刮东北风,更有利于煤堆的煽风点火。

煤质化验指标

煤质化验指标

煤质化验指标 水分。 煤中水分分为内在水分、外在水分、结晶水和分解水。 煤中水分过大是,不利于加工、运输等,燃烧时会影响热稳定性和热传导,炼焦时会降低焦产率和延长焦化周期。 现在我们常报的水份指标有: 1、全水份(Mt),是煤中所有内在水份和外在水份的总和,也常用Mar表示。通常规定在8%以下。 2、空气干燥基水份(Mad),指煤炭在空气干燥状态下所含的水份。也可以认为是内在水份,老的国家标准上有称之为“分析基水份”的。 灰分 指煤在燃烧的后留下的残渣。 不是煤中矿物质总和,而是这些矿物质在化学和分解后的残余物。 灰分高,说明煤中可燃成份较低。发热量就低。 同时在精煤炼焦中,灰分高低决定焦炭的灰分。 能常的灰分指标有空气干燥基灰分(Aad)、干燥基灰分(Ad)等。也有用收到基灰分的(Aar)。 挥发份(全称为挥发份产率)V 指煤中有机物和部分矿物质加热分解后的产物,不全是煤中固有成分,还有部分是热解产物,所以称挥发份产率。 挥发份大小与煤的变质程度有关,煤炭变质量程度越高,挥发份产率就越低。在燃烧中,用来确定锅炉的型号;在炼焦中,用来确定配煤的比例;同时更是

汽化和液化的重要指标。 常使用的有空气干燥基挥发份(Vad)、干燥基挥发份(Vd)、干燥无灰基挥发份(Vdaf)和收到基挥发份(Var)。 其中Vdaf是煤炭分类的重要指标之一。 固定碳 不同于元素分析的碳,是根据水分、灰分和挥发份计算出来的。 FC+A+V+M=100 相关公式如下:FCad=100-Mad-Aad-Vad FCd=100-Ad-Vd FCdaf=100-Vdaf 全硫St 是煤中的有害元素,包括有机硫、无机硫。1%以下才可用于燃料。部分地区要求在0.6和0.8以下,现在常说的环保煤、绿色能源均指硫份较低的煤。 常用指标有:空气干燥基全硫(St,ad)、干燥基全硫(St.d)及收到基全硫(St,ar)。煤的发热量 煤的发热量,又称为煤的热值,即单位质量的煤完全燃烧所发出的热量。煤的发热量时煤按热值计价的基础指标。煤作为动力燃料,主要是利用煤的发热量,发热量愈高,其经济价值愈大。同时发热量也是计算热平衡、热效率和煤耗的依据,以及锅炉设计的参数。 煤的发热量表征了煤的变质程度(煤化度),这里所说的煤的发热量,是指用

煤矿采空区遗煤自燃治理措施方法

煤矿采空区遗煤自燃治理措施方法 目前,矿井火灾是长期威胁煤矿工人生命安全最大的灾害,矿井经济效益受到了严重的影响和损害。据徐若友可研究表明我国的主要成煤地层分布在石炭纪和二叠纪的煤层中,具有煤炭自燃倾向煤层达70%以上。近年来,随着煤炭生产技术不断提高、生产工艺不断改进,新技术的不断推广和应用,建设了很多的高产高效矿井,在煤矿高回报的同时,也带来了煤漏风多,通风阻力大,遗留浮煤多,采空区面积大幅增加等多种易引起煤炭自燃的不利因素。 煤炭的自燃过程分为潜伏期、自热阶段、自燃阶段和熄灭四个阶段。煤的自然发火期是从煤层被开采破碎与空气接触之日起到出现发火和冒烟等自燃现象或温度上升至自燃点为止所经历的时间段,以月或天为单位,煤的自然发火期包括潜伏期和自热期,其时间的长短取决于煤的内部结构及其物理化学性质、被开采后的堆积状态参数、裂隙或空隙度、通风供氧、蓄热和散热等外部环境。 采空区遗煤的松散程度、漏风强度将随工作面推进而发生变化,进而使遗煤蓄热、放热环境发生变化,工作面推进速度对遗煤自燃环境影响很大。浮煤量是采空区内遗煤自燃发火的一个物质基础。只有足够厚度的煤层才会引发自燃;松散煤体空隙率是影响漏风强度的主要因素。 徐州吉安研发的普瑞特防灭火技术集凝胶、黄泥灌浆、三相泡沫、氮气和阻化剂的防灭火优点于一体,特别是继承了泡沫的扩散性能和凝胶良好的固水特性。一方面,水浆生成泡沫之后,缓慢形成凝胶,能把大量的水固结在凝胶体内,避免了浆液中大量水流失或者溃浆的缺点,大幅度提高了浆水在采空区里的滞留率;另一方面,形成的凝胶能以泡沫为载体对采空区的高、中、低位火源或浮煤大范围全方位的覆盖,且能固结90%以上水分并形成凝胶层,防火时能持久保持煤体湿润并隔绝氧气,灭火时能长久地吸热降温,防止火区复燃。

