系统抗干扰和PCB设计

系统抗干扰和PCB设计
系统抗干扰和PCB设计

系统抗干扰

一、下面的一些系统要特不注意抗电磁干扰:

1、微操纵器时钟频率特不高,总线周期特不快的系统。

2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。

3、含微弱模拟信号电路以及高精度A/D变换电路的系统。

二、为增加系统的抗电磁干扰能力采取如下措施:

1、选用频率低的微操纵器:

选用外时钟频率低的微操纵器能够有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。尽管方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微操纵器产生的最有阻碍的高频噪声大约是时钟频率的3倍。

2、减小信号传输中的畸变

微操纵器要紧采纳高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段专门长线引到输入阻抗相当高的输入端,反射问题就专门严峻,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

信号在印制板上的延迟时刻与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。能够粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微操纵器构成的系统中常用逻辑电话元件的Tr(标准延迟时刻)为3到18ns之间。

当信号的上升时刻快于信号延迟时刻,就要按照快电子学处理。现在要考虑传输线的阻抗匹配,关于一块印刷线路板上的集成块之间的信号传输,要幸免出现T d>Trd的情况,印刷线路板越大系统的速度就越不能太快。

用以下结论归纳印刷线路板设计的一个规则:

信号在印刷板上传输,其延迟时刻不应大于所用器件的标称延迟时刻。

3、减小信号线间的交叉干扰:

A点一个上升时刻为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时刻是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和A B线的延迟,Td时刻以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时刻的两倍,即2Td的正脉冲信号。这确实是信号间的交叉干扰。干扰信号的强度与C 点信号的di/at有关,与线间距离有关。当两信号线不是专门长时,AB上看到的实际是两个脉冲的迭加。

CMOS工艺制造的微操纵由输入阻抗高,噪声高,噪声容限也专门高,数字电路是迭加100~200mv噪声并不阻碍其工作。若图中AB线是一模拟信号,这种干

扰就变为不能容忍。如印刷线路板为四层板,其中有一层是大面积的地,或双面板,信号线的反面是大面积的地时,这种信号间的交叉干扰就会变小。缘故是,大面积的地减小了信号线的特性阻抗,信号在D端的反射大为减小。特性阻抗与信号线到地间的介质的介电常数的平方成反比,与介质厚度的自然对数成正比。若AB线为一模拟信号,要幸免数字电路信号线CD对AB的干扰,AB线下方要有大面积的地,AB线到CD线的距离要大于AB线与地距离的2~3倍。可用局部屏蔽地,在有引结的一面引线左右两侧布以地线。

4、减小来自电源的噪声

电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。电路中微操纵器的复位线,中断线,以及其它一些操纵线最容易受外界噪声的干扰。电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。模拟电路中的模拟信号更经受不住来自电源的干扰。

5、注意印刷线板与元器件的高频特性

在高频情况下,印刷线路板上的引线,过孔,电阻、电容、接插件的分布电感与电容等不可忽略。电容的分布电感不可忽略,电感的分布电容不可忽略。电阻产生对高频信号的反射,引线的分布电容会起作用,当长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发射。

印刷线路板的过孔大约引起0.6pf的电容。

一个集成电路本身的封装材料引入2~6pf电容。

一个线路板上的接插件,有520nH的分布电感。一个双列直扦的24引脚集成电路扦座,引入4~18nH的分布电感。

这些小的分布参数关于这行较低频率下的微操纵器系统中是能够忽略不计的;而关于高速系统必须予以特不注意。

6、元件布置要合理分区

元件在印刷线路板上排列的位置要充分考虑抗电磁干扰问题,原则之一是各部件之间的引线要尽量短。在布局上,要把模拟信号部分,高速数字电路部分,噪声源部分(如继电器,大电流开关等)这三部分合理地分开,使相互间的信号耦合为最小。

7、处理好接地线

印刷电路板上,电源线和地线最重要。克服电磁干扰,最要紧的手段确实是接地。

关于双面板,地线布置特不讲究,通过采纳单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。印刷线路板上,要有多个返回地线,这些都会聚到回电源的那个接点上,确实是所谓单点接地。所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇合到那个接地点上来。与印刷线路板以外的信号相连时,通常采纳屏蔽电缆。关于高频和数字信号,屏蔽电缆两端都接地。低频模拟信号用的屏蔽电缆,一端接地为好。

对噪声和干扰特不敏感的电路或高频噪声特不严峻的电路应该用金属罩屏蔽起

来。

8、用好去耦电容。

好的高频去耦电容能够去除高到1GHZ的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。设计印刷线路板时,每个集成电路的电源,地之间都要加一个去耦电容。去耦电容有两个作用:一方面是本集成电路的蓄能电容,提供和汲取该集成电路开门关门瞬间的充放电能;另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容为0.1uf的去耦电容有5nH分布电感,它的并行共振频率大约在7MHz左右,也确实是讲关于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。

1uf,10uf电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。在电源进入印刷板的地点和一个1uf或10uf的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。

每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uf。最好不用电解电容,电解电容是两层溥膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酝电容。

去耦电容值的选取并不严格,可按C=1/f计算;即10MHz取0.1uf,对微操纵器构成的系统,取0.1~0.01uf之间都能够。

三、降低噪声与电磁干扰的一些经验。

能用低速芯片就不用高速的,高速芯片用在关键地点。

可用串一个电阻的方法,降低操纵电路上下沿跳变速率。

尽量为继电器等提供某种形式的阻尼。

使用满足系统要求的最低频率时钟。

时钟产生器尽量靠近到用该时钟的器件。石英晶体振荡器外壳要接地。

用地线将时钟区圈起来,时钟线尽量短。

I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板。对进入印制板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的方法,减小信号反射。

MCD无用端要接高,或接地,或定义成输出端,集成电路上该接电源地的端都要接,不要悬空。

闲置不用的门电路输入端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端。(10) 印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合。

