二次函数与等腰三角形结合1

二次函数与等腰三角形结合1
二次函数与等腰三角形结合1

二次函数与几何综合(一)

------等腰三角形问题

北京市第十三中学分校 郝凤霞 2012年10月25日 教学过程 设计意图

活动1.

在直角坐标平面中,O 为坐标原点,二次函数2(1)4y x k x =-+-+的图

象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6OAB S ?=.(1)求点A

与点B 的坐标;(2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标.

活动1中,“p 在x 轴上”,通过此

例明确等腰三角形的分类方法,

初步探究二次函

数背景下等腰三角形问题的分析,确定问题解

决思路,同时,鼓励学生发散多种做法,拓宽思路.

科目 数学 课题 二次函数背景的等腰三角形问题 班级 初三(2)班

任课教师

郝凤霞

学 生 情 况 分 析

有关等腰三角形的分类讨论,在之前的几何综合题中有涉及,学生基本理解等腰三角形的分类标准及解题方法;通过前一段时间的学习,学生已经掌握二次函数的图象和性质,待定系数法求函数解析式,求函数图象的交点坐标,较熟练运用函数知识解决实际问题;二次函数知识本身就是数形结合思想的数学思想的一个很好的体现,在解决这类问题时,学生往往要么只注意到代数知识,要么只注意到几何知识,不会把它们互相转化,如坐标系中点的坐标与几何图形中线段的长的关系;坐标系中互相垂直的两直线之间的代数关系等,本节课的教学重点是引导学生在二次函数背景的背景下研究等腰三角形问题,提炼方法.

教 学 目 标 掌握二次函数背景下等腰三角形的分类讨论问题的方法与步骤

进一步渗透分类讨论思想数形结合思想以及方程思想,培养学生将几何问题与 代数问题的转化思想

体会解题过程中方法的筛选与调整,树立解决综合题的信心 教学 重点 运用转化的数学思想方法,数形结合分析等腰三角形问题 教学 难点 准确对等腰三角形分类,确定解决代几综合问题的思路

活动2.如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数).

(1)求经过O、P、B三点的抛物线的解析式;

(2)当P移动到点()时,请在抛物线上找一点Q,使Q、P、B 三点构成等腰三角形,并求出Q点的坐标.

思考.如图,一次函数y=﹣4x﹣4的图象与x轴、y轴分别交于A、C两点,抛物线y=x2+bx+c的图象经过A、C两点,且与x轴交于点B.

(1)求抛物线的函数表达式;

(2)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x 轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.通过变化条件使题目复杂化,由“P在x轴上”变化为“P在抛物线上”,进一步对比归纳,揭示解题思路、归解题方法;

此题难度适中,注意分类讨论思想,方程思想与数形结合思想的应用是解此题的关键,还要注意别漏解.

构造特殊等腰三角形,利用等腰三角形的分类方法和等腰直角三角形的性质等知识确定解题思路

活动3.课堂小结

解决二次函数背景下的等腰三角形问题的过程和方法:

(1)根据题目中抛物线条件,准确计算

(2)根据条件,对等腰三角形进行分类讨论

(3)数形结合,选择适当方法灵活解题

课后作业

1.如图,已知直线y=﹣x+2与抛物线y=a (x+2)2相交于A、B两点,

点A在y轴上,M为抛物线的顶点.

(1)请直接写出点A的坐标及该抛物线的解析式;

(2)若P为线段AB上一个动点(A、B两端点除外),连接PM,设线段PM的长为l,点P的横坐标为x,请求出l2与x之间的函数关系,并直接写出自变量x的取值范围;

(3)在(2)的条件下,线段AB上是否存在点P,使以A、M、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

2.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠

在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.

(1)求点B的坐标;

(2)求抛物线的解析式;

(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.提炼本节课的知识技能与解题步骤方法.

通过课后作业,使学生深入体会分析综合题的方法,数形结合、转化和分类讨论的数学思想,同时落实基础知识和基本技能,及基本计算.