煤矿开采技术对煤自燃的影响

煤矿开采技术对煤自燃的影响 对于煤炭自燃有影响的采掘因素,主要有开拓、开采方法和通风制度。 对于煤层自燃倾向比较严重的矿井,主要巷道应布置在岩石中,留煤柱少,煤层切割少自燃危险性就小。采煤方法对煤炭自燃的影响主要取决于采空区丢失煤量及其集中程度顶板管理方法、煤层切割情况、煤柱破坏程度及采空区封闭的难易等。另外,如工作面推进速度快,回采时间短,也能大大降低煤炭的自燃危险性。 通风条件主要是指漏风问题。空气流通虽然使煤氧化,但却能把氧化生成的热量带走风速太小则供氧量不足,风速过大则热量不能积聚,因而都不会发生自燃。因此,只有在既有风流通过而风速又不大的情况下,煤才可能自燃。 影响煤炭自燃的自然条件是难以随意改变的,而生产技术条件则完全取决于人。所以,只要人们掌握了自然因素的规律性,并相应地采取有效技术措施,就能防止煤炭自燃。 徐州吉安研发的普瑞特防灭火材料集凝胶、黄泥灌浆、三相泡沫、氮气和阻化剂的防灭火优点于一体,特别是继承了泡沫的扩散性能和凝胶良好的固水特性。一方面,水浆生成泡沫之后,缓慢形成凝胶,能把大量的水固结在凝胶体内,避免了浆液中大量水流失或者溃浆的缺点,大幅度提高了浆水在采空区里的滞留率;另一方面,形成的凝胶能以泡沫为载体对采空区的高、中、低位火源或浮煤大范围全方位的覆盖,且能固结90%以上水分并形成凝胶层,防火时能持久保持煤体湿润并隔绝氧气,灭火时能长久地吸热降温,防止火区复燃。 普瑞特防灭火材料相对于常规的防灭火材料,具有环保、封堵性能好、保水降温性能好、防复燃性能好、扩散范围大、在采空区能向高处堆积以及阻化性能好等优点。因此,普瑞特防灭火材料作为一种新型的防灭火材料,可广泛应用于煤矿采空区防灭火。

煤堆自燃原因分析与防治措施(一)

煤堆自燃原因分析与防治措施(一) 【摘要】煤氧化自燃既是重大的事故隐患,也降低了煤的经济价值。分析了煤堆自燃的原因,煤堆易发生自燃的部位,并提出防治措施。 煤炭长期堆积会因氧化作用,使煤的灰分升高,固定炭和热值下降,降低煤的质量。煤炭自燃还会造成大量的煤白白烧掉。如汕头电厂燃烧的烟煤,煤场经常贮有3个月以上的正常用量,因贮煤时间过长而经常发生自燃,有时同时几处发生自燃。阴燃的煤被送到输送和研磨设备,会造成燃烧和爆炸事故。煤自燃既是重大的隐患,也降低了煤的经济价值,因此,了解煤自燃的特性,防止煤自燃具有十分重要的意义。 1、煤堆自燃原因分析 煤大体上由有机物和无机物组成,主要可燃元素是碳(约占65%~95%),其次是氢(约占1%~2%),并含少量氧(约占3%~5%,有时高达25%)、硫(约占10%),上述元素一起构成可燃化合物,称为煤的可燃质。除此之外,煤中还含有一些不可燃的矿物质灰分(5%~15%,也有高达50%)和水分(一般在2%~20%之间变化),这些物质称为煤的惰性质。 煤被空气中的氧气氧化是煤自燃的根本原因。煤中的碳、氢等元素在常温下就会发生反应,生成可燃物CO、CH4及其他烷烃物质。煤的氧化

又是放热反应,如果热量不能及时散发掉,将使煤的堆积温度升高,反过来又加速煤的氧化,放出更多的可燃质和热量。当热量聚集,温度上升到一定值时,即会引起可燃物质燃烧而自燃。 煤堆发生自燃要同时具备以下4个条件: (1)具有自燃倾向性。煤的自燃倾向性是煤的一种自然属性,反映了煤的变质程度,水分、灰分、含硫量、粒度、孔隙度、导热性,是煤自燃的基本条件。煤在常温下的氧化能力主要取决于挥发分的含量,挥发分含量越高,自燃倾向性越强,而且自燃时间也会相应缩短。根据煤的氧化程度与着火点之间的关系,利用原煤样的着火点和氧化煤样的着火点的差值ΔT来推测煤的自燃倾向。一般,原煤样着火点低,而且ΔT大的煤容易自燃;ΔT>40℃的煤为易自燃煤;ΔT<20℃的煤(褐煤和长焰煤除外)是不易自燃煤。从表1可看出,从褐煤到无烟煤,其着火点越来越高,自燃倾向性越来越弱。 表1我国各类煤的着火点范围略 (2)供氧条件。煤堆暴露于空气中,表面与空气充分接触,而且空气通过煤块之间的间隙渗透到煤堆内部,给煤堆内部氧化创造了条件。煤的块度越大,煤块之间的间隙越大,其供氧条件越好。

煤炭燃烧特性指标

煤炭燃烧特性指标 几乎所有的煤炭特性指标都与煤炭的燃烧特性是相关的,反之,也没有一个能完全、全面表征煤炭燃烧特性的指标。与此同时,不同的煤炭特性指标对于煤炭燃烧特性的重要性,也随着煤炭燃烧方式的不同而异,并具有相当的差别。作为影响煤炭燃烧特性或者说过程最明显的指标是煤炭的挥发份和粘结性或者说膨胀系数。前者表征着煤炭在燃烧过程中的以气相完成的份额和其对后续固相燃烧过程的影响;后者则关系到煤炭颗粒因形态、尺寸和反应表面积的变化而使其自身的燃烧特性受到的影响。而前者和后者有时又是具有密切联系的。与煤炭燃烧特性有关的还有挥发份的释出特性、焦炭的反应性、煤炭的热稳定值、重度等,以及煤炭在堆放过程中的风化、自燃特性和可磨度。 煤炭颗粒在受热过程中的熔融软化、胶质体和半焦的形式几乎所有的烟煤在受热升温的过程中与挥发份释出的同时,都会出现胶质体,呈塑性和颗粒的软化现象。煤炭颗粒间的粘结就是因颗粒胶体间的相互粘结而产生的,因此煤炭的粘结性也就于其所呈现胶体的条件相关。当一个按一定升温速度,经历着受热过程的煤炭颗粒进行观察时,考虑到在此受热过程中热量总是从表面传向颗粒核心的,在同一时间内表面温度也总高于核心。可以发现不同的烟煤,在表面温度达到320~350℃以前,颗粒的形态变化一般觉察不到,只