印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离再远一些。单面板和双面板用单点接电源和单点接地、电源线、地线尽量粗,经济是能承受的话用多层板以减小电源,地的容生电感。

时钟、总线、片选信号要远离I/O线和接插件。

模拟电压输入线、参考电压端要尽量远离数字电路信号线,特不是时钟。

对A/D类器件,数字部分与模拟部分宁可统一下也不要交叉。

时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆。

元件引脚尽量短,去耦电容引脚尽量短。

关键的线要尽量粗,并在两边加上爱护地。高速线要短要直。

对噪声敏感的线不要与大电流,高速开关线平行。

石英晶体下面以及对噪声敏感的器件下面不要走线。

弱信号电路,低频电路周围不要形成电流环路。

任何信号都不要形成环路,如不可幸免,让环路区尽量小。

每个集成电路一个去耦电容。每个电解电容边上都要加一个小的高频旁路电容。

用大容量的钽电容或聚酷电容而不用电解电容作电路充放电储能电容。使用管状

电容时,外壳要接地。

PCB设计

一、电路版设计的先期工作

1、利用原理图设计工具绘制原理图,同时生成对应的网络表。因此,有些专门情况下,如电路版比较简单,差不多有了网络表等情况下也能够不进行原理图的设计,直接进入PCB设计系统,在PCB设计系统中,能够直接取用零件封装,人工生成网络表。

2、手工更改网络表将一些元件的固定用脚等原理图上没有的焊盘定义到与它相通的网络上,没任何物理连接的可定义到地或爱护地等。将一些原理图和PCB封装库中引脚名称不一致的器件引脚名称改成和PCB封装库中的一致,特不是二、三极管等。

二、画出自己定义的非标准器件的封装库

建议将自己所画的器件都放入一个自己建立的PCB 库专用设计文件。

三、设置PCB设计环境和绘制印刷电路的版框含中间的镂空等

1、进入PCB系统后的第一步确实是设置PCB设计环境,包括设置格点大小和类型,光标类型,版层参数,布线参数等等。大多数参数都能够用系统默认值,而且这些参数通过设置之后,符合个人的适应,以后无须再去修改。

2、规划电路版,要紧是确定电路版的边框,包括电路版的尺寸大小等等。在需要放置固定孔的地点放上适当大小的焊盘。关于3mm 的螺丝可用6.5~8mm 的外径和3.2~3.5mm 内径的焊盘关于标准板可从其它板或PCB izard 中调入。

注意:在绘制电路版地边框前,一定要将当前层设置成Keep Out层,即禁止布线层。

四、打开所有要用到的PCB 库文件后,调入网络表文件和修改零件封装

这一步是特不重要的一个环节,网络表是PCB自动布线的灵魂,也是原理图设计与印象电路版设计的接口,只有将网络表装入后,才能进行电路版的布线。

在原理图设计的过程中,ERC检查可不能涉及到零件的封装问题。因此,原理图设计时,零件的封装可能被遗忘,在引进网络表时能够依照设计情况来修改或补充零件的封装。

因此,能够直接在PCB内人工生成网络表,同时指定零件封装。

五、布置零件封装的位置,也称零件布局

Protel99能够进行自动布局,也能够进行手动布局。假如进行自动布局,运行"Tools"下面的"Auto Place",用那个命令,你需要有足够的耐心。布线的关键是布局,多数设计者采纳手动布局的形式。用鼠标选中一个元件,按住鼠标左键不放,拖住那个元件到达目的地,放开左键,将该元件固定。Protel99在布局方面新增加了一些技巧。新的交互式布局选项包含自动选择和自动对齐。使用自动选择方式能够专门快地收集相似封装的元件,然后旋转、展开和整理成组,就能够移动到板上所需位置上了。当简易的布局完成后,使用自动对齐方式整齐地展开或缩紧一组封装相似的元件。

提示:在自动选择时,使用Shift+X或Y和Ctrl+X或Y可展开和缩紧选定组件的X、Y方向。

注意:零件布局,应当从机械结构散热、电磁干扰、今后布线的方便性等方面综合考虑。先布置与机械尺寸有关的器件,并锁定这些器件,然后是大的占位置的器件和电路的核心元件,再是外围的小元件。

六、依照情况再作适当调整然后将全部器件锁定

假如板上空间同意则可在板上放上一些类似于实验板的布线区。关于大板子,应在中间多加固定螺丝孔。板上有重的器件或较大的接插

件等受力器件边上也应加固定螺丝孔,有需要的话可在适当位置放上一些测试用焊盘,最好在原理图中就加上。将过小的焊盘过孔改大,将所有固定螺丝孔焊盘的网络定义到地或爱护地等。

放好后用VIEW3D 功能察看一下实际效果,存盘。

七、布线规则设置

布线规则是设置布线的各个规范(象使用层面、各组线宽、过孔间距、布线的拓朴结构等部分规则,可通过Design-Rules 的Menu 处从其它板导出后,再导入这块板)那个步骤不必每次都要设置,按个人的适应,设定一次就能够。

选Design-Rules 一般需要重新设置以下几点:

1、安全间距(Routing标签的Clearance Constraint)

它规定了板上不同网络的走线焊盘过孔等之间必须保持的距离。一般板子可设为0.254mm,较空的板子可设为0.3mm,较密的贴片板子可设为0.2-0.22mm,极少数印板加工厂家的生产能力在0.1-0.15mm,假如能征得他们同意你就能设成此值。0.1mm 以下是绝对禁止的。

2、走线层面和方向(Routing标签的Routing Layers)

此处可设置使用的走线层和每层的要紧走线方向。请注意贴片的单面板只用顶层,直插型的单面板只用底层,然而多层板的电源层不是在那个地点设置的(能够在Design-Layer Stack Manager中,点顶层或底层后,用Add Plane 添加,用鼠标左键双击后设置,点中本层后用Delete 删除),机械层也不是在那个地点设置的(能够在Design-Mechanical Layer 中选择所要用到的机械层,并选择是否可视和是否同时在单层显示模式下显示)。