3. 已知:如图,抛物线)0(22≠+-=a c ax ax y 与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0)。 (1)求该抛物线的解析式;

(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ 。当△CQE 的面积最大时,求点Q 的坐标;

(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0)。问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由。

Y X E C A D Q B O

二次函数数形结合问题

二次函数与图形专题 姓名: 图象型 经典例题 例1.如图,已知?ABC 中,BC=8,BC 上的高h =4,D 为BC 上一点,EF BC //,交AB 于点E ,交 AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x ,则?DEF 的面积y 关于x 的函数的图象大致为( ) D O 4 2 4O 424 O 4 24 O 4 24 A y x B C C A E F B D 例2.(2013年南京建邺区一模)矩形ABCD 中,AD =8 cm ,AB =6 cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2 ),则y 与x 之间的函数关系用图象表示大致是下图中的 ( ) 变式训练*举一反三 1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD =45°,DF ⊥AB 于点F ,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF =x ,DE =y ,下列中图象中,能表示y 与x 的函数关系式的 图象大致是( ) 2.如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( ) A . 2 425 y x = B .225y x = C .2225y x = D .2 45 y x = 3.(赵州二中九年七班模拟)点E 为正方形ABCD 的BC 边的中点,动点F 在对角线AC 上运动,连接BF 、 EF .设AF =x ,△BEF 的周长为y ,那么能表示y 与x 的函数关系的图象大致是( ) 第3题 A B C D

二次函数与等腰三角形

以二次函数与等腰三角形问题为背景的解答题 【学习目标】 这类问题主要是以一点(或以一条线段)为依托,动点和函数思想相结合以几何图形为背景,以动点为元素,构造动态型几何问题。解此类题目,应从相关图形的性质和数量关系分类讨 论来解决。此类问题较多地关注学生对图形性质的理解,用动态的观点去看待一般函数和图形结合的问题,具有较强的综合性. 【教学过程】解题思路:等腰三角形的存在性的解题方法:①几何法三步:先分类;再画图;后计算.② 代数法三步:先罗列三边;再分类列方程;后解方程、检验.再以二次函数与等腰三角形问题为背景的解答题中,这两种方法往往结合使用. 一、考点突破 12 例1、如图,已知抛物线y=﹣x2+bx+4 与x 轴相交于A、B两点,与y 轴相交于点C,若 4 已知 A 点的坐标为(﹣2,0). (1)求抛物线的解析式; 2)连接AC、BC,求线段BC 所在直线的解析式; P,使△ACP为等腰三角形?若存在,求出符合条件的(3)在抛物线的对称轴上是否存在 点P 点坐标;若不存在,请说明理

【例2】如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y 轴相交于A,B 两点,点C 的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒 2 个单位长度的速度向点 B 运动;同时,动点Q 从点 B 出发,沿BC以每秒 1 个单位长度的速度向点C运动.规定其中一个动点到达端点时, 另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M ,使以A,B,M 为顶点的三角形是等腰三角形? 若存在,求出点M 的坐标;若不存在,请说明理由.

二次函数与三角形综合

二次函数综合提升卷 【类型一】二次函数之面积最值 求与函数图像相关的三角形的面积: (1)结合方程组用待定系数法求函数的解析式; (2)根据坐标求出三角形面积; ①公式法:三角形一边与坐标轴平行或重合时可以直接根据三角形面积公式求解; ②割补法:公式法无法使用是,把三角形补成矩形或梯形或直角三角形,然后根据矩形或梯形或直角三角形的面积公式解决; ③等积转化法; ④铅锤法;利用S=铅垂高?水平宽÷2,可以避免求一些比较复杂的点的坐标; ⑤特殊情况下可以利用反比例函数的几何意义进行解答。 *遇到动点最值问题时,需要利用未知数将实际问题中的情形代数化,利用二次函数性质解答 1.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从 这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x,y应分别为() A.x=10,y=14 B.x=14,y=10 C.x=12 ,y=15 D.x=15 ,y=12 (第1题)(第2题) 2.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式.

(2)在第一象限的抛物线上存在点M ,使以O 、A 、B 、M 为顶点的四边形面积最大,求点M 的坐标. (3)作直线x=m 交抛物线于点P ,交线段OB 于点Q ,当△PQB 为等腰三角形时,求m 的值. 3. 如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线 经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根. (1)求抛物线的解析式; (2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点 (点D 在y 轴右侧),连接OD 、BD . ①当△OPC 为等腰三角形时,求点P 的坐标; ②求△BOD 面积的最大值,并写出此时点D 的坐标. 【类型二】二次函数与全等三角形 在实际考试中会出现全等三角形点的存在性问题,解题的关键在于全等三角形对应边相等或对应角相等,利用某一个特殊角度角展开分类讨论,将所有的情形都讨论到位. 4. ★如图,在第一象限内作射线OC,与x 轴的夹角为?30,在射线OC 上取一点A,过点A 作AH ⊥ x 轴于点H.在抛物线2x y =)0(>x 上取点P,在y 轴上取点Q,使得以P,O,Q 为顶点的三角形与?AOH 全等,则符合条件的点A 的坐标是_____. 5. (1)求b 、c 的值; (2)过C 作CE x //轴交抛物线于点E,直线DE 交x 轴于点F,且F )0,4(,求抛物线的解析式; (3)在(2)条件下,抛物线上是否存在点M,使得?CDM ??CEA 若存在,求出点M 的坐标;若不存在,请说明理由. 6. 如图,抛物线)0(2≠+=a c ax y 与y 轴交于点A,与x 轴交于B,C 两点(点C 在x 轴正半轴上), ?ABC 为等腰直角三角形,且面积为4,现将抛物线沿BA 方向平移,平移后的抛物线过点C 时,与x 轴的另一点为E,其顶点为F,对称轴与x 轴的交点为H.