有煤化程度低的气煤才可观察到表面开始有挥发份气体释出。在温度到350~420℃时,可以观察到在颗粒表面出现了一层带有气泡的液相膜,表面上也逐渐失去原来的棱角,这层膜就是胶质体。当温度为500~550℃时,一方面因颗粒内部温度升高,使胶质体层向内层发展,以及外部的胶质体层因挥发份释出被蒸干转化为半焦,即从表面到中心由半焦壳、胶质体和原有的煤三层所构成,但这种形态所保持的时间是短暂的。随着受热的继续,胶质体的发展和体积的膨胀,半焦外壳出现裂口,胶质体流出。其后是胶质体向颗粒中心区域的发展,流出的胶质体被蒸干转变为半焦,直到整个颗粒都经历胶质体和半焦的形成。整个的过程如图3-2-2所示:试验证明软化温度越低的煤种,挥发份开始释出的时间越早。因此软化温度Tp(对于不同的烟煤表面开始出现液相膜的温度)和再固化温度TK(呈现最大塑性的温度TMAX以及被蒸干再次呈固体形状的温度)都是表明煤炭流变特性的指标,同样也间接表明了于煤炭燃烧特性密切相关的问题。 Ⅰ软化开始阶段Ⅱ开始形成半焦的阶段Ⅲ煤粒强烈软化和半焦破 裂阶段

煤矿采空区煤自燃的规律

煤矿采空区煤自燃的规律 大量统计资料表明,采空区是井下自然发火几率最高的区域,易自燃的地点包括开切眼、停采线、进回风顺槽、联络巷、残留煤柱边缘、厚煤层下部分层等等,其中开切眼、停采线、联络巷和进回风顺槽发火几率最高。一般情况下,采空区自然发火位置大多在采空区内的漏风通道即开切眼、停采线、进回风顺槽内侧、联络巷处以及采空区中部与地表有裂隙连通处。这主要是由于采空区有漏风的地方,具备自燃的条件。根据各种漏风情况划分采空区自燃有以下几种类型:(1)采空区与地表裂隙贯通处 浅埋藏煤层开采,受井下开采的影响,地表容易塌陷,形成裂隙,并与采空区串通,构成持续稳定的漏风通道,为采空区遗煤氧化提供新鲜空气流。所以采空区内与地表连通的漏风裂隙是浅埋藏采空区经常发生自燃火灾的地方。 (2)回采工作面后方 由于回采速度太慢或因故停采,进入回采面的新鲜风流不断地漏入其后方采空区内造成连续定点供氧条件,从而引起采空区浮煤自燃。 (3)综放工作面的切眼、停采线 高产高效综采工作面的切眼和停采线都不放顶煤,所以这两个地点的浮煤非常的后,漏风量比较大。因此,切眼、停采线附近采空区容易发生自燃。 (4)采空区废弃风巷 进回风巷煤柱随回采的不断推进,逐渐报废留弃在采空区中。巷道特别是有联络巷存在的地方,不易冒压实,巷道密闭不严实时,成为漏风通道,造成长时间漏风供氧,引起自燃。 (5)回采期间采空区二道 对于综放开采来说,两道及切眼不放顶煤,浮煤较厚,易引起自燃。 徐州吉安矿业科技有限公司研发的普瑞特防灭火技术集凝胶、黄泥灌浆、三相泡沫、氮气和阻化剂的防灭火优点于一体,特别是继承了泡沫的扩散性能和凝胶良好的固水特性。一方面,水浆生成泡沫之后,缓慢形成凝胶,能把大量的水固结在凝胶体内,避免了浆液中大量水流失或者溃浆的缺点,大幅度提高了浆水在采空区里的滞留率;另一方面,形成的凝胶能以泡沫为载体对采空区的高、中、低位火源或浮煤大范围全方位的覆盖,且能固结90%以上水分并形成凝胶层,防火时能持久保持煤体湿润并隔绝氧气,灭火时能长久地吸热降温,防止火区复燃。

