基于实测沉降的填海工程固结度和最终沉降分析

基于实测沉降的填海工程固结度和最终沉降分析
基于实测沉降的填海工程固结度和最终沉降分析

基于实测沉降的填海工程固结度和最终沉降分析

(中交第三航务工程勘察设计院有限公司,上海200032)摘要:结合澳门某填海工程地基处理的实测沉降数据,采用三点法、双曲线法和Asaoka法推算软基的固结度和最终沉降量,分析了各种计算方法的适用性和局限性,有效指导了工程施工,为今后类似填海工程的监测工作提供了有益的参考。关键词:堆载预压;原位监测;固结度;最终沉降;港口工程引言在设计阶段,可通过太沙基固结理论计算出软弱地基固结度的变化过程,而在施工过程中,则需通过实测沉降数据进行分析,用以指导工程施工。目前常用的基于实测数据的最终沉降计算方法包括三点法、双曲线法和Asaoka法。本文结合澳门某填海工程的软基处理案例,对这几种常用的方法进行系统比较,分析其优缺点和适用条件,为在工程中的应用提供一定的借鉴。 1 工程概况1.1 工程地质条件根据地质勘查资料,工程所处的海底表层为河流堆积形成的软弱淤泥层。土层按成因时代、岩性特征基本划分为4层:①淤泥层,为全新统海相沉积物,灰色,流塑,厚度8~11.8m,平均约10.0m;②杂色黏土层,为晚新统海相沉积物,可塑~硬塑,标贯击数9~10击;③粗砂、强风化花岗岩层;④弱风化花岗岩层。天然地基各软土层的物理力学指标见表1。表1 土层物理力学指标土

层含水量W/%孔隙比e固结系数Cv/(cm2·s-1)压缩模量Es/MPa c/kPa φ/(°)c/kPaφ/(°)直剪快剪直剪固快淤泥66.4 1.94 0.6 x10-3 1.79 1.8 8.7 3.4 10.4杂色黏土32.1 0.9

1.54x10-3 4.41 8.5 20 9.1 30 1.2 真空联合堆载预压方案1)砂垫层:自天然泥面吹填中粗砂至3.5m,作为真空预压起始高程。2)插打塑料排水板:采用高性能可测深塑料排水板,正方形布置,间距1.0m,排水板穿透淤泥层并进入黏土层不小于1.0m。3)真空预压:真空预压区四周采用淤泥搅拌桩的方法施工密封墙,真空预压区内设置滤管、无纺布及密封膜,按1 000 m2/台布置真空泵,维持密封膜下真空度80 kPa以上。4) 堆载预压:抽真空满载30 d后开始分级堆载预压,第一级预压荷载为1.2m厚中粗砂,第二级预压荷载为1.2m厚中粗砂,第三级预压荷载为1.4m厚中粗砂。加载过程用时约60 d,堆载满载60 d,真空联合堆载满载210 d。5)卸载:当根据实测沉降数据推算的固结度达到85%以上可进行分级卸载。1.3 现场监测方案为了获得实测沉降数据,于填海工程范围内选取了一块软基试验区,在该区域内均匀埋设了3个面层沉降盘(编号为S1,S2,S3)。各沉降盘于吹填砂垫层前开始埋设以获得完整的沉降数据,3个测点的沉降-时间曲线如图1所示。图1 测点的沉降-时间曲线2 常用的最终沉降推算方法在实际施工过程中,需要通过实测沉降数据来推算最终沉降及当前固结度,从而判断堆载

预压卸载时机。目前常用的方法包括三点法、双曲线法和Asaoka法。2.1 三点法曾国熙于1959年提出了这种方法[1],并被《港口工程地基规范》(JTS 147-1-2010)[2]所采用,计算公式如下:式中:S∞为地基土最终沉降量;S1,S2,S3分别为堆载满载后t1,t2,t3时刻对应的沉降量,并满足条件t2-t1=t3-t2。2.2 双曲线法该方法假定地基的沉降速率随时间以双曲线形式递减。在堆载完成后的任意时刻t相应的沉降量可用双曲线方程表示。其基本公式为:式中:S ∞为地基的最终沉降量;S0为满载时,即t=0(假定)时的地基沉降量;St为某时刻的地基沉降量;α、β为与地基及荷载有关的常数,可根据式(4)用图解法求出;t为从满载开始的时间。 2.3 Asaoka法Asaoka法是一种从一定时间所得的沉降观测资料来预计最终沉降和沉降速率的方法。用以下简化递推关系可近似地反应一维条件下以体积应变表示

的固结方程,并用图解法来求解最终沉降值[3]。式中:Sj 为时间tj时的沉降量。图解法推算步骤如下:1)将时间划分成相等的时间段,在实测的沉降曲线上读出t1,t2所对应的沉降值S1,S2,并制成表格。2)在以Si-1和Si为坐标轴的平面上将沉降值S1,S2以点(Si-1,Si)画出,同时作出Si=Si-1的45°直线。3)过系列点(Si-1,Si)作拟合直线,与45°直线相交,交点对应的沉降为最终沉降值。3 固结度评价地基土体平均固结度可定义为某时刻地基沉降

量和最终沉降量的比值。根据图1所获得沉降数据,分别采用三点法、双曲线法、Asaoka法推算固结度,并与曾国熙分级加荷法法计算结果进行对比,结果见表2。表2 固结度计算三点法双曲线法Asaoka法曾国熙法观测点最终沉

降/mm固结度/%最终沉降/mm固结度/%最终沉降/mm固结度/%最终沉降/mm固结度/% S1 2 099.9 99.1 2 274.3 91.5 2 104.1 98.9 S2 2 033.2 99.3 2 159.4 93.5 2 035.3 99.2 S3 1 682.1 99.4 1 797.8 93.0 1 678.7 99.61 937.8 99.4平均值1 938.4 99.3 2 077.2 92.7 1 939.4 99.2 三点法计算平均固结度在99.1%~99.4%,平均为99.3%,Akaoka法计算平均固结度在98.9%~99.6%之间,平均为99.2%,均与曾国熙分级加荷法计算固结度99.4%比较接近。双曲线算得平均固结度92.7%相对较小。说明基于实测沉降的三点法、双曲线法和Asaoka法作为施工过程中固结度的推算方法是可行的,而双曲线法的计算结果相对保守。4 三种方法的工程适用性分析在实际计算过程中,基于实测沉降的三种固结度计算方法往往由于取值、沉降观测误差、观测时间有限等原因而使计算结果出现偏差。本文根据各种方法的特点,对其适用条件作了进一步分析。三点法要求取满载后的三点(t1,S1),(t2,S2),(t3,S3)进行计算,并使t2-t1=t3-t2。以前述案例实测数据为基础,分别取不同的间隔时间进行固结度计算,结果见表3。双曲线法和Asaoka需要基于满载后一定时间内的沉降数据