二次函数与等腰三角形结合1

二次函数与几何综合(一) ------等腰三角形问题 北京市第十三中学分校 郝凤霞 2012年10月25日 教学过程 设计意图 活动1. 在直角坐标平面中,O 为坐标原点,二次函数2(1)4y x k x =-+-+的图 象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6OAB S ?=.(1)求点A 与点B 的坐标;(2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标. 活动1中,“p 在x 轴上”,通过此 例明确等腰三角形的分类方法, 初步探究二次函 数背景下等腰三角形问题的分析,确定问题解 决思路,同时,鼓励学生发散多种做法,拓宽思路. 科目 数学 课题 二次函数背景的等腰三角形问题 班级 初三(2)班 任课教师 郝凤霞 学 生 情 况 分 析 有关等腰三角形的分类讨论,在之前的几何综合题中有涉及,学生基本理解等腰三角形的分类标准及解题方法;通过前一段时间的学习,学生已经掌握二次函数的图象和性质,待定系数法求函数解析式,求函数图象的交点坐标,较熟练运用函数知识解决实际问题;二次函数知识本身就是数形结合思想的数学思想的一个很好的体现,在解决这类问题时,学生往往要么只注意到代数知识,要么只注意到几何知识,不会把它们互相转化,如坐标系中点的坐标与几何图形中线段的长的关系;坐标系中互相垂直的两直线之间的代数关系等,本节课的教学重点是引导学生在二次函数背景的背景下研究等腰三角形问题,提炼方法. 教 学 目 标 掌握二次函数背景下等腰三角形的分类讨论问题的方法与步骤 进一步渗透分类讨论思想数形结合思想以及方程思想,培养学生将几何问题与 代数问题的转化思想 体会解题过程中方法的筛选与调整,树立解决综合题的信心 教学 重点 运用转化的数学思想方法,数形结合分析等腰三角形问题 教学 难点 准确对等腰三角形分类,确定解决代几综合问题的思路

巧用数形结合思想解二次函数中的问题

巧用数形结合思想解二次函数中的问题 摘要:数形结合就是把抽象的数学语言与直观的图形结合起来。通过数与形之间的对应和转化来解决数学问题,数形结合思想通过“以形助数,以数解形”两个方面,已经成为当今数学的特色之一,它使复杂问题简单化,抽象问题具体化,变抽象思维为形象思维,有助于把握数学问题的本质。它兼有数的严谨与形的直观,是优化解题过程的重要途径之一,是一种基本的数学方法。本文通过例题分析了解“数形结合思想”来解决二次函数中的问题,因为此类问题的特点是若仅进行代数推理,亦能解决, 但运算繁、技巧强、难度大若以形助数, 则运算简、技巧弱、难度小。 关键词:数形结合思想二次方程和不等式二次函数 由于初中的“二次函数”的问题,历年来都是中考的热点,因此,我从用“数形结合”思维思想来谈一谈这些问题。 一、数形结合思想概述 法国著名的自然辨证哲学家恩格斯曾经说过“数学是研究现实生活中数量关系和空间形式的数学”。数学中两大研究对象“数”与“形”的矛盾统一是数学发展的内在因素,数形结合是贯穿于数学发展历史长河中的一条主线,并且使数学在实践中的应用更加广泛和深入。一方面。借助于图形的性质可以将许多抽象的数学概念和数量关系形象化、简单化,给人以直觉的启示。另一方面,将图形问题转化为代数问题,以获得精确的结论。这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简洁明快,而且可以大大开拓