煤矿采空区煤体自燃原因分析

煤矿采空区煤体自燃原因分析 火灾作为矿井生产中的常见灾害之一,对井下生产安全有着严重影响。根据相关统计显示,中国八成以上煤层存在自然发火倾向,矿井火灾总量中九成左右由煤炭自燃引发。通过对以往各大科研院校针对煤层自燃现象开展的各项研究的深入分析,可发现采空区煤炭自燃的出现主要受到煤层自燃倾向、煤体粒度、回采面推进速度、漏风量等因素影响。 1、煤层自燃倾向 煤炭自身就是典型的可燃物,其自身节理裂隙的发育又为O2提供了可依附的环境,使其能发生氧化并产生热量,当周围环境具备良好的聚热条件时,煤炭便会不断聚热升温,最终达到其着火点后便会发生煤炭自燃。通常来说,煤炭种类的不同使得其物理特性也存在相异性,因此将煤炭的吸氧能力作为其自燃能力的表征数据,在实际生产中可借助专业的监测设备,对所采煤层煤体吸氧能力进行测定,并结合其它辅助修正指标,可实现对煤炭自燃发火能力的有效确定,从而为井下火灾防治提供参考和指导。 2、煤体粒度 井下生产回采作业中,支架上部煤体会在支架的反复支撑中发生破碎,并在作业过程中难以避免地落入采空区内。此时,煤体破碎程度越大,落入采空区浮煤粒度越小,则其越容易发生氧化,进而引发自燃现象。 煤样粒径越小,其对O2的吸附能力越强,氧化并发生自燃的概率也越高。这不仅解释了破碎煤体与采空区浮煤容易发生自然发火现象的原因,同时也为更加有效认识和防范采空区浮煤自燃提供了理论指导。 3、回采面推进 通过对回采面漏风量、推进距离、采空区温度等数据的监测显示,采空区内温度的变化同回采面的推移距离存在一定关系。当回采面正常推移时,采空区内浮煤的氧化升温时间相对有限,温度未达到着火点便随着回采面的推移而进入窒息带。但当回采面推移无法正常开展或速度较慢时,采空区浮煤便会长时间置于氧化升温带,从而持续增温至着火点,诱发自燃发火现象。通常,在生产作业时,遭遇断层、褶曲等特殊地质条件时,回采面推移必然会放慢速度,这便会导致此时采空区火灾的发生几率大幅提升。 预防为主一直是采空区火灾防治的基础原则。有效落实预防为主的原则,必须充分借助先进的科学技术,针对采空区自然发火的条件和原因,构建相应的自然发火措施。徐州吉安研发的普瑞特防灭火技术集凝胶、黄泥灌浆、三相泡沫、氮气和阻化剂的防灭火优点于一体,特别是继承了泡沫的扩散性能和凝胶良好的固水特性。一方面,水浆生成泡沫之后,缓慢形成凝胶,能把大量的水固结在凝胶体内,避免了浆液中大量水流失或者溃浆的缺点,大幅度提高了浆水在采空区里的滞留率;另一方面,形成的凝胶能以泡沫为载体对采空区的高、中、低位火源或浮煤大范围全方位的覆盖,且能固结90%以上水分并形成凝胶层,防火时能持久保持煤体湿润并隔绝氧气,灭火时能长久地吸热降温,防止火区复燃。

煤炭自燃机理及防治措施

煤炭自燃机理及防治措施 1 煤的自燃机理 1.1 概述 关于煤的自燃问题,长期以来,一般都认为煤中黄铁矿的存在是自燃的原因,由于黄铁矿氧化成为三氧化二铁及三氧化硫时能放出热量,在有水分参加的情况下,可以形成硫酸,它是很强的氧化剂,更加速煤的氧化,促进煤的自燃。 需要指出,有的含有黄铁矿的煤,虽然经过长斯放置,并不一定发生燃,而不含或少含黄铁矿的煤也有自燃现象。因此,煤的自燃并非完全因含有黄铁矿而引起。其主要原因是由于吸收了空气中的氧气,使煤的组成物质氧化产生热量,再被水湿润,就放出更多的湿润热,也会加速煤的自燃。此外,煤的自燃还与煤本身的性质有关。如煤的品级;煤的显微组分、水分、矿物质、节理和裂隙;煤层埋藏深度和煤层厚度;开采方法和通风方式等。煤的自燃从本质上来说是煤的氧化过程。 1.2 煤自燃的不同阶段 (1)水吸附阶段。与其他阶段不同,这个阶段只是个物理过程,煤与氧不会发生反应,煤吸附水虽不是煤自燃的根本原因,但他对煤自热,特别是低品级的煤自热有重要影响。当水被煤吸附时会放出大量热,即润湿热。所以,多数情况下该阶段对煤的自燃都起着关键作用。 (2)化学吸附阶段。煤自燃过程首先在这个阶段发生化学反应。该阶段的反应温度为环境温度至70℃。这伸过程中煤吸附氧气会产生过氧化物,因而叫做化学吸附阶段。化学吸附阶段煤重略有增加,并产生气体,其中的CO可作为标准气体,通过监测CO浓度可对煤的自燃进行早期预报,化学吸附阶段需要少量水参加反应。根据煤的品级和类型不同,化学吸附的放热量在5.04~ 6.72J/g之间变化。若煤温达到70℃时会分解,煤重随之在幅度下降,甚至比原始煤重还要轻。煤中水汾的蒸发可带走一些热量,该过程产热量晨16.8~ 75.6J/g间变化。若煤氧化进行到这个阶段,想使其不自燃是非常困难的。 (4)煤氧复合物生成阶段。该阶段生成一种稳定的化合物,即煤氧复合物。其反应温度范围为150~230℃。产生的热量25.2~003.4J/g。这个阶段煤重又有所增加,煤氧化进行到这个阶段必然发生自燃。 (5)燃烧初始阶段。这是煤氧复合物生成阶段到煤快速燃烧阶段的过渡时期,煤温达230℃时,煤氧化可进行到个阶段。此时煤的反应热为42~ 243.6J/g。这些热量使煤迅速上升促进了煤的快速燃烧。 (6)快速燃烧阶段。这是煤自热的最后阶段,它描述了煤的实际燃烧过程。依氧气供应充足与否,这个阶段可能发生干馏、不完全燃烧或安全燃烧。如果燃烧充分,其反应热等于煤的发热值。 2 煤的自热影响因素 2.1 煤质 煤质本身对煤自热敏感性有显著的影响。 (1)煤的品级。煤的品级表明了煤的变质程度,常用挥发分含量和含煤量表示。品级低的纯煤自热热敏感性高,而且,随着煤的品能升高其自热敏感性下降。因而,干燥褐煤最易自热而无烟煤几乎不自热。但含有大最水分的褐煤较纯褐煤不易自燃。