进行曲线拟合计算,取满载后不同观测时间监测数据采用这两种方法进行最终沉降计算,结果分别见表4和表5。表3 三点法不同时间间隔固结度/%观测点10天30天40天70天80天100天S1 100.1 96.6 98.9 99.4 100.0 100.0 S2 100.2 96.5 99.0 99.5 99.9 100.1 S3 99.9 97.0 99.2 99.6 100.0 100.0平均值100.1 96.7 99.1 99.5 100.0 100.0 表4 双曲线法不同满载时间最终沉降/mm观测点50天100天150天200天S1 2 446.7 2 540.5 2 379.9 2 275.9 S2 2 261.2 2 332.2 2 234.3 2 162.3 S3 1 856.7 1 925.8 1 832.5 1 798.1平均值2 188.2 2 266.2 2 148.9 2 078.8 表5 Asaoka法不同满载时间最终沉降/mm观测点50天100天150天200天S1 2 108.4 2 139.6 2 130.7 2 112.4 S2 2 042.1 2 064.5 2 060.7 2 040.9 S3 1 707.5 1 689.2 1 680.3 1 678.5平均值1 952.7 1 964.4 1 957.2 1 943.9 对表3~表5的计算结果进行分析,可以得出以下结论:1)三点法采用不同时间间隔计算的固结度结果不同,采用较小时间间隔如10~30天和较大时间间隔如80~100天所得结果离散性较大,且与曾国熙分级加荷法计算结果相差较大。采用时间间隔40~70天所得固结度结果介于

99.1%~99.5%之间,离散性较小且与曾国熙分级加荷法计算结果99.4%较为接近。究其原因,时间间隔过小会造成计算点取值的波动性较大,时间间隔过大会使得计算点取值过少,易产生较大的误差,因此三点法计算时间间隔易控制在

一定范围之内,推荐为40~70天之内。2)双曲线法采用不同满载时间沉降数据计算的最终沉降结果不同,采用满载初期沉降数据计算最终沉降结果较大,随着满载时间的增加而减小。分析其原因,双曲线法是一种图形拟合法,并假定地基的沉降速率随时间以双曲线形式递减。沉降时间曲线显示加载初期曲线斜率较大,表示沉降速率较快,随着时间的增长曲线斜率逐渐减小,沉降速率降低,且总体沉降趋于收敛。采用满载后较短时间推算最终沉降,较大的沉降速率易得出较大的最终沉降结果。满载达到一定时间总体沉降趋于收敛后,所推算最终沉降比较准确。因此双曲线法在实际应用中监测数据应达到一定的时间跨度,一般要满载6个月以上。3)由表5可以看出Asaoak法采用不同满载时间沉降监测数据计算的最终沉降结果比较一致,总体介于1 943.9~1 964.4 mm之间,波动幅度较小,且与曾国熙法最终沉降结果1937.8 mm比较接近,说明Asaoka法计算结果受满载时间的影响较小,可利用较短时间的观测资料得到较为可靠的最终沉降计算结果。5 结语1)基于实测沉降的三点法、双曲线法和Asaoka法作为施工过程中固结度的推算方法是可行的,在相同的条件下双曲线法的计算结果相对保守,但仍具有一定的参考价值。2)三点法采用不同时间间隔计算的固结度结果不同,较小和较大的时间间隔均会使得计算结果偏差较大,计算时间间隔易控制在一定范围之内,推荐为

40~70天之内。3)双曲线法作为一种图形拟合方法,可以利用满载后全部实测沉降数据,但满载时间对双曲线法最终沉降的计算结果影响较大,为提高结果的准确度,双曲线法需要较长时间的实测沉降数据,一般要6个月以上。4)Asaoka法计算结果受满载时间的影响较小,与双曲线法相比,其优点在与可利用较短时间的观测资料得到较为可靠的最终沉降计算结果。参考文献:[1] 龚晓南. 地基处理手册[M]. 北京:中国建筑工业出版社, 2008. [2] JTJ 147-1-2010港口工程地基规范[S]. [3] 王荣利, 秦观, 刘洪亮. 软土地基最终沉降量推算方法的对比分析[J]. 中国港湾建设, 2013, (2):15-18. 《港工技术》征订启事《港工技术》是经国家新闻出版总署和科技部批准出版在国内、外公开发行的科学技术类刊物,国际标准连续出版物号ISSN1004-9592,国内统一连续出版物号CN12-1220/U,本刊主要栏目包括:海岸动力、平面工艺、结构、地基基础、工程勘察、综合信息等。本刊是《中国科技论文统计源期刊》;《中国科技期刊精品数据库》;《中国学术期刊(光盘版)入编期刊》;《中国期刊全文数据库》收录期刊;万方数据—数字化期刊群入网期刊;《中国核心期刊(遴选)数据库》收录期刊;《中国学术期刊综合评价数据库》来源期刊;第二届全国优秀科技期刊;华北地区优秀期刊;天津市一级期刊。本刊为双月刊,逢双月月末出版。订阅办法:银行汇款,户名:中交第一航务

工程勘察设计院有限公司;开户行:建设银行天津河西支行灰堆分理处;帐号:12001636600050000424。联系电话:(022)89560099;电子信箱:ggbjb@https://www.360docs.net/doc/0813367142.html,。欢迎单位及个人踊跃订阅。请将订阅单位全称及详细地址、邮政编码、订阅份数、经办人及联系电话发送至编辑部电子信箱或传真。Analysis of Consolidation Degree and Final Settlement of Sea Reclamation Project based on Real-measured Settlement Dong Shuhai, Xin Xiantao

(CCCC Third Harbor Consultants Co., Ltd., Shanghai 200032, China) Abstract:Based on real-measured settlement data about the foundation treatment of one sea reclamation project in Macau, three-point, hyperbolic and Asaoka methods are used to calculate the degree of consolidation and final settlement of soft base. Furthermore, the above methods are analyzed from the aspects of applicability and limitation. The research results are available for the construction, and serve as a reference for the monitoring of similar reclamation projects in future. Key words:preloading; in-situ monitoring; degree of consolidation; final settlement; port engineering 2018年《港工技术》征订单纳税人识别号联系人订阅单位(全称)邮寄地址及收件人邮政编码联系电话双月刊10.00 60.00单价/元全年总价/元订阅份数总金额/元订阅单位盖章合计金额(大写)注:空

白处必填且要填写清楚。中图分类号:TU447 文献标志码:

A 文章编号:1004-9592(2017)04-0113-04 DOI:

10.16403/https://www.360docs.net/doc/0813367142.html,ki.ggjs20170427 收稿日期:2017-06-27

基于实测沉降的填海工程固结度和最终沉降分析

基于实测沉降的填海工程固结度和最终沉降分析 (中交第三航务工程勘察设计院有限公司,上海200032)摘要:结合澳门某填海工程地基处理的实测沉降数据,采用三点法、双曲线法和Asaoka法推算软基的固结度和最终沉降量,分析了各种计算方法的适用性和局限性,有效指导了工程施工,为今后类似填海工程的监测工作提供了有益的参考。关键词:堆载预压;原位监测;固结度;最终沉降;港口工程引言在设计阶段,可通过太沙基固结理论计算出软弱地基固结度的变化过程,而在施工过程中,则需通过实测沉降数据进行分析,用以指导工程施工。目前常用的基于实测数据的最终沉降计算方法包括三点法、双曲线法和Asaoka法。本文结合澳门某填海工程的软基处理案例,对这几种常用的方法进行系统比较,分析其优缺点和适用条件,为在工程中的应用提供一定的借鉴。 1 工程概况1.1 工程地质条件根据地质勘查资料,工程所处的海底表层为河流堆积形成的软弱淤泥层。土层按成因时代、岩性特征基本划分为4层:①淤泥层,为全新统海相沉积物,灰色,流塑,厚度8~11.8m,平均约10.0m;②杂色黏土层,为晚新统海相沉积物,可塑~硬塑,标贯击数9~10击;③粗砂、强风化花岗岩层;④弱风化花岗岩层。天然地基各软土层的物理力学指标见表1。表1 土层物理力学指标土