机械层1一般用于画板子的边框;

机械层3一般用于画板子上的挡条等机械结构件;

机械层4一般用于画标尺和注释等,具体可自己用PCB Wizard 中导出一个PCAT结构的板子看一下

3、过孔形状(Routing标签的Routing Via Style)

它规定了手工和自动布线时自动产生的过孔的内、外径,均分为最小、最大和首选值,其中首选值是最重要的,下同。

4、走线线宽(Routing标签的Width Constraint)

它规定了手工和自动布线时走线的宽度。整个板范围的首选项一般取0.2-0.6mm,另添加一些网络或网络组(Net Class)的线宽设置,如地线、+5 伏电源线、交流电源输入线、功率输出线和电源组等。网络组能够事先在Design-Netlist Manager中定义好,地线一般可选1mm 宽度,各种电源线一般可选0.5-1mm 宽度,印板上线宽和电流的关系大约是每毫米线宽同意通过1安培的电流,具体可参看有关资料。当线径首选值太大使得SMD 焊盘在自动布线无法走通时,它会在进入到SMD 焊盘处自动缩小成最小宽度和焊盘的宽度之间的一段走线,其中Board 为对整个板的线宽约束,它的优先级最低,即布线时首先满足网络和网络组等的线宽约束条件。下图为一个实例

5、敷铜连接形状的设置(Manufacturing标签的Polygon Connect Style)

建议用Relief Connect 方式导线宽度Conductor Width 取0.3-0.5mm 4 根导线45 或90 度。

其余各项一般可用它原先的缺省值,而象布线的拓朴结构、电源层的间距和连接形状匹配的网络长度等项可依照需要设置。

选Tools-Preferences,其中Options 栏的Interactive Routing 处选Push Obstacle (遇到不同网络的走线时推挤其它的走线,Ignore Obstacle 为穿过,Avoid Obstacle 为拦断)模式并选中Automatically Remove (自动删除多余的走线)。Defaults 栏的Track 和Via 等也可改一下,一般不必去动它们。

在不希望有走线的区域内放置FILL 填充层,如散热器和卧放的两脚晶振下方所在布线层,要上锡的在Top 或Bottom Solder 相应处放FILL。

布线规则设置也是印刷电路版设计的关键之一,需要丰富的实践经验。

八、自动布线和手工调整

1、点击菜单命令Auto Route/Setup 对自动布线功能进行设置

选中除了Add Testpoints 以外的所有项,特不是选中其中的Lock All Pre-Route 选项,Routing Grid 可选1mil 等。自动布线开始前PROTEL 会给你一个推举值可不去理它或改为它的推举值,此值越小板越容易100%布通,但布线难度和所花时刻越大。

2、点击菜单命令Auto Route/All 开始自动布线

假如不能完全布通则可手工接着完成或UNDO 一次(千万不要用撤消全部布线功能,它会删除所有的预布线和自由焊盘、过孔)后调整一下布局或布线规则,再重新布线。完成后做一次DRC,有错则改正。布局和布线过程中,若发觉原理图有错则应及时更新原理图和网络表,手工更改网络表(同第一步),并重装网络表后再布。

电路板怎样进行抗干扰设计

电路板怎样进行抗干扰设计? 抗干扰设计的基本任务是系统或装置既不因外界电磁干扰影响而误动作或丧失功能,也不向外界发送过大的噪声干扰,以免影响其他系统或装置正常工作。因此提高系统的抗干扰能力也是该系统设计的一个重要环节。 系统抗干扰设计 抗干扰问题是现代电路设计中一个很重要的环节,它直接反映了整个系统的性能和工作的可靠性。在飞轮储能系统的电力电子控制中,由于其高压和低压控制信号同时并存,而且功率晶体管的瞬时开关也产生很大的电磁干扰,因此提高系统的抗干扰能力也是该系统设计的一个重要环节。 形成干扰的主要原因有如下几点: 1)干扰源,是指产生干扰的元件、设备或信号,用数字语言描述是指du/dt、di/dt大的地方。干扰按其来源可分为外部干扰和内部干扰:外部干扰是指那些与仪表的结构无关,由使用条件和外界环境因素决定的干扰,如雷电、交流供电、电机等;内部干扰是由仪表结构布局及生产工艺决定的,如多点接地造成的电位差引起的干扰、寄生振荡引起的干扰、尖峰或振铃噪声引起的干扰等。 2)敏感器件,指容易被干扰的对象,如微控制器、存贮器、A/D转换、弱信号处理电路等。 3)传播路径,是干扰从干扰源到敏感器件传播的媒介,典型的干扰传播路径是通过导线的传导、电磁感应、静电感应和空间的辐射。 抗干扰设计的基本任务是系统或装置既不因外界电磁干扰影响而误动作或丧失功能,也不向外界发送过大的噪声干扰,以免影响其他系统或装置正常工作。 其设计一般遵循下列三个原则: 抑制噪声源,直接消除干扰产生的原因; 切断电磁干扰的传播途径,或者提高传递途径对电磁干扰的衰减作用,以消除噪声源和受扰设备之间的噪声耦合; 加强受扰设备抵抗电磁干扰的能力,降低噪声敏感度。 目前,对系统的采用的抗干扰技术主要有硬件抗干扰技术和软件抗干扰技术。 1)硬件抗干扰技术的设计。飞轮储能系统的逆变电路高达20kHz的载波信号决定了它会产生噪声,这样系统中电力电子装置所产生的噪声和谐波问题就成为主要的干扰,它们会对设备和附近的仪表产生影响,影响的程度与其控制系统和设备的抗干扰能力、接线环境、安装距离及接地方法等因素有关。 转换器产生的PWM信号是以高速通断DC电压来控制输出电压波形的。急剧的上升或下降的输出电压波包含许多高频分量,这些高频分量就是产生噪声的根源。虽然噪声和谐波都对电子设备运行产生不良影响,但是两者还是有区别的:谐波通常是指50次以下的高频分量,频率为2~3kHz;而噪声却为10kHz甚至更高