煤在氧化升温过程中

煤在氧化升温过程中,会释放出CO、CO2、烷烃、烯烃以及炔烃等指性气体。这些气体的产生率随煤温上升而发生规律性的变化,能预测和反映煤自然发火状态。CO贯穿于整个煤自然发火过程中,一般在50℃以上就可测定出来,出现时浓度较高;烷烃(乙烷、丙烷)出现的时间几乎与CO同步,贯穿于全过程,但其浓度低于CO,而且在不同煤种中有不同的显现规律;烯烃较CO和烷烃出现得晚,乙烯在110℃左右能被测出,是煤自然发火进程加速氧化阶段的标志气体,在开始产生时,浓度略高于炔烃气体;炔烃出现的时间最晚,只有在较高温度段才出现,与前两者之间有一个明显的温度差和时间差,是煤自然发火步入激烈氧化阶段(也即燃烧阶段)的产物。因此,在这一系列气体中,选择一些气体作为指标气体,以及准确检测,就能可靠判断自然发火的征兆和状态。 1 指标气体及其选择 目前,国内外可作为煤自然发指标气体主要有CO、C2H6、CH4、C2H4、C2H2、△O2(△O2为氧气消耗量)等及其生成的辅助性指标。早在“七·五”期间,国家攻关项目《各煤种自然发火标志气体指标研究》的研究中,对我国各矿区有代表性的煤种进行了自然发火气体产物的模拟试验,得出了指标气体与煤种及煤岩之间的关系。 1)随着煤种的不同,煤自然发火氧化阶段(缓慢氧化阶段、加速氧化阶段、激烈氧化阶段)的温度范围、气体产物和特性都不同; 2)各煤种从缓慢氧化阶段的气体产物优选为灵敏指标的为:褐煤、长焰煤、气煤、肥煤以烯烃或烷比为首选,以CO及其派生的指标为辅,而焦煤、贫煤和瘦煤则以CO及其派生的指标为首选,C2H4或烯烷比为辅;无烟煤和高硫煤唯一依据是CO及其派生指标; 3)C2H4可用于气体分析法中表征低变质程度煤着火征兆的灵敏指标,同时也可以作为判断煤自然发火熄灭程度的指标;C2H4/ C2H2比值可以更准确地表征煤着火温度的最高温度点,结合其他参数可用于判断着火前的时间。 因此,必须充分认识到CO并非唯一的煤自然发火气体指标。它还有许多不足:检测温度范围极宽;CO产生量同煤温之间的关系不明确,特别是在现场复杂条件下,受风流、煤体原生气体组分、测点选择及生产过程等因素影响,难以确定煤氧化自燃的发展阶段,使预测预报的准确率和精度降低。 2 煤自燃指标气体灵敏度的提高技术 由于指标气体在井下气流中不浓度非常小,低于现有检测仪器的检测精度,使得某些本应可以有效反映井下煤自燃状态的指标气体就可能因检测不出或测不准而无法利用。采用气体的吸附与浓缩技术,可提高检测气体的灵敏度,改善现有指标气体预报准确度不高的缺陷。 2.1 气体的吸附与浓缩原理 利用多孔性吸附介质对煤自燃过程中产生的气体的选择吸附性能,对气体进行吸附浓缩,达到可检测的目的。可用于气体吸附的多孔介质种类比较多,但活性炭具有对有机物的吸附效率高、再生能力好、价格低廉等特点,故采用果壳类活性炭作为吸附剂来吸附浓缩煤

防止煤堆自燃的措施(新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 防止煤堆自燃的措施(新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

防止煤堆自燃的措施(新版) 1煤堆自燃的影响因素 1.1化学成份的影响 煤中含有硫份,硫在一定温度下化学性质发生变化,生成氧化硫,氧化硫遇水生成稀硫酸,其反应过程为放热过程,提高了煤堆中的温度。 1.2氧气的影响 在各种光、热、雨水等自然力的作用下,煤炭表面与大气中的氧气接触后发生氧化分解与碎裂,并放出热量,同时形成新的表面,新表面又再次氧化,如此反复循环,导致煤堆温度不断上升,逐渐达到自燃的温度。 1.3水份影响 煤堆中一定量的水份促使煤中的各种反应的进行,如硫份的酸

化,产生的热量又加快了氧化反应过程,加剧了煤的自燃。 1.4气温气压的影响 经验表明,煤堆的自燃经常发生在秋后大气温度下降时,此季节大气密度比煤堆的空气密度大,因此,渗入煤堆的空气量增大,导致自燃加剧。一般来说,大气温度降低,密度变大,渗入煤堆内的新鲜空气量增加,煤堆的自燃加快,反之亦然。 2防止煤堆自燃的措施 防止煤堆自燃现象的主要途径是隔绝空气、水份与煤碳的接触,防止温度或水份过度积聚,并采取测温、喷水等预防措施。 2.1堆煤的方位 由于我国地理位于北半球,阳光照在顶空时偏南,因此,煤堆的方向以南北方向取长为好,以减少阳光的直接照射。地理条件好的电厂,煤场应布置在小山丘的北侧。 2.2堆煤的场地 煤堆的场地以水泥地面最为理想,地面不宜铺垫空隙度较大的炉渣等物,以防空气由此进入煤堆而增加自燃的危险。场地四周应

防治沿空巷道顶板煤炭及相邻采空区煤炭自燃的措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.防治沿空巷道顶板煤炭及相邻采空区煤炭自燃的措 施正式版

防治沿空巷道顶板煤炭及相邻采空区煤炭自燃的措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成 的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度 与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 1、搞好煤炭自燃的监测 在沿空巷道的顶板及其与采空区相邻的一帮,每隔一定距离打一个检测孔,每个孔埋设WZP 铂热电阻温度探头和束管,用测温仪联接温度探头,直接读得每个钻孔中的温度值。通过束管抽出钻孔中的气体,利用色谱仪分析每个钻孔的O2 、CO、CH4 、CO2 、N2 的浓度值。从工作面准备到工作面回采期间按时进行测定,根据对测定参数进行分析处理的结果,及时采取预防措施。 2、对沿空巷道实行锚网支护