层含水量W/%孔隙比e固结系数Cv/(cm2·s-1)压缩模量Es/MPa c/kPa φ/(°)c/kPaφ/(°)直剪快剪直剪固快淤泥66.4 1.94 0.6 x10-3 1.79 1.8 8.7 3.4 10.4杂色黏土32.1 0.9 1.54x10-3 4.41 8.5 20 9.1 30 1.2 真空联合堆载预压方案1)砂垫层:自天然泥面吹填中粗砂至3.5m,作为真空预压起始高程。2)插打塑料排水板:采用高性能可测深塑料排水板,正方形布置,间距1.0m,排水板穿透淤泥层并进入黏土层不小于1.0m。3)真空预压:真空预压区四周采用淤泥搅拌桩的方法施工密封墙,真空预压区内设置滤管、无纺布及密封膜,按1 000 m2/台布置真空泵,维持密封膜下真空度80 kPa以上。4) 堆载预压:抽真空满载30 d后开始分级堆载预压,第一级预压荷载为1.2m厚中粗砂,第二级预压荷载为1.2m厚中粗砂,第三级预压荷载为1.4m厚中粗砂。加载过程用时约60 d,堆载满载60 d,真空联合堆载满载210 d。5)卸载:当根据实测沉降数据推算的固结度达到85%以上可进行分级卸载。1.3 现场监测方案为了获得实测沉降数据,于填海工程范围内选取了一块软基试验区,在该区域内均匀埋设了3个面层沉降盘(编号为S1,S2,S3)。各沉降盘于吹填砂垫层前开始埋设以获得完整的沉降数据,3个测点的沉降-时间曲线如图1所示。图1 测点的沉降-时间曲线2 常用的最终沉降推算方法在实际施工过程中,需要通过实测沉降数据来推算最终沉降及当前固结度,从而判断堆载

沉降计算例题

地基沉降量计算 地基变形在其表面形成的垂直变形量称为建筑物的沉降量。 在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。 一、分层总和法计算地基最终沉降量 计算地基的最终沉降量,目前最常用的就是分层总和法。 (一)基本原理 该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室侧限压缩试验中的情况基本一致,属一维压缩问题。地基的最终沉降量可用室压缩试验确定的参数(e i、E s、a)进行计算,有: 变换后得: 或 式中:S--地基最终沉降量(mm); e --地基受荷前(自重应力作用下)的孔隙比; 1 e --地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比; 2 H--土层的厚度。 计算沉降量时,在地基可能受荷变形的压缩层围,根据土的特性、应力状态以及地下水位进行分层。然后按式(4-9)或(4-10)计算各分层的沉降量S i。最后将各分层的沉降量总和起来即为地基的最终沉降量:

(二)计算步骤 1)划分土层 如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足H i≤0.4B(B为基底宽度)。 2)计算基底附加压力p0 3)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。 4)确定压缩层厚度 满足σz=0.2σsz的深度点可作为压缩层的下限; 对于软土则应满足σz=0.1σsz; 对一般建筑物可按下式计算z n=B(2.5-0.4ln B)。 5)计算各分层加载前后的平均垂直应力 p =σsz; p2=σsz+σz 1 6)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、E s等其它压缩性指标 7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量 S i 8)按公式(4-11)计算总沉降量S。

常用的地基沉降计算方法

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性 力学法、 分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据 的。在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s : E r P s 2 1μπ-?= (6-8) 式中 μ—地基土的泊松比; E —地基土的弹性模量(或变形模量E 0); r —为地基表面任意点到集中力P 作用点的距离,22y x r +=。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6 所示,设荷载面积A N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为集中力P= p 0(ξ,η)d ξd η代替。于是,地面上与N 点距 离r =22)()(ηξ-+-y x 的M (x, y )点的沉降s (x, y ),可由式(6-8)积分 求得: ??-+--=A y x d d p E y x s 22002 )()(),(1),(ηξηξηξμ (6-9) 图6-5 集中力作用下地基表面的沉降曲线 图6-6 局部荷载下的地面沉降

从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若 沉降已知又可以反算出应力分布。 对均布矩形荷载p0(ξ,η)=p0=常数,其角点C的沉降按上式积分的结果为: 2 1 bp E s c ω μ - = (6-10) 式中cω—角点沉降影响系数,由下式确定: ? ? ? ? ? ? + + + + + =)1 ln( ) 1 1 ln( 12 2 m m m m m cπ ω (6-11) 式中m=l/b。 利用式(6-10),以角点法易求得均布矩形荷载下地基表面任意点的沉降。例如矩形中心点的沉降是图6-6(b)中的虚线划分为四个相同小矩形的角点沉降之和,即 2 21 )2/ ( 1 4bp E p b E s cω μ ω μ- = - = (6-12) 式中cω ω2 =—中心沉降影响系数。 图6-7 局部荷载作用下的地面沉降 (a)绝对柔性基础;(b)绝对刚性基础 以上角点法的计算结果和实践经验都表明,柔性荷载下地面的沉降不仅产生于荷载面围之,而且还影响到荷载面之外,沉降后的地面呈碟形,见图6-7。但一般基础都具有一定的抗弯刚度,因而沉降依基础刚度的大小而趋于均匀。中心荷载作用下的基础沉降可以近似地按绝对柔性基础基底平均沉降计算,即 A dxdy y x s s A / ) , ( ??= (6-13) 式中A—基底面积, s(x, y)—点(x, y)处的基础沉降。 对于均布的矩形荷载,上式积分的结果为:

地基沉降实用计算方法

第三节 地基沉降实用计算方法 一、弹性理论法计算沉降 (一) 基本假设 弹性理论法计算地基沉降是基于布辛奈斯克课题的位移解,因此该法假定地基是均质的、各向同性的、线弹性的半无限体,此外还假定基础整个底面和地基一直保持接触。 布辛奈斯克是研究荷载作用于地表的情形,因此可以近似用来研究荷载作用面埋置深度较浅的情况。当荷载作用位置埋置深度较大时,则应采用明德林课题的位移解进行弹性理论法沉降计算。 (二) 计算公式 建筑物的沉降量,是指地基土压缩变形达固结稳定的最大沉降量,或称地基沉降量。 地基最终沉降量:是指地基土在建筑物荷载作用下,变形完全稳定时基底处的最大竖向位移。 基础沉降按其原因和次序分为:瞬时沉降d S ;主固结沉降c S 和次固结沉降s S 三部分组成。 瞬时沉降:是指加荷后立即发生的沉降,对饱和土地基,土中水尚未排出的条件下,沉降主要由土体测向变形引起;这时土体不发生体积变化。(初始沉降,不排水沉降) 固结沉降:是指超静孔隙水压力逐渐消散,使土体积压缩而引起的渗透固结沉降,也称主固结沉降,它随时间而逐渐增长。(主固结沉降) 次固结沉降:是指超静孔隙水压力基本消散后,主要由土粒表面结合水膜发生蠕变等引起的,它将随时间极其缓慢地沉降。(徐变沉降) 因此:建筑物基础的总沉降量应为上述三部分之和,即 s c s s s s s ++= 计算地基最终沉降量的目的:(1)在于确定建筑物最大沉降量;(2)沉降差;(3)倾斜以及局部倾斜;(4)判断是否超过容许值,以便为建筑物设计值采取相应的措施提供依据,保证建筑物的安全。 1、 点荷载作用下地表沉降

Er Q y x E Q s πνπν)1() 1(22 22-+-= = 2、 绝对柔性基础沉降 ?? ----=A y x d d p E y x s 2 202 )()(),(1),(ηξηξηξπν 0) 1(2bp s c E c ων-= 3、 绝对刚性基础沉降 (1) 中心荷载作用下,地基各点的沉降相等。 圆形基础:0)1(2dp s c E c ων-= 矩形基础:0)1(2bp s r E c ων-= (2) 偏心荷载作用下,基础要产生沉降和倾斜。 二、分层总和法计算最终沉降 分层总和法都是以无側向变形条件下的压缩量公式为基础,它们的基本假设是: 1.土的压缩完全是由于孔隙体积减少导致骨架变形的结果,而土粒本身的压缩可不计; 2.土体仅产生竖向压缩,而无测向变形; 3.在土层高度范围内,压力是均匀分布的。 目前在工程中广泛采用的方法是以无测向变形条件下的压缩量计算基础的分层总和法。具体分为e-p 曲线和e -lgp 曲线为已知条件的总和法。 1.以e~p 曲线为已知条件的分层总和法 计算步骤: (1)选择沉降计算剖面,在每一个剖面上选择若干计算点。 1)根据建筑物基础的尺寸,判断在计算其底压力和地基中附加应力时是属于空间问题还是采用平面问题; 2)再按作用在基础上的荷载的性质(中心、偏心或倾斜等情况)求出基底压力的大小和分布; 3)然后结合地基中土层性状,选择沉降计算点的位置。 (2)将地基分层:在分层时天然土层的交界面和地下水位应为分层面,同时在同一类土层中分层的厚度不宜过大。分层厚度h 小于0.4b ;或h=2~4m 。

土力学与地基基础试题及答案(密题)解析

第一部分选择题 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.在土中对土颗粒产生浮力作用的是 ( ) A.强结合水 B.弱结合水 C.毛细水 D.重力水 2.评价粘性土软硬状态的物理指标是 ( ) A.含水量 B.孔隙比 C.液性指数 D.内聚力 3.淤泥质土是指 ( ) A.w> w P,e≥1.5的粘性土 B.w> w L,e≥l.5的粘性土 C.w> w P,1.O≤e <1.5的粘性土 D.w> w L,1-O≤e<1.5的粘性土 4.基底附加压力式中d表示 ( ) A.室外基底埋深 B.室内基底埋深 C.天然地面下的基底埋深 D.室内外埋深平均值 5.为了方便比较,评价土的压缩性高低的指标是 ( ) A.a1-2 B.a2-3 D.a2-4 C. a1-3

6.原状土试样的无侧限抗压强度与重塑土样的无侧限抗压强度之比称为土的 ( ) A.液化指标 B.强度提高系数 C.固结系数 D.灵敏度 7.作用在挡土墙上的土压力,当在墙高、填土物理力学指标相同条件下,对于三种土压力的大小关系,下列表述哪项是正确的? ( ) A. E a

基坑降水对土体固结度计算的影响

浅析基坑降水对土体固结度计算的影响 摘要:本文介绍了基坑降水后土体固结度推算公式,以及基坑降水土体c、φ值的动态变化特征,为基坑支护工程提供理论依据,将有利于基坑工程的设计,保证基坑工程的安全。 关键词:基坑;降水;固结度 中图分类号:tv551.4文献标识码: a 文章编号: 土体固结度计算一直是岩土界研究的重要课题,太沙基提出了渗流固结理论一直沿用至今。如何在基坑降水过程中计算土体固结度,是人们一直研究的课题之一,本文将对此做一简单的推算。一、基坑降水后基坑土体固结度ut的计算 基坑降水前,基坑土体已经在原有自重压力下正常固结。降水后,在γwδh作用下再次渗流固结,土体固结度ut是随着时间的增长,逐步达到固结稳定。此时可以运用太沙基固结理论,进行固结度ut 的计算。设有一基坑,基坑土体渗透系数为k;压缩系数为a;孔隙比为e;降水幅度为δh;降水时间为t。根据太沙基渗流固结理论,可以求得基坑土体经过降水时间t后的固结度ut,具体步骤如下:(1)由已知基坑土体的渗透系数k、压缩系数a、孔隙比e及降幅δh和降水时间t求tv: 其中,=k(1+ e)γw·a (2)根据地下水类型确定的α值并求得的tv,用已有的固结度ut 与时间因素tv关系曲线,来查得相应的固结度ut。一般情况而言:

潜水降水属α=0情况;承压水降水属0<α<1情况;根据已求出的tv 值和α值查ut-tv关系曲线,可得到基坑土体的固结度ut(降水t时间后)。再根据ut可推求基坑土体c、φ值的大小。 二、基坑土体为任意固结度ut时的c、φ值推求 当进行不固结不排水剪切试验时,土体的固结度视ut= 0;固结不排水时,土体固结度ut=100%。深基坑降水的过程可将基坑侧壁土体视为由不固结不排水过程逐渐变为固结不排水过程。当降水时间为t时,土体固结度为ut(0