射频电路板抗干扰设计

射频电路板抗干扰设计摘要:为保证电路性能,在进行射频电路印制电路板( PCB)设计时应考虑电磁兼容性,这对于减小系统电磁信息辐射具有重要的意义。文中重点讨论按元器件的布局与布线原则来最大限度地实现电路的性能指标,达到抗干扰的设计目的。通过几个实验测试事例,分析了影响印制板抗干扰性能的几个不同因素,说明了印制板制作过程中应采取的实际的解决办法。 引言随着通信技术的发展,无线射频电路技术运用越来越广,其中的射频电路的性能指标直接影响整个产品的质量,射频电路印制电路板( PCB)的抗干扰设计对于减小系统电磁信息辐射具有重要的意义。射频电路PCB的密度越来越高, PCB设计的好坏对抗干扰能力影响很大,同一电路,不同的PCB设计结构,其性能指标会相差很大。电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。 电磁兼容性EMC是指电子系统在规定的电磁环境中按照设计要求能正常工作的能力。电子系统所受的电磁干扰不仅来自电场和磁场的辐射,也有线路公共阻抗、导线间耦合和电路结构的影响。在研制设计电路时,希望设计的印制电路板尽可能不易受外界干扰的影响,而且也尽可能小地干扰影响别的电子系统。 设计印制板首要的任务是对电路进行分析,确定关键电路。这就是要识别哪些电路是干扰源,哪些电路是敏感电路,弄清干扰源可能通过什么路径干扰敏感电路。射频电路工作频率高,干扰源主要是通过电磁辐射来干扰敏感电路,因此射频电路PCB板抗干扰设计的目的是减小PCB板的电磁辐射和PCB 板上电路之间的串扰。 1 射频电路板设计 1. 1 元器件的布局 由于SMT一般采用红外炉热流焊来实现元器件的焊接,因而元器件的布局影响到焊点的质量,进而影响到产品的成品率。而对于射频电路PCB设计而言, 电磁兼容性要求每个电路模块尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此元器件的布局也影响到电路本身的干扰及抗干扰能力,直接关系到所设计电路的性能。故在进行射频电路PCB 设计时除了要考虑普通PCB设计时的布局外,主要还须考虑如何减小射频电路中各部分之间的相互干扰、如何减小电路本身对其他电路的干扰以及电路本身的抗干扰能力。 根据经验,射频电路效果的好坏不仅取决于射频电路板本身的性能指标,很大部分还取决于与CPU处理板间的相互影响,因此在进行PCB设计时,合理布局显得尤为重要。布局的总原则是元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;根据经验元器件间最少要有

系统抗干扰和PCB设计

系统抗干扰 一、下面的一些系统要特不注意抗电磁干扰: 1、微操纵器时钟频率特不高,总线周期特不快的系统。 2、系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。 3、含微弱模拟信号电路以及高精度A/D变换电路的系统。 二、为增加系统的抗电磁干扰能力采取如下措施: 1、选用频率低的微操纵器: 选用外时钟频率低的微操纵器能够有效降低噪声和提高系统的抗干扰能力。同样频率的方波和正弦波,方波中的高频成份比正弦波多得多。尽管方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声源,微操纵器产生的最有阻碍的高频噪声大约是时钟频率的3倍。 2、减小信号传输中的畸变 微操纵器要紧采纳高速CMOS技术制造。信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段专门长线引到输入阻抗相当高的输入端,反射问题就专门严峻,它会引起信号畸变,增加系统噪声。当Tpd>Tr时,就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

信号在印制板上的延迟时刻与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。能够粗略地认为,信号在印制板引线的传输速度,约为光速的1/3到1/2之间。微操纵器构成的系统中常用逻辑电话元件的Tr(标准延迟时刻)为3到18ns之间。 当信号的上升时刻快于信号延迟时刻,就要按照快电子学处理。现在要考虑传输线的阻抗匹配,关于一块印刷线路板上的集成块之间的信号传输,要幸免出现T d>Trd的情况,印刷线路板越大系统的速度就越不能太快。 用以下结论归纳印刷线路板设计的一个规则: 信号在印刷板上传输,其延迟时刻不应大于所用器件的标称延迟时刻。 3、减小信号线间的交叉干扰: A点一个上升时刻为Tr的阶跃信号通过引线AB传向B端。信号在AB线上的延迟时刻是Td。在D点,由于A点信号的向前传输,到达B点后的信号反射和A B线的延迟,Td时刻以后会感应出一个宽度为Tr的页脉冲信号。在C点,由于AB上信号的传输与反射,会感应出一个宽度为信号在AB线上的延迟时刻的两倍,即2Td的正脉冲信号。这确实是信号间的交叉干扰。干扰信号的强度与C 点信号的di/at有关,与线间距离有关。当两信号线不是专门长时,AB上看到的实际是两个脉冲的迭加。 CMOS工艺制造的微操纵由输入阻抗高,噪声高,噪声容限也专门高,数字电路是迭加100~200mv噪声并不阻碍其工作。若图中AB线是一模拟信号,这种干