(1) 对沿空巷道顶板采用高强度组合锚杆支护,树脂锚杆剂锚固,锚固形式为全长锚固,并铺设菱形金属网、W钢带,以主动加固煤体。同时采用顶角加长锚杆以加固巷道顶板薄弱带。 (2) 巷道2 帮采用高强度锚杆支护,树脂锚固剂锚固,并铺设双抗金属网、钢筋梯,以加固相邻采空区侧的小煤柱和实体煤。 通过现场观察,锚网支护使巷道变形量大大降低,减少了沿空巷道顶板煤炭及采空区侧小煤柱的裂隙,使漏风量大大减少,对控制沿空巷道顶板煤炭自燃和相邻采空区煤炭自燃十分有利。 3、喷浆堵漏

防止煤堆自燃的措施标准范本

解决方案编号:LX-FS-A88871 防止煤堆自燃的措施标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

防止煤堆自燃的措施标准范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 煤堆自燃的影响因素 1.1 化学成份的影响 煤中含有硫份,硫在一定温度下化学性质发生变化,生成氧化硫,氧化硫遇水生成稀硫酸,其反应过程为放热过程,提高了煤堆中的温度。 1.2 氧气的影响 在各种光、热、雨水等自然力的作用下,煤炭表面与大气中的氧气接触后发生氧化分解与碎裂,并放出热量,同时形成新的表面,新表面又再次氧化,如此反复循环,导致煤堆温度不断上升,逐渐达到自燃的温度。

煤自燃火灾指标气体预测预报的几个关键问题探讨

煤自燃火灾指标气体预测预报的几个关键问题探讨煤在氧化升温过程中,会释放出CO、CO2、烷烃、烯烃以及炔烃等指性气体。这些气体的产生率随煤温上升而发生规律性的变化,能预 测和反映煤自然发火状态。CO贯穿于整个煤自然发火过程中,一般 在50℃以上就可测定出来,出现时浓度较高;烷烃(乙烷、丙烷) 出现的时间几乎与CO同步,贯穿于全过程,但其浓度低于CO,而且在不同煤种中有不同的显现规律;烯烃较CO和烷烃出现得晚,乙烯 在110℃左右能被测出,是煤自然发火进程加速氧化阶段的标志气体,在开始产生时,浓度略高于炔烃气体;炔烃出现的时间最晚,只有 在较高温度段才出现,与前两者之间有一个明显的温度差和时间差,是煤自然发火步入激烈氧化阶段(也即燃烧阶段)的产物。因此,在这一系列气体中,选择一些气体作为指标气体,以及准确检测,就 能可靠判断自然发火的征兆和状态。 1指标气体及其选择 目前,国内外可作为煤自然发指标气体主要有CO、C2H6、CH4、C2H4、C2H2、△O2(△O2为氧气消耗量)等及其生成的辅助性指标。早在“七·五”期间,国家攻关项目《各煤种自然发火标志气体指标研究》

的研究中,对我国各矿区有代表性的煤种进行了自然发火气体产物 的模拟试验,得出了指标气体与煤种及煤岩之间的关系。 1)随着煤种的不同,煤自然发火氧化阶段(缓慢氧化阶段、加速氧 化阶段、激烈氧化阶段)的温度范围、气体产物和特性都不同; 2)各煤种从缓慢氧化阶段的气体产物优选为灵敏指标的为:褐煤、 长焰煤、气煤、肥煤以烯烃或烷比为首选,以CO及其派生的指标为辅,而焦煤、贫煤和瘦煤则以CO及其派生的指标为首选,C2H4或烯烷比为辅;无烟煤和高硫煤唯一依据是CO及其派生指标; 3)C2H4可用于气体分析法中表征低变质程度煤着火征兆的灵敏指标,同时也可以作为判断煤自然发火熄灭程度的指标;C2H4/C2H2比值可以更准确地表征煤着火温度的最高温度点,结合其他参数可用于判 断着火前的时间。 因此,必须充分认识到CO并非唯一的煤自然发火气体指标。它还有 许多不足:检测温度范围极宽;CO产生量同煤温之间的关系不明确,特别是在现场复杂条件下,受风流、煤体原生气体组分、测点选择

故县联营煤矿采空区遗煤自燃治理通用版

安全管理编号:YTO-FS-PD674 故县联营煤矿采空区遗煤自燃治理通 用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

故县联营煤矿采空区遗煤自燃治理 通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 一、概况 襄垣故县联营煤矿属低瓦斯矿井,生产能力为 600Kt/a。主采3号煤层,埋藏深度较浅,距地表150m 左右,地表漏风情况较严重。3号煤层为特低硫、低灰、高热值的瘦煤。 201综放面东为已封闭的井田边界探巷,西为202准备工作面。工作面长126m,走向长553m。该工作面投产于20xx年12月1日,截至20xx年6月29日发现火情之时,工作面推进320m,距停采线尚有233m。 二、201综放面火情及发展趋势 20xx年6月29日,监测201综放面上隅角CO浓度为18PPm,瓦斯浓度为0.56%。至7月7日,CO浓度上升至35PPm,在9天内递增17 PPm。但是未见烟雾和明火,说明采空区内遗煤处于氧化自燃阶段,而未进入燃烧阶段,必须采取有效措施进行处理。 三、发火原因及火源位置的判断