沉降处理方案

路基是路面的基础,路基不均匀沉降必然会引起路面的不平整,导致路面产生许多病害,主要表现为坑凹、起拱、波浪、接缝台阶、碾压车辙、桥头或涵洞两端路面沉降、桥梁伸缩缝的跳车等,不仅难以满足汽车高速行驶的要求,而且还会增加汽车的燃料消耗和轮胎磨损,加大运输成本,增加运输时间,降低社会经济效益甚至危及行车安全。 一、路基不均匀沉降的原因 造成路基不均匀沉降的原因很多,下面笔者从以下几点进行论述: 1. 1路基填土压实度不足 由于压实度不足,往往导致填方路基的不均匀沉降变形,路基两侧出现纵向裂缝,路基土体压实度不足的主要原因有以下几点: (1)施工受实际条件的限制。路基施工时,天气太干燥,局部路堤填料粘土土块粉碎不足致使路基压实度不均匀;暗埋式构造物处因构造物长度限制使路基边缘不能超宽碾压,致使路基边缘压实度不够;某些加减速车道与行车道没有同步施工,当拼接处理得不好时,其拼接处也会产生压实度不足的情况。 (2)考虑到施工安全和进度,使得压力或压力作用时间不足,路基压实不充分,致使路基压实度达不到规范要求。 (3)由于填方土体的最佳含水量控制不好,压实效果达不到规范要求。 (4)在填方路堤施工中,当路堤施工到一定高度以后,路堤边缘土体往往存在压实度不足问题,对于较高的填方路基,通常都要做相应的处治。 填方土体压实度不足,其结果是土体前期固结压力小于自重应力和各种附加应力之和,在自重作用下就会发生沉降变形,这些附加应力主要来自以下几个方面: ①车载,尤其超载情况;②含水量变化造成土体容重的改变;③地下水位升降而导致浮力作用改变;④土体饱和度改变,引起负孔隙水压力改变。这些附加应力引起土体中有效应力改变,从而导致土体发生压缩变形。 土体压实度不足还会导致填土路基的侧向变形。目前采用的地基沉降计算方法是假定侧向完全受限,仅有竖向变形,实际路基土中存在有侧向变形,这种侧向变形会引起沉降。 1.2路堤填料不均匀,控制不当 在路面施工过程中,对填料、级配很难得到有效的控制,填料常常是开挖路

第四章土的变形性质及其地基沉降计算例题习题集

4-1 设土样样厚 3 cm ,在 100 ~ 200kPa 压力段内的压缩系数= 2 × 10 - 4 ,当压力为 100 kPa 时 , e = 0.7 。求:( a )土样的无侧向膨胀变形模量;( b )土样压力由 100kPa 加到 200kPa 时,土样的压缩量S 。 4-1 解:( a )已知,所以: ( b ) 4-2 有一饱和黏土层,厚 4m ,饱和重度= 19 kN/ m 3 ,土粒重度= 27 kN/ m 3 ,其下为不透水岩层,其上覆盖 5m 的砂土,其天然重度γ = 16 kN/ m 3 ,如图 4 - 32 。现于黏土层中部取土样进行压缩试验并绘出e - lg p 曲线,由图中测得压缩指数C c 为 0.17 ,若又进行卸载和重新加载试验,测得膨胀系数C s = 0.02 ,并测得先期固结压力为 140 kPa 。问:( a )此黏土是否为超固结土?( b )若地表施加满布荷载 80 kPa ,黏土层下沉多少? 图 4 - 32 习题 4 - 2 图 4-3 有一均匀土层,其泊松比= 0.25 ,在表层上作荷载试验,采用面积为1000cm 2 的刚性圆形压板,从试验绘出的曲线的起始直线段上量取p = 150 kPa ,对应的压板下沉量S = 0.5cm 。试求: ( a )该土层的压缩模量E s 。 ( b )假如换另一面积为 5000cm 2 的刚性方形压板,取相同的压力p ,求对应的压板下沉量。 ( c )假如在原土层 1.5m 下存在软弱土层,这对上述试验结果有何影响?

4-4 在原认为厚而均匀的砂土表面用 0.5m 2 方形压板作荷载试验,得基床系数(单位面积压力 / 沉降量)为 20MPa/m ,假定砂层泊松比= 0.2 ,求该土层变形模量E 0 。后改用2m × 2m 大压板进行荷载试验,当压力在直线断内加到 140 kPa ,沉降量达 0.05m ,试猜测土层的变化情况。 4-5 设有一基础,底面积为5m × 10m ,埋深为 2m ,中心垂直荷载为 12500kN (包括基础自重),地基的土层分布及有关指标示于图 4 - 33 。试利用分层 总和法(或工民建规范法,并假定基底附加压力等于承载力标准值),计算地基总沉降。 图 4 - 33 习题 4 - 5 图 4-6 有一矩形基础,埋深为 2m ,受 4000kN 中心荷载(包括基础自重) 的作用。地基为细砂层 , 其,压缩资料示于表 4 - 14 。试用分层总和法计算基础的总沉降。 4-6 解: 1 )分层:,地基为单一土层,所以地基分层和编号如图。

前期固结压力对沉降的影响研究

前期固结压力对沉降的影响研究 要:土层应力历史与土层的性质如压缩性等有着重要关系,只有确定土层应力历史后,才能正确划分土层固结状态。而前期固结压力即土层历史上曾经承受过的最大固结压力又是了解土层应力历史的重要指标,它是一个非常有用的概念和物理量。并且,由于不同固结状态下的土体沉降量计算方法有异,因此,在沉降计算中考虑前期固结压力的影响,能够使得计算结果更加符合实际情况。 关键词:土层应力历史;前期固结压力;土体沉降 1 土层应力历史 土层的应力历史是指在历史过程中土的应力变化情况。土层的应力历史与土层的力学等性质密切相关,并且影响着土层的应力状态。 在进行施工设计前,应当准确地确定土层应力历史,这样才能正确地划分土层的固结状态。否则,由于设计因素掌握不足会使得设计过于浪费或是不安全。 历史应力会压缩土体,一般情况下,前期应力压缩大,然后逐渐减小,直到后期应力平衡不再产生压缩。工程设计中应当考虑土体在卸除负载后的回弹。 2 土层的固结 2.1 土层的固结压力 土体压缩是指土体颗粒在外力作用下重新排列使得体积缩小的现象。一般情况下,孔隙水和土粒本身的压缩量可以忽略不计,土体的压缩全是由土中孔隙体积减小的结果。

土体的压缩随时间增长的过程就叫做土的固结。而使土体固结或压缩的力称为固结压力。而土层历史上曾经承受过的最大固结压力,也就是地质历史上土体在固结过程中所承受的最大有效应力,称为前期固结压力。 对于地基土层,固结压力主要包括土的自重压力和由外荷引起的附加压力两种。饱和的新沉积土中颗粒处于悬浮状态,在自重压力作用下,土体逐渐固结,这类自重压力就是一种固结压力。而对于经历了漫长地质年代并且已经完全固结的土层,此时的自重压力已不再起作用,只有附加压力才能进一步引起土层的进一步压缩,而这时的附加压力即是另一种固结压力。 2.2 土层的固结状态 经过漫长的地质年代,由于各种地质作用,如搬运、剥蚀和堆积等形式,形成了今天的天然土层。在土层形成历史中曾受过的最大有效固结压力称为前期固结压力,而前期固结压力与现有上覆压力之比则表示超固结比(Ocr),根据超固结比的大小可将土层划分为正常固结、超固结和欠固结三种固结状态。 当Ocr = 1时,即前期固结应力等于现有上覆压力,土体为正常固结土;当Ocr 1时,即前期固结力大于现有上覆压力,土体为超固结土;当Ocr 1时,即前期固结力小于现有上覆压力,土体为欠固结土。 3 土层沉降及前期固结压力对其影响 3.1 土层沉降量 在附加压力作用下,地基土体积缩小并在竖直方向下沉的现象称为沉