抗干扰设计原则

> 抗干扰设计原则 1.电源线的设计 (1)选择合适的电源 (2)尽量加宽电源线 (3)保证电源线、底线走向和数据传输方向一致 (4)使用抗干扰元器件 (5)电源入口添加去耦电容(10~100uf) 2.[ 3.地线的设计 (1)模拟地和数字地分开 (2)尽量采用单点接地 (3)尽量加宽地线 (4)将敏感电路连接到稳定的接地参考源 (5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开 (6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积 3.. 4.元器件的配置 (1)不要有过长的平行信号线 (2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件(3)元器件应围绕核心器件进行配置,尽量减少引线长度 (4)对pcb板进行分区布局 (5)考虑pcb板在机箱中的位置和方向 (6)缩短高频元器件之间的引线 4.】 5.去耦电容的配置 (1)每10个集成电路要增加一片充放电电容(10uf) (2)引线式电容用于低频,贴片式电容用于高频 (3)每个集成芯片要布置一个的陶瓷电容 (4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容 (5)电容之间不要共用过孔 (6)去耦电容引线不能太长 5.— 6.降低噪声和电磁干扰原则 (1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合) (2)用串联电阻的方法来降低电路信号边沿的跳变速率 (3)石英晶振外壳要接地 (4)闲置不用的们电路不要悬空 (5)时钟垂直于IO线时干扰小 (6)尽量让时钟周围电动势趋于零

(7)IO驱动电路尽量靠近pcb的边缘 (8)- (9)任何信号不要形成回路 (10)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略 (11)通常功率线、交流线尽量在和信号线不同的板子上 6.其他设计原则 (1)CMOS的未使用引脚要通过电阻接地或电源 (2)用RC电路来吸收继电器等原件的放电电流 (3)总线上加10k左右上拉电阻有助于抗干扰 (4)采用全译码有更好的抗干扰性 (5)~ (6)元器件不用引脚通过10k电阻接电源 (7)总线尽量短,尽量保持一样长度 (8)两层之间的布线尽量垂直 (9)发热元器件避开敏感元件 (10)正面横向走线,反面纵向走线,只要空间允许,走线越粗越好(仅限地线和电源线)(11)要有良好的地层线,应当尽量从正面走线,反面用作地层线 (12)保持足够的距离,如滤波器的输入输出、光耦的输入输出、交流电源线和弱信号线等(13)长线加低通滤波器。走线尽量短截,不得已走的长线应当在合理的位置插入C、RC、或LC低通滤波器。 (14)> (15)除了地线,能用细线的不要用粗线。 7.布线宽度和电流 一般宽度不宜小于(8mil) 在高密度高精度的pcb上,间距和线宽一般(12mil) 当铜箔的厚度在50um左右时,导线宽度1~(60mil) = 2A 公共地一般80mil,对于有微处理器的应用更要注意 8.} 9.电源线尽量短,走直线,最好走树形,不要走环形 9.布局 10.首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。 在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。 在确定特殊元件的位置时要遵守以下原则: (1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 (2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

数字电子系统的抗干扰设计

数字电子系统的抗干扰设计 摘要:主要描述了数字电子系统中不易解决的电源噪声干扰和传导干扰问题,并介 绍了几种解决问题的途径和方法。 关键词:电源;传导;干扰;抑制 1 引言 每个电气工程师和电气工程技术人员都希望他所设计的设备工作可靠,不会被其它设备干扰,也不会干扰其它设备。但是,由于电气噪气和电磁干扰几乎无处不在,所以,我们设计的产品往往达不到这些目标。如果不能有效地解决这些问题,我们可能必须放弃这些项目或者采取修修补补的办法,这样一来既浪费了我们投资项目的所有时问、资金和努力,又可能使产品性能大打折扣。 二:一般在工作的开始就必须将干扰措施设计成产品。这一般包含四个步骤的过程: (1)了解干扰的类型和来源 干扰源:是指产生干扰的元件、 设备或信号,用数学语言描述:du/dt, di/dt大的地方就是干扰源。如:继电器、

雷电、电机、可控硅、高频时钟等都可能 (2)在设计电路时尽量消除或减小这些干扰对系统的影响; (3)设计线路板、导线的结构尽量消除这些问题,必要时,使用干扰抑制器件; (4)将系统分成模块调试,保证每个子系统组装正确无误、工作正常,在进行进一步组装前不会有任何问题。通过一开始就正确地设计系统,经常提前完成任务,成本也较低。 干扰一般有电源噪声干扰、空间干扰(即场干扰)和传导干扰。空间干扰都通过电磁波辐射窜人系统;传导干扰则通过与系统相连接的导线,如,以与前向通道和后向通道等进人系统;电源噪声干扰有过压、欠压、浪涌电压、尖峰电压等。2.1抗干扰设计的几个原则: 即尽可能的减小干扰源的du/dt, di/dt。这是抗干扰设计中最优先考虑和 最重要的原则,常常会起到事半功倍的 效果。减小干扰源的du/dt主要是通过 在干扰源两端并联电容来实现。减小干 扰源的di/dt则是在干扰源回路串联电 感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: ①继电器线圈增加续流二极管,消