我们的解题思路,为研究和探求数学问题开辟一条重要的途径.因此,数形结合不应仅仅作为一种解题方法.而应作为一种重要的数学思想,它是将知识转化为能力的“桥”。而课堂教学中多媒体的应用更有利于体现数形结合的数学思想方法。有利于突破教学难点,有利于动态地显示给定的几何关系,营造愉快的课堂教学气氛,激发学生的学习兴趣,使学生喜欢数学,爱学数学. “数”与“形”作为数学中最古老最重要的两个方面.一直就是一对矛盾体。正如矛和盾总是同时存在一样.有“数”必有“形”,有“形”必有“数”。华罗庚先生曾说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微.数形结合百般好,隔离分家万事休。切莫忘,几何代数统一体。永远联系.切莫分离!”寥寥数语,把数形之妙说得淋漓尽致.“数形结合”作为数学中的一种重要思想,它在初、高中都是解决许多问题得重要思想,特别是在高中数学中占有极其重要的地位,关于这一点,我们只要翻阅近年高考试卷就可以一目了然。在多年来的高考题中,数形结合应用广泛.大多是“以形助数”,比较常见的是在解方程和不等式、求函数的最值问题、求复数和三角函数等问题中,与此同时“数形结合”思想在二次函数中的应用在中、高考命题中解决问题也成了必不可少的部分,也是平时学习二次函数解决应用问题的一个重点。巧妙运用“数形结合”思想解题.可以化抽象为具体,达到事半功倍的效果。 二、二次函数与系数之间的关系

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题 一、知识准备: 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。 (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形; 解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。 二、例题精析 ㈠【抛物线上的点能否构成等腰三角形】 例一.(2013?地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论, ①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x2+bx+c得:,

解得:. ∴抛物线解析式为:y=x2+2x﹣3. (2)令y=0得:0=x2+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,, 解得:, ∴M1(﹣1,),M2(﹣1,﹣); ②当MB=BA时,, 解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形. 点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. ㈡【抛物线上的点能否构成直角三角形】 例二.(2013)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

数形结合在二次函数中的应用

课题:数形结合在二次函数中的应用 公主岭四中 曹立华 教学目标: 1. 知识目标:理解二次函数解析式与二次函数图像间的关系。通过解析式本身蕴含的信息以及函数图像的直观表示,解决有关的问题。 2. 能力目标:通过本节课的学习,进一步掌握数形结合的数学思想以及数形互检的方法。 3. 情感目标:通过小组讨论活动,培养学生的团队协作精神。 教学过程: 数形结合思想就是将几何与代数有机地结合,用数的观念来解决形的问题;或者用形的方法解决数的问题,是中考数学中的一个重要的思想方法。今天我们着重研究数形结合在二次函数中的应用。 一、数促形,让感性的形多一分理性 思考:从图中获取信息:学生可能从以下几方面考虑: (1)a 、b 、c 的符号 (2)2 4b ac -的符号 (3)顶点位置 例1 已知二次函数c bx ax y ++=2的图象如图所示, 下列结论 ①0<++c b a ②0>+-c b a ③0>abc ④3c a >- 中正确的个数是( ) (A) 4 (B) 3 (C) 2 (D) 1 分析:仔细观察抛物线的位置走向,关键点的位置坐标,以及解析式中 各系数与图形性质的对应关系,再做出判断。 归纳:我们解题时会发现图形的特征常常体现着数的关系,运用“数”的规律,数值的计算,我们就可以寻找出处理“形”的方法,来达到“数促形”的目的。 图形问题可以转化为数量问题。同样有时数量问题也可以转化为图形问题。 二、形帮数,让理性的数多一些感性。 x … -3 -2 -1 0 1 2 … y … 12 5 0 -3 -4 -3 … (1)该抛物线对称轴的直线方程是 。 (2)若抛物线与x 轴交于点A 、B ,与y 轴交于点C ,求S △ABC 分析:此题若先求解析式,后求对称轴,计算较繁,通过“形”利用对称性简单明了。

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义 教师学科上课时间年月日学生年级讲义序号 课题名称 教学目标1.会根据题目条件求解相关点的坐标和线段的长度; 2.掌握用待定系数法求解二次函数的解析式; 3.能根据题目中的条件,画出与题目相关的图形,继而帮助解题; 教学重点 难点1.体会利用几何定理和性质或者代数方法建立方程求解的方法; 2.会应用分类讨论的数学思想和动态数学思维解决相关问题。 课前检查上次作业完成情况:优□良□中□差□建议_______________________________ 教学容知识结构: 一.二次函数知识点梳理:下图中0 a≠二.特殊的二次函数:下图中0 a≠