常用的地基沉降计算方法

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量, 目前常用的计算方法有:弹性力学法、分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq课题的位移解为依据的。在弹性半空间表面作用着一个竖向集中力P时,见图6-5,表面位移w(x, y, o)就是地基表面的沉降量s: E r P s 2 1μ π - ? = (6-8) 式中μ—地基土的泊松比; E—地基土的弹性模量(或变形模量E ); r—为地基表面任意点到集中力P作用点的距离,2 2y x r+ =。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6所示,设荷载面积A内N(ξ,η)点处的分布荷载为p0(ξ,η),则该点微面积上的分布荷载可为集中力P= p0(ξ,η)dξdη代替。于是,地面上与N点距离r =2 2) ( ) (η ξ- + -y x的M(x, y)点的沉降s(x, y),可由式(6-8)积分求得: ?? - + - - = A y x d d p E y x s 2 2 2 ) ( ) ( ) , ( 1 ) , ( η ξ η ξ η ξ μ (6-9) 从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若 沉降已知又可以反算出应力分布。 对均布矩形荷载p0(ξ,η)= p0=常数,其角点C的沉降按上式积分的结果为: 图6-5 集中力作用下地基表面的沉降曲线图6-6 局部荷载下的地面沉降 (a)任意荷载面;(b)矩形荷载面

固结系数的测定

试验三 固 结 系 数 的 测 定 1.通过试验测定试样的固结系数,用以计算地基土体受荷载后的固结度及固结时间。 2.测定固结系数所用仪器设备与固结试验相同 3.试样的切取与安装与固结试验相同,加预压荷载后测微表调零。 4.进行试验 (1)施加第一级荷载,一般为25kPa 或50kPa ,加荷的同时,开动秒表,记录测微计读数,测记时间为6",15",1',2'15",4',6'15",9',12'15",16',20'15",25',30'15",36',42'15",49',64',100',200',400',23h ,24h ,至稳定为止。 (2)重复上述步骤继续加荷P 2=100kPa ,P 3=200kPa ,P 4=400kPa (3)读数完成后拆除测微计,卸下砝码从固结容器内取出环刀与土样,用滤纸吸去附在土样表面及环刀外水份,称环刀加土质量以求试验后的密度。 (4)将环刀中的土样推出,从其中内部取两试样,测定试验后的含水率。 5.计算及绘图 (1)时间平方根法: 对P 1=100kPa ,以变形为纵坐标,时间平方根为横坐标,绘制变形与时间平方根关系曲线(如图3-1)。延长曲线开始段的直线,交纵坐标于ds 。ds 为理论零点,过ds 作另一直线,令其横坐标为前一直线横坐标的1.15倍,那么后一直线与t d -曲线交点所对应的时间的平方即为试样固结度达90%。所需的时间 t 90。 该级压力下的固结系数按下式计算: 式中:Cv —固结系数,cm 2/s h —最大排水距离,等于某级压力下试样的初始和终了高度的平均值,cm ; 图3-1 时间平方根法求t 90 (2)时间对数法: 对某一级压力,以变形为纵坐标,时间的对数为横坐标,绘制变形与时间对数关系曲线,(如图3-2)。在曲线的开始段,选任一时间t 1,查得相应的变形值d 1,再取时间t 2=t 1/4,查得相对应的变形值d 2,则2d 2-d 1即d 01;另取一时间依同法求得d 02、d 03、d 04等,取其平均值为理论零点d s ,延长曲线中部的直线段和通过9028480t h .C v =

基础工程课后题答案 (1)

第二章天然地基上浅基础 1.浅基础和深基础的区别? 浅基础埋入地层深度较浅,施工一般采用敞开挖基坑修筑基础的方法,浅基础在设计计算时可以忽略基础侧面土体对基础的影响,基础结构设计和施工方法也较简单;深基础埋入地层较深,结构设计和施工方法较浅基础复杂,在设计计算时需考虑基础侧面土体的影响。 2.何谓刚性基础,刚性基础有什么特点? 当基础圬工具有足够的截面使材料的容许应力大于由基础反力产生的弯曲拉应力和剪应力时,断面不会出现裂缝,基础内部不需配置受力钢筋,这种基础称为刚性基础。 刚性基础的特点是稳定性好,施工简便,能承受较大的荷载,所以只要地基强度能满足要求,他是桥梁和涵洞等结构物首先考虑的基础形式。 3.确定基础埋深应考虑哪些因素?基础埋深对地基承载力,沉降有什么影响? 1地基的地质条件,2河流的冲刷深度,3当地的冻结深度,4上部结构形式,5当地的地形条件,6保证持力层稳定所需的最小埋置深度。 基础如果埋置在强度比较差的持力层上,使得地基承载力不够,直接导致地基土层下沉,沉降量增加,从而影响整个地基的强度和稳定性。 4何谓刚性角,它与什么因素有关? 自墩台身边缘处的垂线与基底边缘的联线间的最大夹角称为刚性角。它与基础圬工的材料强度有关。 5刚性扩大基础为什么要验算基底合力偏心距? 目的是尽可能使基底应力分布比较均匀,以免基底两侧应力相差过大,使基础产生较大的不均匀沉降,墩台发生倾斜,影响正常使用。 6地基(基础)沉降计算包括哪些步骤?在什么情况下应验算桥梁基础的沉降? (1)确定地基变形的计算深度;(2)确定分层厚度;(3)确定各层土的压缩模量;(4)求基础地面处的附加压应力;(5)计算地基沉降;(6)确定沉降计算经验系数;(7)计算地基的最终沉降量。 (1)修建在地质情况复杂、地层分布不均或强度较小的软黏土地基及湿陷性黄土上的基础;(2)修建在非岩石地基上的拱桥、连续梁桥等超静定结构的基础;(3)当相邻基础下地基土强度有显著不同货相邻跨度相差悬殊二必须考虑其沉降差时;(4)对于跨线桥、跨线渡槽要保证桥或槽下净空高度时。 7水中基坑开挖的围堰形式有哪几种?它们各自的适用条件和特点是什么? (1)土围堰、草袋围堰、钢板桩围堰、双壁钢围堰和地下连续墙围堰等 (2)在水深较浅(2m以内),流速缓慢,河床渗水较小的河流中修筑基础,可采用土围堰或草袋围堰。 堰外流速较大时,可在外侧用草袋柴排防护 第三章 1.桩基础的特点?适用于什么情况? 答:具有承载力高,稳定性好,沉降小而均匀,在深基础中具有耗用材料少,施工简便的特点。(1)荷载较大,适宜的地基持力层位置较浅或人工基础在技术上经济上不合理时。(2)河床冲刷较大,河道不稳定或冲刷深度不易计算正确,位于基础或结构下面的土层有可能被侵蚀.冲刷.如采用深基础不能保证安全时(3)当基础计算沉降过大或建筑物对不均匀沉降敏感时,采用桩基础穿过松软(高压缩)层,将荷载传到较结实(低压缩性)土层,以减少建筑物沉降并使沉降较均匀。(4)当建筑物承受较大的水平荷载,需要减少建筑物的水平位移和倾斜时(5)当施工水位或地下水位较高,采用其他深基础施工不便或经济上不合理时。(6)地震区,在可液化地基中,采用桩基础可增加建筑物的抗震能力,桩基础穿越可液化