控制系统抗干扰设计与措施

控制系统抗干扰设计与措施 发表时间:2019-01-25T15:03:19.950Z 来源:《基层建设》2018年第35期作者:刘江山[导读] 摘要:控制系统的抗干扰能力关系到整个系统的可靠运行。 国网新疆电力有限公司电力科学研究院新疆维吾尔自治区乌鲁木齐市 830011 摘要:控制系统的抗干扰能力关系到整个系统的可靠运行。抗干扰设计可以通过设备选型和综合抗干扰设计进行,采用优质电源、铠装屏蔽电缆以及选择正确的接地方式等措施提高抗干扰能力。 关键词:控制系统、电磁干扰、抗干扰设计 1概述 随着科学技术的发展,控制系统在工业中的应用越来越广泛。控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力关系到整个系统的可靠运行。自动化系统中所使用的各种类型控制系统,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多在强电电路和设备所造成的恶劣电磁环境中运行。要提高控制系统可靠性,这就要求控制系统生产厂家用提高设备的抗干扰能力;同时在工程设计、安装调试和使用维护中引起高度重视,增强系统的抗干扰性能。 2控制系统中电磁干扰源及对系统的影响 2.1系统信号的干扰 控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损坏。对于隔离性能差的系统,还将导致信号间互相干扰。控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。 接地是提高电子设备电磁兼容性的有效手段之一。正确的接地,既能抑制电磁干扰,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使控制系统无法正常工作。 此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,形成干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响控制系统内逻辑电路和模拟电路的正常工作。控制系统工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响控制系统的逻辑运算和数据存储,造成数据混乱、程序故障或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 2.2控制系统内部的干扰 主要由系统内部元器件及电路间的互相电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器间的互相不匹配使用等。这属于控制系统制造厂对系统内部进行电磁兼容设计内容,但要选择具有较多应用业绩或经过考验的系统。 3控制系统工程的抗干扰设计为了保证系统在工业电磁环境中免受或减少内外电磁干扰,必须从设计阶段开始便采取抑制措施:抑制干扰源、切断或衰减电磁干扰的传播途径、提高装置和系统的抗干扰能力。 控制系统的抗干扰是一个系统工程,要求制造单位设计生产有较强抗干扰能力的产品,使用部门在工程设计、安装调试和运行维护中予以全面考虑,才能保证系统的电磁兼容性的运行可靠性。 3.1设备选型 在选择设备时,首先要选择有较高抗干扰能力的产品,尤其是抗外部干扰能力,如采用浮空技术、隔离性能好的控制系统系统;其次还应了解生产厂给出的抗干扰指标,如共模拟制比、差模拟制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作;另外是靠考查其在类似工作中的应用实绩,国内工业现场的电磁干扰相比欧美地区高许多,对系统抗干扰性能要求更高,因此要求进口设备的抗干扰能力更高。 3.2综合抗干扰设计 主要考虑来自系统外部的几种干扰抑制措施。主要包括:对控制系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆,分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还必须利用软件手段,进一步提高系统的安全可靠性。 4抗干扰措施 4.1采用性能优良的电源 在控制系统中,电源占有极重要的地位。电源干扰串入控制系统主要通道(如CPU电源、I/O电源等)、变送器供电电源和与控制系统具有直接电气连接的仪表供电电源等耦合进入的。现在,对于控制系统供电的电源,一般都采用隔离性能较好电源,而对于变送器和控制系统的供电电源,并没受到足够的重视,虽然采取了一定的隔离措施,但效果不大。所以,对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少控制系统的干扰。目前采用在线式不间断供电电源(UPS)供电,提高供电的安全可靠性。并且UPS还具有较强的干扰隔离性能,是一种理想电源。 4.2电缆的选择及敷设 为了减少动力电缆辐射电磁干扰,尤其是变频装置馈电电缆,采用了铠装屏蔽动力电缆,从而降低了动力线产生的电磁干扰。 不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层敷设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,以减少电磁干扰。 4.3正确选择接地方式,完善接地系统 接地的目的通常有2个,其一为了安全,其二为了抑制干扰。完善的接地系统是控制系统抗电磁干扰的重要措施之一。 信号源接地时,屏蔽层应在信号侧接地;不接地时,应在控制系统侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理。选择适当的接地处单点接地。

抗干扰设计原则

抗干扰设计原则-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

抗干扰设计原则 1.电源线的设计 (1)选择合适的电源 (2)尽量加宽电源线 (3)保证电源线、底线走向和数据传输方向一致 (4)使用抗干扰元器件 (5)电源入口添加去耦电容(10~100uf) 2.地线的设计 (1)模拟地和数字地分开 (2)尽量采用单点接地 (3)尽量加宽地线 (4)将敏感电路连接到稳定的接地参考源 (5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开 (6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积 3.元器件的配置 (1)不要有过长的平行信号线 (2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件 (3)元器件应围绕核心器件进行配置,尽量减少引线长度 (4)对pcb板进行分区布局 (5)考虑pcb板在机箱中的位置和方向 (6)缩短高频元器件之间的引线 4.去耦电容的配置 (1)每10个集成电路要增加一片充放电电容(10uf) (2)引线式电容用于低频,贴片式电容用于高频 (3)每个集成芯片要布置一个的陶瓷电容 (4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容 (5)电容之间不要共用过孔 (6)去耦电容引线不能太长 5.降低噪声和电磁干扰原则 (1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合)(2)用串联电阻的方法来降低电路信号边沿的跳变速率 (3)石英晶振外壳要接地 (4)闲置不用的们电路不要悬空 (5)时钟垂直于IO线时干扰小 (6)尽量让时钟周围电动势趋于零 (7)IO驱动电路尽量靠近pcb的边缘 (8)任何信号不要形成回路 (9)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略

电子系统中的抗干扰技术_介绍

电子系统中的抗干扰技术 摘要:应用硬件抗干扰措施是必不可少的一种有效方法。本文中介绍了几种形式的干扰以及解决方法,如信号如何走线、接地的安全可靠、印制电路板避免干扰的设计、电源使用注意事项等几方面进行了阐述。通过合理的硬件电路设计,可以削弱或 抑制绝大部分干扰。实践应用取得了良好的效果。 关键词:抗干扰、屏蔽、电磁辐射。 0 引言 干扰是无处不在的,干扰可导致系统工作不正常,输出信息失真,严重可导致系统瘫痪。抗干扰设计是设备长期稳定运行的保证;随着电子技术的发展、电子设备的普及应用,抗干扰技术的研究显得越来越重要,应用也越来越普及。电子工程师从设备的研制阶段就应使用抗干扰技术,抗干扰技术始终贯穿于设备的设计、制造、安装、使用等各个阶段。 1 抗干扰技术应用 1.1 电源使用方面 有些电源在通断的一瞬间会对小功率电子设备造成损害,对附近的电子设备形成干扰。例如,显示器附近有电源设备时,有时开关电源设备的一瞬问会导致显示器闪一下,如果电源功率较大或靠的太近,而显示器屏蔽效果又达不到要求,显示器就会出现波纹,影响使用。 解决方法是:电源设备加装屏蔽层,采取有效的接地措施,电源线也应带屏蔽层,显示器等易受干扰的设备应尽量远离电源。 1.2 信号传输方面 信号在传输过程中由于线缆过长、过细,绝缘性能不好,没有采取有效的屏蔽、接地措施,信号传输就会受到干扰,特别是正电平信号受干扰影响较大。解决方法有: (1)信号采用负电平传输。 (2)容易相互干扰的信号分开传输。 (3)高频信号单独采用同轴电缆传输。 (4)模拟信号、数字信号分开传输。 (5) (内部可采用一根信号线附近一根地线的接线形式)。 (6)尽量采用带有屏蔽层的电缆,屏蔽层接地。线缆的绝缘性能要好。 (7)正确使用双绞线可起到消除电磁干扰的作用,通常网络线缆都是采用双绞的形式。