3 4 y x =与BC边交于D点. (1)求D点的坐标; (2)若抛物线2 y ax bx =+经过A、D两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P. 方法总结: 1.已知:如图,在平面直角坐标系xOy中,二次函数c bx x y+ + - =2 3 1 的图像经过点 A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.二次函数背景下相似三角形的解题方法和策略: 1.根据题意,先求解相关点的坐标和相关线段的长度; 2.待定系数法求解相关函数的解析式; 3.相似三角形中,注意寻找不变的量和相等的量(角和线段); 4.当三角形的三边不能用题目中的未知量表示时,注意利用相似三角形的转化求解; 5.根据题目条件,注意快速、正确画图,用好数形结合思想; 6.注意利用好二次函数的对称性; 7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。

中考数学二次函数考点分析

中考数学二次函数考点分析 二次函数是初等函数中的重要函数,在解决各类数学问题和实际问题中有着广泛的应用,是近几年河北中考热点之一。学习二次函数,对于学生数形结合、函数方程等重要数学思想方法的培养,对拓宽学生解题思路、发展智力、培养能力具有十分重要意义。 二次函数主要考查表达式、顶点坐标、开囗方向、对称轴、最大(小)值、用二次函数模型解决生活实际问题。其中顶点坐标、开囗方向、对称轴、最大(小)值、图象与坐标轴的交点等主要以填空题、选择题出现。利用二次函数解决生活实际问题以及二次函数与几何知识结合的综合题以解答题形式出现:一类是二次图象及性质的纯数学问题,如2010年河北中考11题,2009河北中考22题,2007河北中考22题;一类是利用二次函数性质结合其它知识解决实际问题的题目,如2010年河北中考26题,2008河北中考25题,2006河北中考24题。 考点1:二次函数的有关概念 一般的,形如y=ax?+bx+c(a,b,c是常数,a≠0)的函数叫做二次函数。 例m取哪些值时,函数是以x为自变量的二次函数?考点2:二次函数的图象性质 (1)抛物线的形状 二次函数y=ax?+bx+c(a≠0)的图像是一条抛物线,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。 (2)抛物线的平移 二次函数y=ax?向右平移h个单位,向上平移k个单位后得到新的二次函数y=a(x-h)2+k,进一步化简计算得到二次函数y=ax?+bx+c。新函数与原来函数形状相同,只是位置不同。 (3)抛物线与坐标轴的交点 抛物线与x轴相交时y=0,抛物线与y轴相交时x=0。 (4)抛物线y=ax2+bx+C中a、b、c的作用 a决定当开囗方向,a>0时,抛物线开口向上;当a<0时,抛物线开口向下。 a和b共同决定对称轴。 C决定与y轴交点。 (5)抛物线顶点坐标、对称轴、最大(小)值 顶点式:y=a(x-h)2+k顶点坐标(h,k),对称轴x=h, 最大(小)值k。 一般式:y=ax?+bx+c顶点坐标,对称轴,最大(小)值为。 例1.(2008河北中考9题)如图4,正方形的边长为10,四个全等的小正方形的 对称中心分别在正方形的顶点上,且它们的各边与正方形各边平行或垂

(完整版)二次函数综合题——等腰三角形

二次函数综合题——等腰三角形 一.解答题(共30小题) 1.(2014?新余模拟)如图,已知二次函数图象的顶点为(1,﹣3),并经过点C(2,0).(1)求该二次函数的解析式; (2)直线y=3x与该二次函数的图象交于点B(非原点),求点B的坐标和△AOB的面积;(3)点Q在x轴上运动,求出所有△AOQ是等腰三角形的点Q的坐标. 2.(2014秋?怀宁县校级月考)如图,二次函数y=﹣x2+mx+3的图象与y轴交于点A,与x 轴的负半轴交于点B,且△AOB的面积为6. (1)求该二次函数的表达式; (2)如果点P在x轴上,且△ABP是等腰三角形,请直接写出点P的坐标. 3.(2011?淮安)如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B. (1)求此二次函数关系式和点B的坐标; (2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