常用的地基沉降计算方法汇总

常用的地基沉降计算方法汇总

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性力学法、分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据的。在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s : E r P s 2 1μπ-? = (6-8) 式中 μ—地基土的泊松比; E —地基土的弹性模量(或变形模量E 0); r —为地基表面任意点到集中力 P 作用点的距离,2 2y x r +=。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6所示,设荷载面积A 内N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为集中力P= p 0(ξ,η)d ξd η代替。于是,地面上与N 点 距离r =2 2)()(ηξ-+-y x 的M (x, y )点的沉降s (x, y ),可由式(6-8)积 分求得: ?? -+--= A y x d d p E y x s 2200 2 )()(),(1),(ηξη ξηξμ (6-9) 图6-5 集中力作用下地基表面的沉降曲线 图6-6 局部荷载下的地面沉降 (a )任意荷载面;(b ) 矩形荷载面

《土力学》第六章习题集及详细解答

《土力学》第六章习题集及详细解答 第6章土中应力 一填空题 1.分层总和法计算地基沉降量时,计算深度是根据应力和应力的比值确定的。 2.饱和土的有效应力原理为:总应力σ=有效应力σˊ+孔隙水压力u ,土的和只随有效应力而变。地下水位上升则土中孔隙水压力有效应力。 3.地基土层在某一压力作用下,经历时间t所产生的固结变形量与最终固结变形量之比值称为。 二选择题 1.对非压缩性土,分层总和法确定地基沉降计算深度的标准是( D )。 (A) ;(B) ;(C) ;(D) 2.薄压缩层地基指的是基底下可压缩土层的厚度H与基底宽度b的关系满足( B )。 (A) ;(B) ;(C) ;(D) 3.超固结比的土属于( B )。 (A) 正常固结土;(B) 超固结土;(C) 欠固结土;(D) 非正常土 4.饱和黏性土层在单面排水情况下的固结时间为双面排水的( C )。 (A) 1倍;(B) 2倍;(C) 4倍;(D) 8倍 5.某黏性土地基在固结度达到40%时的沉降量为100mm,则最终固结沉降量为( B )。 (A) 400mm ; (B) 250mm ; (C) .200mm ; (D) 140mm 6.对高压缩性土,分层总和法确定地基沉降计算深度的标准是( C )。 (A) ;(B) ;(C) ;(D) 7.计算时间因数时,若土层为单面排水,则式中的H取土层厚度的( B )。 (A)一半; (B) 1倍; (C) 2倍; (D) 4倍 8.计算地基最终沉降量的规范公式对地基沉降计算深度的确定标准是( C )。 (A) ;(B) ;(C) ;(D)

9.计算饱和黏性土地基的瞬时沉降常采用( C )。 (A) 分层总和法; (B) 规范公式; (C) 弹性力学公式; 10.采用弹性力学公式计算地基最终沉降量时,式中的模量应取( A ) (A) 变形模量; (B) 压缩模量; (C) 弹性模量; (D) 回弹模量 11.采用弹性力学公式计算地基瞬时沉降时,式中的模量应取( C )。 (A) 变形模量; (B) 压缩模量;(C) 弹性模量;(D) 回弹模量 12.当土处于正常固结状态时,其先期固结压力与现有覆盖土重的关系为( B )。 (A) ; (B) ;(C) ; 13.当土处于欠固结状态时,其先期固结压力与现有覆盖土重的关系为( C )。 (A) ; (B); (C); 14.已知两基础形状、面积及基底压力均相同,但埋置深度不同,若忽略坑底回弹的影响,则( C )。 (A)两基础沉降相同; (B)埋深大的基础沉降大; (C)埋深大的基础沉降小; 15.埋置深度、基底压力均相同但面积不同的两基础,其沉降关系为( B )。 (A)两基础沉降相同; (B)面积大的基础沉降大; (C)面积大的基础沉降小;16.土层的固结度与所施加的荷载关系是( C )。 (A)荷载越大,固结度也越大 (B)荷载越大,固结度越小 (C)固结度与荷载大小无关 17.黏土层在外荷载作用下固结度达到100%时,土体中( D )。 (A)只存在强结合水; (B)只存在结合水 (C)只存在结合水和毛细水;(D) 有自由水 18.有两个黏土层,土的性质相同,土层厚度与排水边界条件也相同。若地面瞬时施加的超荷载大小不同,则经过相同时间后,两土层的平均孔隙水压力( A )。 (A)超荷载大的孔隙水压力大; (B)超荷载小的孔隙水压力大; (C)一样大 三、判断改错题 1.×,改“偏大”为“偏小”。 2.×,改“角点”为“中心点” 3.×,应取与土层自重应力平均值相对应的孔隙比 4.×,对一般土,应为;在该深度以下如有高压缩性土,则应继续向下计算至 处。 5.×,压缩模量应按实际应力段范围取值。 6.√ 7.×,沉降偏大的原因时因为弹性力学公式时按均质的线性变形半空间的假设得到的,而实际上地基常常是非均质的成层土。 8.√

地基沉降的计算方法及计算要点

CENTRAL SOUTH UNIVERSITY 课外研习论文 学生姓名刘振林、靳颜宁、唐雯钰 学号 020*******、020*******、020******* 学院资源与安全工程学院 专业城市地下空间工程1001班 指导老师李江腾 2012.09

目录 引言 (2) 1.地基沉降 (2) 1.1地基沉降的基本概念 (2) 1.2地基沉降的原因 (2) 1.3地基沉降的基本类型 (2) 1.3.1按照沉降产生机理 (2) 1.3.2按照沉降的表示方法 (2) 1.3.3按照沉降发生的时间 (3) 2.地基沉降的计算 (3) 2.1地基沉降计算的目的 (3) 2.2地基沉降计算的原则 (3) 2.3地基沉降的计算方法 (3) 2.3.1分层总和法 (3) 2.3.2应力面积法 (6) 2.3.3弹性力学方法 (13) 2.3.4斯肯普顿—比伦法(变形发展三分法) (15) 2.3.5应力历史法(e-lgp曲线法) (17) 2.3.6应力路径法 (18) 3.计算要点 (19) 3.1分层总结法计算要点 (19) 3.2应力面积法计算要点 (19) 3.3弹性理论法计算要点 (20) 3.4斯肯普顿—比伦法计算要点 (20) 3.5应力历史法计算要点 (20) 3.6应力路径法计算要点 (20) 4.总结 (20) 参考文献: (21)