控制系统抗干扰分析及解决方法

控制系统抗干扰分析及解决方法 【摘要】工业控制系统的检测信号一般比较微弱,干扰信号不能有效解决,则会严重影响系统的正常工作。尤其是现在单片机ARM 技术的广泛应用,对信号的要求也越来越高,微弱的干扰都会影响整个系统的稳定性。本文以开发设计、检测调试过程中的实际经验为例,从原理图设计、PCB布线等方面详细讲述了干扰信号的产生及消除方法,是理论与实际的经验总结。 【关键词】抗干扰;信号;毛刺 1 概述 工业控制系统的任务是根据现场的测量信号,经分析比较后控制继电器完成预定操作。但现场测量信号往往比较微弱,比如负荷电流、零序电流、电压等,由于干扰信号的存在,当干扰信号强度较大时,有用的测量信号淹没在杂乱的干扰信号中,系统无法得到正确的测量结果,严重影响系统的正常工作,甚至造成误判或误动。本文以馈电开关保护器研发过程中发现的电磁干扰及处理方法加以叙述,供同行们借鉴参考。 2 干扰的形成及处理 该馈电开关采用外部开关电源供电,本身噪声及纹波较大,若直接送给保护器系统,将形成较大的干扰源,解决方法是利用磁珠与电容组成L型滤波电路,磁珠的电感量不易大,以直插(3.5*6mm)或六孔磁珠为宜,电容选用470uF/50V 电解电容。磁珠可以减缓因电流突变产生的干扰,而电容则可以减缓因电压突变产生的干扰。 (1)模拟地与数字地要物理分开,从器件布局、PCB走线、铺地都要隔离,然后通过一磁珠或0Ω电阻连接。磁珠选用直插的,电阻的功率要大,1W为宜,若表贴器件选择1812封装。 (2)每个数字器件的VCC附近布置一个0.01uF陶瓷电容,用于减小高低电平变化时产生的突变干扰,俗称“去耦”。 (3)模拟信号在放大器处理过程中每步增加一个0.01uF陶瓷电容,该电容对高频信号敏感,可有效的将高频干扰信号滤除,而对工频待测信号则不敏感,允许传感器信号正常通过。 (4)开关量采用光耦隔离,开关量输入的隔离光耦采用TLP181或TLP121,该光耦的导通压降0.3mm。2)布线不拐90°弯。3)尽量少过孔,过孔的焊盘外径为孔径的一倍关系,如0.7/0.35mm。4)地线不走线,以铺地连接。交流电源不得进入铺地范围,铺地采用网格形式。5)器件布局规则:继电器、电源远离CPU、模拟量采样电路。6)晶振器件下面不得走线。

单片机控制系统的抗干扰设计

单片机控制系统的抗干扰设计 摘要:单片机相关控制的灵敏度和系统所受的干扰具有一定的正相关关系,对 单片机的控制系统而言,具有较高的灵敏度才能确保系统运行正常,但灵敏度越高,系统受到的干扰就越强,设计单片机控制系统时需要重视其抗干扰能力,确 保系统能够稳定运行。 关键词:单片机;控制系统;抗干扰设计 引言 单片机控制系统是集通信技术、计算机技术以及自动化控制技术于一体的工 业通用自动控制系统,其不但操作便捷、扩展性能好,而且还具有较强的控制功能,目前已在我国电力、化工、交通以及冶金等行业得到广泛的应用。但由于工 业作业环境较为恶劣,使得单片机容易被电源波形畸变、电磁设备启停等影响而 受到干扰,使得信号接收能力大大下降,进而对测量的质量与效率造成了影响, 严重的还会对单片机的软件、硬件造成损坏,使其难以正常运作。所以,加强单 片机控制系统的抗干扰设计,正确掌握其干扰源,并采取针对性的改进措施来提 高其抗干扰能力,对单片机控制系统功能的正常发挥有着重要的作用。 1系统干扰源及干扰因素 1.1现场干扰源 电磁干扰一般分为两类,即传导和辐射。传导类型的干扰主要是通过金属、 电感、电容以及变压器传播的;而辐射类型干扰的传播途径很多,比如设备外壳 和外壳上的缝隙,设备间的连接电缆,甚至是一根导线也可以成为辐射类型干扰 的传统途径。这两种干扰往往是相辅相成的,并且在干扰吸收上可以相互转化。 在测控系统中,电磁干扰主要通过“场”进入,即电磁干扰源的能量通过电磁场传 递给测控系统。电场主要是电容性耦合干扰,在导线和电路分布的电容中,干扰 信号进入测控系统。而磁场干扰是互感性耦合干扰,借助导线和电路的互感耦合,干扰信号进入测控系统。 1.2单片机控制系统自身干扰源 单片机控制系统自身干扰源主要包括了散粒噪声、热噪声、常模噪声、共模 噪声以及接触噪声等几方面内容。散粒噪声是由于晶体管基区内的载流子发生随 即扩散,与电子空穴发生复合反应而形成的,其主要存在于半导体原件内部;热 噪声是指在没有连接电源的情况下,仍然有微弱电压存在于电阻两端,电阻两端 出现电子热运动而形成的噪音电压;常模噪声即线间感应噪声或对称噪声,往往 难以将其完全消除;共模噪声恰好与常模噪声相反,其指的是地感应噪声、不对 称噪声或是纵向噪声,该类噪声可以进行消除,但也可由共模噪声转变为常模噪声;接触噪声通常是由于两种材料进行不完全接触,使得电导率出现变化而产生的,常出现在导体连接部位。 2单片机硬件抗干扰设计 2.1电源电路的设计 在单片机控制系统中,将模拟电路电源和逻辑电路电源分离,不仅有利于去 除电源耦合逻辑电路产生的干扰,还可以抑制通过电源耦合对ECU干扰。那么单 片机控制系统电源电路设计过程中,可以采用7812和7805三端稳压集成芯片, 对电源进行负压差保护,避免因其中一个稳压电源故障导致整个电路崩溃。为改 善电源波形,可以采用低通滤波器,从而减少以高次谐波为主的干扰源,从而确