4.(2014?曲靖模拟)如图,已知二次函数y=ax2﹣4x+c的图象与坐标轴交于点A(﹣1,0)和点C(0,﹣5). (1)求该二次函数的解析式和它与x轴的另一个交点B的坐标. (2)在上面所求二次函数的对称轴上存在一点P(2,﹣2),连接OP,找出x轴上所有点M的坐标,使得△OPM是等腰三角形. 5.(2008秋?密云县期末)已知二次函数y=ax2+bx+c的图象分别经过点(0,3)(3,0)(﹣2,﹣5), (1)求这个二次函数的解析式; (2)若这个二次函数的图象与x轴交于点C、D(C点在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ABC是等腰三角形,求出点B的坐标. 6.(2008?海淀区二模)已知二次函数y=ax2+bx+c的图象分别经过点(0,3),(3,0),(﹣2,﹣5).求: (1)求这个二次函数的解析式; (2)求这个二次函数的最值; (3)若设这个二次函数图象与x轴交于点C,D(点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ACB是等腰三角形,求出点B的坐标. 7.(2006?松江区二模)如图,已知二次函数y=x2+bx+c(c≠0)的图象经过点A(﹣2,m)(m<0),与y轴交于点B,AB∥x轴,且3AB=2OB. (1)求m的值; (2)求二次函数的解析式; (3)如果二次函数的图象与x轴交于C、D两点(点C在左恻).问线段BC上是否存在点P,使△POC为等腰三角形?如果存在,求出点P的坐标;如果不存在,请说明理由.

二次函数中等腰三角形的存在性

知识回顾: 1、二次函数的三种形式: 2、已知一边,求等腰三角形周长的方法: 3、等腰三角形的特点: 例题分析: 例1、如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)求抛物线的解析式; (3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由. 例2、已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点.(1)求抛物线的函 数关系式; (2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形,并写出0P 点的坐标; (4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?P (要求简要说明理由,但不证明);若不存在这 2,将这个直角三角形放置在平面直角坐标系中,其斜边AB 与x 轴重合(其中OA0,

n >0),连接DP 交BC 于点E 。①当△BDE 是等腰三角形时,直接写出.... 此时点E 的坐标。 ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由。 例4、如图9,抛物线2 812(0)y ax ax a a =-+<与x 轴交于、两点(点在点的 左侧),抛物线上另有一点C 在第一象限,满足∠ACB 为直角求线段OC 的长.: (2)求该抛物线的函数关系式.: (3)在x 轴上是否存在点P ,使△BCP 求出所有符合条件的P 点的坐标;若不存在,请说明理由 例5、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标 轴上,且点(02)A , ,点(10)C -,,如图所示:抛物线2 2y ax ax =+-经过点B . 图1 图2 图3

二次函数中等腰三角形专题

二次函数中等腰三角形专题 一.解答题(共15小题) 1.如图,经过点A(0,-6)的抛物线y= 1/2x2+bx+c与x轴相交于B(-2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC 内,求m的取值范围;(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB 是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围. 2.如图,二次函数y=4/3 x2+bx+c的图象与x轴交于A(3,0),B(-1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ 的形状,并求出D点坐标. 3.在平面直角坐标系xOy中,二次函数y=-1/2 x2+3/2 x+2的图象与x轴交于点A,B(点B 在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=-1/2 x2+3/2 x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由. 4.如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.

二次函数中的数形结合

二次函数中得数形结合 一、选择题 1.对于二次函数y=(x﹣1)2+2得图象,下列说法正确得就是( ) A.开口向下B.对称轴就是x=﹣1 C.顶点坐标就是(1,2) D.与x轴有两个交点 2.已知二次函数y=ax2+bx+c(a,b,c就是常数,且a≠0)得图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内得大致图象就是() A. B. C. D. 3.已知二次函数y=ax2+bx+c(a≠0)得图象如图,且关于x得一元二次方程ax2+bx+c﹣m=0 没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2. 其中,正确结论得个数就是( ) ?A. 0 B. 1? C. 2 D.3 4.二次函数y=ax2+bx+c(a≠0)得图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1), 其中正确结论得个数就是( ) ?A.4个?B. 3个? C. 2个 D. 1个 5.已知开口向下得抛物线y=ax2+bx+c得顶点为D(﹣1,2),与x轴得一个交点A在点 (﹣3,0)与(﹣2,0)之间,其部分图象如图,则以下结论: ①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等得实数根. 其中正确结论得个数为( ) A.1个B.2个C.3个D.4个 6.已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上得图形通过(0,5)、(10, 8)两点.若a<0,0<h<10,则h可能为 ( ) A.1 B.3C.5 D.7