煤堆自燃火灾产生原因及治理措施

煤堆自燃火灾产生原因及治理措施 巨大的煤堆在大气环境中,会持续发生氧化反应,造成热量集聚并不断升温,导致自燃。煤堆一旦发生自燃,其规模大、发展快、难以治理,造成下列严重后果:1)烧毁大量的煤炭;2)内部产生明火后难以治理;3)危害电厂的储煤、输煤、磨煤等设备的安全运行;4)自燃释放的各种有害气体、烟雾造成严重环境污染。 煤堆的自燃与否主要与以下因素有关:1)自燃倾向性;2)供氧条件;3)氧化时间;4)储热条件。此外,煤的粒度、水分、灰分、压实程度、环境温度、湿度等因素都会影响煤的自燃。 煤的氧化速度与氧化时产生的温度成正比,煤在30~100℃时每增高1℃,其氧化速度就提高2.2倍,当煤堆温度超过60℃时,加速煤的氧化,煤堆平均温度就剧烈上升,当煤堆温度达到100℃时,1~2天即可达到自燃着火温度(煤的着火点约在260-350℃左右),煤就开始自燃。 煤堆自热温度变化较大区域就在表层下4m的范围内。煤堆自燃最易在斜面首先发生,因为斜面的供氧条件较好。煤堆的自燃与大气温度和大气压力也有很大关系,大气温度升高,则煤堆温度下降,大气温度下降,则煤堆温度上升,煤堆温度的变化与大气温度和气压的波动相关。 对于煤场自燃火灾,徐州吉安矿业科技有限公司结合自己多年对煤田火灾治理的丰富经验及煤场自燃的原因,提出了以下的防灭火治理方案:(1)源头治理:利用普瑞特阻燃剂,在装船或装车之前就对其进行喷洒处理。 (2)叠层压实并喷洒阻燃剂:在场地堆存煤炭的过程中,分层摊开的同时喷洒普瑞特阻燃剂,然后用推土机压实,第一层压实后以同样的方式堆放第二层,以此类推,堆放的高度以现场实际情况而定。 (3)边际拍紧并喷涂阻封材料:待煤垛起高后,用铲车把边际从底部到顶部逐一拍紧,确保堆体表面平滑,尽量避免出现沟槽或平台,然后在表面喷涂普瑞特阻封材料。 (4)每天利用红外热成像仪对煤堆进行测温,针对超过或接近60摄氏度的局部高温点,及时采用多孔压注普瑞特复合胶体的措施,确保煤堆温度保持在60摄氏度以下。

预防采空区、冒高处、煤柱破坏区自然发火措施

预防采空区、冒高处、煤柱破坏区自然发火安全技术措施为预防井下采空区、冒高处、煤柱破坏区自然发火事故的发生,确保矿井的安全生产和职工的生命财产安全,特制定如下安全技术措施。 一、预防采空区自然发火 (一)回采期间 1、回采管理 (1)要提高工作面回采率,回采中严禁丢底、顶煤,减少采空区遗煤量。木料等可燃材料应回收干净,不得埋入采空区。 (2)利用工作面风巷埋设的防火灌浆管路对采空区进行随采随灌。 (3)工作面距停采线最后40m范围内,保证机、风巷均衡回采,防止因局部推进迟缓而造成采空区自然发火。 (4)到工作面停采时,生产单位要打开支架的侧护板,同时要保证联网质量及支架的初撑力,收作铺网要保证延至架后,落地压茬为准,有效防止采空区漏风。 2、隅角管理 (1)工作面上、下隅角必须充填背实,减少采空区漏风。 (2)当工作面回采至停采线60m后,采煤区每间隔10m施工一道隔离袋墙,对上、下隅角进行封堵。封堵范围:下隅角由机巷下帮至第 1 架 架尾,上隅角由风巷上帮至最后1 架架尾。至停采收作线,工作面机巷、风巷共施工隔离袋墙14道(机、风巷各7道)。已施工的隔离袋墙严禁拆除,以减少采空区供氧条件。 3、隔离袋墙设置要求 (1)施工隔离袋墙前,由采煤区提前联系通风区,通风区安排专人现场监督施工,保证施工质量符合要求。 (2)隔离袋墙采用碎矸等不燃性材料装袋垒砌,宽度不小于2m,墙 面竖缝要错开,逐层垒砌,严禁出现阶梯墙面,并与巷帮、顶板及架尾接实,保证四周封堵严密。 (3)在施工隔离袋墙前,必须对灌浆管(注氮管)进行确认,不得将灌浆

(注氮管)预留管口封于隔离袋墙之中;管路要靠帮靠底,不得悬 空。 4、职责划分及要求(1)通风区加强采区主要风门监管、巡查与维护,确保通风系统稳定、可靠。采煤区要加强机、风巷的维护,保证通风断面,降低通风阻力。 (2)通风区在风巷距停采线80m处进一步加强灌浆管路管理。工作面每推进20m距离再加埋1趟DN50mi灌浆管路,(即分别在80m 60m 40m和20m的位置加埋一趟灌浆管路),并及时利用所埋灌浆管路,对采空区进行灌浆,消除采空区浮煤的蓄热环境;在机巷距停采线80m、60m、40m和20m位置各加埋一趟注氮管路,以便于发现发火隐患时,可以及时利用管路进行注氮消除隐患;距停采线20m时在工作面每10架架间埋设一根防火措施管,延至架前挂牌管理。 ( 3)在埋设工作面的灌浆、注氮管路时,采煤区要保证上、下隅角留有足够空间,并将埋设管路路线预先清理好,为铺设灌浆、注氮管路创造施工条件。 (4)通风区对延接好的灌浆、注氮管路进行编号、挂牌管理,牌板字迹清晰明显,易于识别。生产单位负责保护好管路,严禁浮煤、碎矸掩埋灌浆、注氮管路,发现损坏时,立即汇报处理。 (5)工作面风巷迈步式压埋2趟检测束管,迈步步距为20m距停采线20m 时在下隅角加埋一路取样检测束管,编号、挂牌管理。铺网结束前,瓦斯检查工每班通过束管对采空区气体情况进行检测,每周取气样进行化验分析。 (二)收作期间措施 1 、通风及瓦斯管理 ( 1)通风区在收作前负责指定机、风巷局部通风机安装位置,保运区负责将局部通风机安装到位,做到“三专三闭锁”。 ( 2)工作面拆除期间,施工单位必须保证留巷有效通风断面不低于3m;控制工作面风量在500nVmin左右,并满足回风流甲烷浓度不超过0.3%、温度不超过26C 的要求。 ( 3)施工单位要管理好通风设施,严禁人为损坏,通风区加强维护。 (4)当工作面负压通风不能满足要求时,必须开启进、回风侧局部通风机,施工单位必须安设专职司机看管局部通风机。