地基沉降的计算方法及计算要点 城市地下空间工程专业学生刘振林,唐雯钰,靳颜宁 指导教师李江腾 [摘要]:本文介绍了六种地基沉降量的计算方法:分层总和法、应力面积法、弹性理论法、斯肯普顿—比伦法、应力历史法以及应力路径法,并讨论了各种方法的计算要点。 关键词:分层总和法;规范法;弹性理论;斯肯普顿—比伦;应力历史;应力路径 ABSTRACT:This thesis introduces six kinds of foundation settlement calculation methods:layerwise summation method,Stress area method,elasticity-thoery method, Si Ken Compton ancient method,Stress history method,stress path method,and discusses the main points of the six methods. KEY WORD:layerwise summation method;Specification Approach;elastic theory;stress history; A.W.Skempton—L.Bjerrum;stress path 引言 基础沉降计算从来就是地基基础工程中三大难题之一,在进行基础设计时,不仅要满足强度要求,还要把基础的沉降和沉降差控制在一定范围内。地基沉降的计算在建筑物的施工和使用阶段都非常重要。地基沉降量是指地基土在建筑荷载作用下达到压缩稳定时地基表面的最大沉降量。目前计算地基沉降的常用方法有分层总和法、规范法、还有弹性理论法、应力历史法(e-lgp曲线法)以及斯肯普顿—比伦法(变形发展三分法)、应力路径法。 中图分类号:TU478 文献标识码:A 1.地基沉降 1.1地基沉降的基本概念 建筑物和土工建筑物修建前,地基中早已存在着由土体自身重力引起的自重应力。建筑物和土工建筑物荷载通过基础或路堤的底面传递给地基,使天然土层原有的应力状态发生变化,在附加的三向应力分量作用下,地基中产生了竖向、侧向和剪切变形,导致各点的竖向和侧向位移。地基表面的竖向变形称为地基沉降,或基础沉降。 1.2地基沉降的原因 由于建筑物荷载差异和地基不均匀等原因,基础或路堤各部分的沉降或多或少总是不均匀的,使得上部结构或路面结构之中相应地产生额外的应力和变形。地基不均匀沉降超过了一定的限度,将导致建筑物的开裂、歪斜甚至破坏,例如砖墙出现裂缝、吊车轮子出现卡轨或滑轨、高耸构筑物倾斜、机器转轴偏斜、与建筑物连接管道断裂以及桥梁偏离墩台、梁面或路面开裂等。 1.3地基沉降的基本类型 1.3.1按照沉降产生机理 (1)荷载沉降:外部荷载作用下产生的沉降。 (2)地层损失沉降:采空区、隧道、地下工程和基坑开挖等产生的沉降。 (3)自重沉降:土体在自重应力作用下产生的沉降。 (4)水文沉降:由于地下水的水位上升或下降产生的沉降。 1.3.2按照沉降的表示方法

沉降计算和分析

沉降计算和分析 1.地面沉降横向分布计算 地表沉降横向分布曲线的形状可用Peck[3]公式合理地表达, 这一概念已被人们所接受, 上海地区的许多盾构施工实例也充分证明了它的实际使用效果[4-5]。Peck 假定施工引起的地面沉降是在不排水情况下发生的, 沉降槽的体积等于地层损失的体积。地层损失在隧道长度上是均匀分布的,隧道施工产生的地表沉降横向分布近似为一正态分布曲线: 式中: S(x)为距离隧道中心线处的地表沉降( m) ;Smax 为隧道中心线处最大地面沉降( m) ; x 为距隧道中心线的距离( m) ; i 为沉降槽宽度系数( m) ;VS 为盾构隧道单位长度地层损失( m3/m) 。 Peck 公式中的VS ( 地层损失) 与盾构种类、操作方法、地层条件、地面环境、施工管理等因素有关, 目前尚难给出确定的解析式。根据统计,在采用适当技术和良好操作的正常施工条件下,地层损失VS 可表示为: VS=VlπR2 ( 3) 式中: Vl 为地层体积损失率, 即单位长度地层损失占单位长度盾构体积的百分比; R 为盾构机外径( m) 。 沉降槽宽度系数i 决定了盾构施工对周围土体的影响范围, 一

般而言, 沉降槽半宽为2.5i。研究表明, i 取决于接近地表的地层的强度、隧道埋深和隧道半径, 其计算式如下: 式中: Z 为地面至隧道中心的深度; Ф为土的内摩擦角。 杭州地铁1 号线隧道外径为6.2 m, 土内摩擦角取为23.2°, 隧道顶部覆土厚度有18.8 m,运用Peck 公式计算可得沉降槽半宽W/2=33.0 m,计算结果见表1, 地面沉降横向分布见图1。 2. 地面沉降纵向分布计算 刘建航[6]院士在Peck 法的基础上, 提出了负地层损失概念, 并将地层损失分成开挖面和盾尾后的地层损失两部分, 得出了地面沉降量的纵向分布预测公式:

桩基沉降计算

桩基沉降计算 一、目前桩基沉降计算方法及存在的问题 1、目前桩基的计算方法 对于群桩基础(桩距小于和等于6倍桩径),在正常使用状态下的沉降计算方法,目前有两大类。一类是按实体深基础计算模型,采用弹性半空间表面荷载下Boussinesq应力解计算附加应力,用分层总和法计算沉降;另一类是以半无限弹性体内部集中作用下的Mindlin解为基础计算沉降。后者主要分为两种:一是Poulos提出的相互作用因子法;第二种是Gedes对Mindlin公式积分而导出集中力作用于弹性半空间内部的应力解,按叠加原理,求得群桩桩端平面下各单桩附加应力和,按分层总和法计算群桩沉降(如《上海地基基础设计规范》DGJ08-11-1999,《建筑地基基础设计规范》GB50007-2002)。 上述方法存在如下一些些问题: (1)实体深基础法,其附加应力按Boussinesq解计算与实际不符(计算应力偏大),且实体深基础模型不能反映桩的距径比、长径比等的影响; (2)相互作用因子法不能反映压缩层范围土的成层性; (3)Geddes应力叠加-分层总和法要求假定侧阻力分布,并给出桩端荷载分担比; (4)-所有的计算方法都依赖经验参数,以上计算方法均是以弹性力学的基本原理为基础,计算的可靠性与经验系数关系密切;

(5)不能考虑上部结构刚度对变形的影响。 2、旧规范沉降计算方法存在的问题 旧规范的沉降计算方法——等效作用分层总和法的一个科学、实用的计算方法,能反映群桩基础的各因素对沉降的影响,如桩的距径比、长径比、桩数等。其存在的问题是对于长桩,特别是桩侧土较好的长桩基础,计算沉降量与实测值误差较大,统计结果发现计算值大,而实测值小。造成这种现象的原因是上部结构的荷载借助于侧摩阻力传至承台投影面积以外,使桩端平面的计算附加应力远小于实际受力。而旧规范的经验系数依据局限于上海地区的资料,当时的超高层建筑很少,对应的长桩基础很少,经验系数存在一定的局限性。 二、调整的内容 新规范维持了旧规范的基本计算方法,针对旧规范沉降计算中存在的问题进行了调整。 1、对于桩中心距不大于6倍桩径的桩基,调整了沉降经验系数。 2、桩的沉降计算考虑施工工艺的影响,原因是群桩基础的变形是桩基影响范围内土的变形,而不同的施工工艺对土的影响不同。 3、增加了单桩、单排桩、疏桩基础基础沉降计算。 三、规范推荐的计算方法 对于桩中心距不大于6倍桩径的桩基础计算,新规范维持了旧规范的基本计算方法,规范共涉及8条,即规范5.5.6至5.5.13条,具体详见规范。

相关文档
最新文档