7.已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴得对称点坐标为( ) 8.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m得值为( ) A.B. 或C. 2或D. 2或﹣或 9.“如果二次函数y=ax2+bx+c得图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等得实数根.”请根据您对这句话得理解,解决下面问题:若m、n(m0)得对称轴就是过点(1,0)且平行于y轴得直线,若点P (4,0)在该抛物线上,则4a﹣2b+c得值为. 13.已知二次函数y=ax2+bx+c中,函数y与自变量x得部分对应值如表: x…﹣1 0 1 2 3… y…10 5 2 1 2 … 则当y<5时,x得取值范围就是 . 14.如果函数y=(a﹣1)x2+3x+得图象经过平面直角坐标系得四个象限,那么a得取

二次函数与三角形

二次函数与三角形 抛物线与三角形的结合是抛物线与平面几何结合生成综合性问题的一种重要形式,这类问题以抛物线为背景,探讨是否存在一些点,使其能构成某些特殊图形,有以下常见的形式:(1)抛物线上的点能否构成特殊的线段; (2)抛物线上的点能否构成特殊的角; (3)抛物线上的点能否构成特殊三角形; (4)抛物线上的点能否构成全等三角形、相似三角形; 这类问题把抛物线性质和平面图形性质有机结合,需综合运用待定系数法、数形结合、分类讨论等思想方法。 1、如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D. (1)求抛物线的解析式; (2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标; (3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t 为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

2、如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接 BD. (1)求抛物线的解析式; (2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标; (3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值. 3、已知函数2 3 2 2 y kx x =-+(k是常数)

“数形结合”在二次函数中的应用

“数形结合”在二次函数中的应用 数形结合是通过“数”与“形”的相互转化,使复杂问题简单化、抽象问题具体化;数形结合是初中数学基本思想之一,是用来解决数学问题的重要思想,近几年来各地中考对考生数形结合能力的考查越来越大,本文通过实例浅谈“数形结合”在二次函数中的应用。 1、“以形解数” 例1:已知:点(-1 ,1y ) (-3 ,2y ) (2,3y )在y=3x 2+6x+2 的图象上, 则:1y 、2y 、3y 的大小关系为( A. 1y >2y >3y B. 2y >1y >3y C. 2y >3y >1y D. 3y >2y >1y 分析:由y=3x 2+6x+2 =3(x+1)2- 1画出图象1抛物线的对称轴为直线x=-1 图1 即:x=-1 时,y 有最小值, 故排除A 、B ,由图象可以看出:x=2时 y 3的值,比x=-3时y 2的值大,故选c. 例2: 已知抛物线y=2x 2+x-2m+1与x 轴的两个交点,在原点的两 侧,则m 的取值范围是( ) A m >1 2 B m <12 C m >-12 D m >7 16

分析:按常规,此题要用判别式、根与系数的关系列出不等式组解之,若用数形结合的方法, 先画出抛物线y=2x 2+x-2m+1 的草图,易知当x=0时,y <0, 因此,只要解不等式-2m+1<0即 可,即m >12 ,故选A 例3:二次函数 y=ax 2+bx+c 象限,则此抛物线开口向 ,c 的取值范围 ,b 的取值范围 ,b 2-4ac 的取值范围 。 解:由题意画出图象,如图: 从而判断:a >0, c ≥0 ∴对称轴:x=-2b a <0 ∴b >0 图象与x 轴有两个交点:∴ ?>0 即b 2 -4ac >0 注:以上各题是“以形助数”即 将数量关系借于图形及其性质,使其直观化,形象化,从而使问题得以解决。 2、“以数助形” 例4:已知:二次函数m x m x y ----=1)1(22的图像与x 轴交于 A (1x ,0)、 B (2x ,0),210x x <<,与y 轴交于点 C ,且满足 CO BO AO 211=- 求:这个二次函数的解析式; 解: ∵210x x <<

二次函数与圆以及三角形的综合题

二次函数、圆、三角形综合复习 1、已知AB 2,AD 4,DAB 90o,AD ∥ BC (如图13).E是射线BC上的动点(点E与点B不重合),M 是线段DE 的中点. (1)设BE x,△ABM 的面积为y,求y关于x的函数解析式,并写出函数的定义 域; (2)如果以线段AB为直径的圆与以线段DE 为直径的圆外切,求线段BE的长; (3)联结BD ,交线段AM 于点N,如果以A,N,D为顶点的三角形与△BME 相似,求线段BE 的长. 2、如图,点P在y轴上,⊙P交x轴于A,B两点,连结BP并延长交⊙ P于C,过点C的 直线y 2x b交x轴于D ,且⊙ P的半径为5,AB 4.(1)求点B,P,C 的坐标; (2)求证:CD 是⊙P的切线;