影响煤炭自燃的原因

影响煤炭自燃的内因 1.各种煤都有发生自燃的可能,在褐煤矿井,煤化程度低的一些煤层自燃发火次数要多一点。烟煤矿井以开采煤化程度最低的长焰煤和气煤的自燃危险性较大,贫煤则较少。在煤化程度 较高的无烟煤矿井自燃发火较少见。因此煤化程度较高的煤,自燃倾向性小。 2.煤中的水分是影响其氧化进程的重要因素,在煤的自热阶段,由于水分的生成与蒸发必然 要消耗大量的热,因此水分大的煤炭难以自燃。但是,煤中的水分又能充填于煤体微小的孔 隙中,把氮气、二氧化碳、甲烷等气体排除,当干燥以后对煤的吸附起活化作用。水分的催 化作用随煤温的增高而增大,因此地面煤堆在雨雪之后容易发生自燃,井下灌浆灭火,疏干 之后自燃现象更为严重。 3.煤的岩石化学成分有丝煤、暗煤、亮煤和镜煤。它们有不同的氧化性,其中丝煤含量越多,自燃倾向性就越强;相反,暗煤含量越多,越不易自燃。 4.同牌号的煤中,含硫矿物越多,越易自燃。 5.煤炭孔隙率越大,越易自燃。因为孔隙率越大,氧气越易渗入煤体内部。变质程度相同的煤,脆性越大,越易自燃。因为煤的脆性大小与该种煤炭是否易于破碎和形成煤粉有关。完 整的煤体一般不会发生自燃,一旦呈破碎状态则使煤的吸氧表面积增大,着火点明显降低, 使其自燃性显著提高。 6.煤层瓦斯含量瓦斯通常是以游离状态和吸附状态存在于煤体中,处于原始状态的瓦斯或以 压力状态存在的瓦斯对侵入煤体中的空气具有抑制作用,是防止煤自燃的有利因素。 影响煤炭自燃的外因 煤炭自燃的外在条件决定于煤炭接触到的空气量和外界的热交换作用,这两个因素与煤层的 埋藏条件和其开采方法有着错综复杂的联系,其中外在因素有: 1、地质因素:①倾角。煤层倾角越大,自燃危险性就越大。因为开采急倾斜煤层时,煤炭 回收率低、采区煤柱易被破坏、采空区不易封锁。②煤层厚度。煤是不良导体,煤层越厚, 越易积聚热量,所以,厚煤层易发火。③地质构造。在有地质构造的地区,自燃危险性加剧。地质构造复杂的地区,包括断层,褶皱发育地带,岩浆入侵地带,自燃发火频繁。这是由于 煤层受张力、挤力、裂隙大量发生,煤体破碎,吸氧条件好造成的。 2、开采技术因素: ①开拓方式。实践经验表明,采用石门,岩巷开拓,少切割煤层少留煤柱时,自燃发火的危险性就降低了。厚煤层开采岩巷进入采区,便于打钻注浆,有利于实现预 防性或灭火灌浆。②采煤方法。采煤方法对自燃发火的影响主要表现在煤炭回收率的高低、 回采时间的长短上。丢煤越多,丢失的浮煤越集中,工作面的推进速度愈慢愈益发现火灾。 ③通风条件。通风因素的影响主要表现在采空区,煤柱和煤壁裂隙漏风。漏风就是向这些地 点供氧,促进煤的氧化自燃。采空区面积大,漏风量相当可观,但风速有限,散热作用低。

火电厂煤堆自燃原因及防止方法示范文本

火电厂煤堆自燃原因及防止方法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

火电厂煤堆自燃原因及防止方法示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近几年,在火电厂实施职业健康安全管理体系过程 中,都会把贮煤场煤堆的自燃识别为危险源,进行风险评 价,找出治理措施,尽可能地防止煤堆自燃现象的发生。 那么造成煤堆自燃的原因是什么呢?应采取什么措施呢? 众所周知,火力发电厂的主要燃料是煤炭。为了保证 锅炉用煤,一般都建有一个或多个贮煤场,基本为露天堆 放。这样煤与空气的接触,风化使煤的质量变坏,还会经 常发生煤堆发热和自燃现象。普遍认为,煤的自燃是由煤 氧复合作用而产生的。当煤体与空气接触后,空气中的氧 便会随着空气的流动而进入煤体内部。平衡状态被破坏的 煤表面分子与氧气接触,形成新的平衡状态,迅速与氧发

生物理吸附、化学吸附及化学反应等一系列变化,产生并放出热量。当煤体释放的热量大于向环境散失的热量时,热量积聚使煤体温度上升,最终便导致煤体发生自燃。 煤体自燃发生机率的大小受水份、空气中氧气及散热条件的直接影响。以下几方面影响煤体自燃的因素: (1)水份对自燃的影响 在一定程度上,煤堆中一定量的水份对煤的自燃起到催化作用。当煤中水份处于引起自燃的临界范围内时,它可以促使煤各种放热反应的进行。如硫份的酸化等会产生大量的热量,产生的热量又加快了氧化反应过程,加剧了煤的自燃。但有研究表明,当煤中水份超过12%时,由于水份的大量蒸发移走了热量,自燃趋势反而下降。潮湿空气中的水份大,会使煤对氧的吸附能力增强,对煤体的自燃也起到一定的促进作用。 (2)煤的挥发份对自燃的影响

相关文档
最新文档