3、如图①,在平面直角坐标系中,Rt△AOB≌Rt△ CDA,且 A(-1,0)、B(0,2),抛物线 y 2 = ax + ax- 2 经过点 C。 (1)求抛物线的解析式; (2)在抛物线(对称轴的右侧)上是否存在两点 P、Q,使四边形 ABPQ是正方形?若存在,求点 P、 Q的坐标,若不存在,请说明理由; 4、已知抛物线y x2 4x m (m为常数)经过点(0,4) ⑴求m的值; ⑵将该抛物线先向右、再向下平移得到另一条抛物线。已知这条平移后的抛物线满足下述两个条件:它的对称轴(设为直线l 2)与平移前的抛物线的对称轴(设为l 1)关于y 轴对称;它所对应的函数的最小值为-8. ①试求平移后的抛物线所对应的函数关系式; ②试问在平移后的抛物线上是否存在着点P,使得以 3 为半径的⊙ P既与x 轴相切,又与直线l 2相交?若存在,请求出点P的坐标,并求出直线l 2被⊙ P所截得的弦AB的长度;若不存在,请说明理由。 5、如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为 4 的圆交y 轴正半轴于点A, AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O 点开始沿x 轴正方向以每秒 4 个单位长度的速度运动,且动点P、Q从点 A 和点O同时出发,设运动时间为t(秒). (1)当t =1 时,得到P1、Q1两点,求经过A、P1、Q1 三点的抛物线解析式及对称轴l ; (2)当t 为何值时,直线PQ与⊙ C相切?并写出此时点P和点Q的坐标; (3)在(2)的条件下,抛物线对称轴l 上存在一点N,使NP+NQ最小,求出点N 的坐标并说明理由. (3)如图②,E为BC延长线上一 动点,过有一点F,且AF=AE, AF交BC于点② BF BG,其中有且只有 一个成立 AF AG 结 A、B、E三点作⊙ O',连结AE,在⊙ O'上 另G,连结BF。下列结论:① BE+BF的值 不变; 请你判断哪一个结论成立,并证明成立的

二次函数中等腰三角形存在问题

中考二次函数中等腰三角形存在问题 如图1-1,在平面直角坐标系xOy中,已知点D的坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标. 图1-1 分三种情况讨论等腰三角形△DOP:①DO=DP,②OD=OP,③PO=PD. ①当DO=DP时,以D为圆心、DO为半径画圆,与x轴的正半轴交于点P,此时点D在OP的垂直平分线上,所以点P的坐标为(6,0)(如图1-2). ②当OD=OP=5时,以O为圆心、OD为半径画圆,与x轴的正半轴交于点P(5,0)(如图1-3). ③当PO=PD时,画OD的垂直平分线与x轴的正半轴交于点P,设垂足为E(如图1-4). 在Rt△OPE中, 3 cos 5 OE DOP OP ∠==, 5 2 OE=,所以25 6 OP=. 此时点P的坐标为 25 (,0) 6. 1.

2.如图,已知抛物线2y ax bx c =++(a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣ 3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标; (3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标. 3.如图,抛物线2 y ax bx c =++(a 、b 、c 为常数,a ≠0)经过点A (﹣1,0),B (5,﹣6),C (6,0). (1)求抛物线的解析式; (2)如图,在直线AB 下方的抛物线上是否存在点P 使四边形PACB 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由; (3)若点Q 为抛物线的对称轴上的一个动点,试指出△QAB 为等腰三角形的点Q 一共有几个?并请求出其中某一个点Q 的坐标.

二次函数与等腰三角形存在性问题

老师 学生学管师 学科 名称 年级上课时间月日 _ _ :00-- __ :00 课题 名称 等腰三角形的存在问题 教学 重点 教 学 过 程 1.(2011?)如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另 一点C(3,0). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由. 2.(2011?)如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于

点B. (1)求此二次函数关系式和点B的坐标; (2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 3.(2011?)如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段 AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数).

(1)求经过O、P、B三点的抛物线的解析式; (2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;(3)当P移动到点()时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标. 4.(2011?市綦江县潭已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式: (2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由; (3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标;若不存在,请说明理由. 4.(2011?贵港)如图,已知直线y=﹣x+2与抛物线y=a (x+2)2 相交于A 、B 两点,点A 在y 轴上,M 为抛物线的顶点. (1)请直接写出点A 的坐标及该抛物线的解析式; C A B y x O P D Q

相关文档
最新文档