最新射频电路板抗干扰设计

射频电路板抗干扰设 计

射频电路板抗干扰设计摘要:为保证电路性能,在进行射频电路印制电路板( PCB)设计时应考虑电磁兼容性,这对于减小系统电磁信息辐射具有重要的意义。文中重点讨论按元器件的布局与布线原则来最大限度地实现电路的性能指标,达到抗干扰的设计目的。通过几个实验测试事例,分析了影响印制板抗干扰性能的几个不同因素,说明了印制板制作过程中应采取的实际的解决办法。 引言随着通信技术的发展,无线射频电路技术运用越来越广,其中的射频电路的性能指标直接影响整个产品的质量,射频电路印制电路板( PCB)的抗干扰设计对于减小系统电磁信息辐射具有重要的意义。射频电路PCB的密度越来越高, PCB设计的好坏对抗干扰能力影响很大,同一电路,不同的PCB设计结构,其性能指标会相差很大。电磁干扰信号如果处理不当,可能造成整个电路系统的无法正常工作,因此如何防止和抑制电磁干扰,提高电磁兼容性,就成为设计射频电路PCB时的一个非常重要的课题。 电磁兼容性EMC是指电子系统在规定的电磁环境中按照设计要求能正常工作的能力。电子系统所受的电磁干扰不仅来自电场和磁场的辐射,也有线路公共阻抗、导线间耦合和电路结构的影响。在研制设计电路时,希望设计的印制电路板尽可能不易受外界干扰的影响,而且也尽可能小地干扰影响别的电子系统。 设计印制板首要的任务是对电路进行分析,确定关键电路。这就是要识别哪些电路是干扰源,哪些电路是敏感电路,弄清干扰源可能通过什么路径干扰敏感电路。射频电路工作频率高,干扰源主要是通过电磁辐射来干扰敏感电路,因此射频电路PCB板抗干扰设计的目的是减小PCB板的电磁辐射和PCB 板上电路之间的串扰。 1 射频电路板设计 1. 1 元器件的布局 由于SMT一般采用红外炉热流焊来实现元器件的焊接,因而元器件的布局影响到焊点的质量,进而影响到产品的成品率。而对于射频电路PCB设计而言, 电磁兼容性要求每个电路模块尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此元器件的布局也影响到电路本身的干扰及抗干扰能力,直接关系到所设计电路的性能。故在进行射频电路PCB 设计时除了要考虑普通PCB设计时的布局外,主要还须考虑如何减小射频电路中各部分之间的相互干扰、如何减小电路本身对其他电路的干扰以及电路本身的抗干扰能力。 根据经验,射频电路效果的好坏不仅取决于射频电路板本身的性能指标,很大部分还取决于与CPU处理板间的相互影响,因此在进行PCB设计时,合理布局显得尤为重要。布局的总原则是元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;根据经验元器件间最少要有

抗干扰设计,硬件抗干扰设计

4.5抗干扰设计 在理想情况下,一个系统的性能仅有该系统的结构及应用元器件的性能指标来决定,但是测控系统在使用过程中,由于内部或外部干扰的影响,在被测信号电压或电流上会叠加干扰信号,通常把这种干扰信号称为噪声。 在检测系统中,噪声对被测信号存在着严重影响,当被测信号微弱时,就会被干扰信号淹没掉,导致数据采集误差;在控制系统中,噪声干扰可能会导致误操作。因此,在分析和设计测控系统时,必须考虑到可能存在的干扰对系统的影响,从硬件和软件上采取相应的措施消除和抑制系统中的噪声,增强系统的抗干扰能力。 所有噪声干扰的形成必须具有三个要素:噪声源、对噪声敏感的接收电路以及噪声源到接收电路间的耦合通道。因此,抑制噪声干扰的方法相应地有三个:抑制噪声源的强度、使接收电路对噪声不敏感、抑制或切断噪声源与接收电路间的耦合通道。多数情况下,须在这三个方面同时采取措施。本自由摆平衡控制系统包括硬件设计和软件设计,所以抗干扰也从软、硬件两方面考虑。 4.5.1硬件抗干扰 1、抑制干扰源 干扰源是指产生干扰的元件、设备或信号,交流电源的干扰是电路系统的干扰源之一。电源干扰是指电源过压、欠压、浪涌以及产生的尖峰等电压噪声,通过电源内阻耦合到电路中。本次设计使用了交流稳压器,保证电源电压的稳定性,同时使用低通滤波滤掉高次谐波,改善电源波形。电路板上的每个IC的电源与地端都并接一个作为本集成电路的蓄能电容,提供和吸收集成电路开关瞬间的充放电能;另一方面旁路滤掉该器件的高频噪声。 2、切断干扰的耦合通道 信号通道,无论是传输导线还是模拟或数字输出通道,都是干扰串入的通道。本次设计中,处理器发出的脉冲信号与电机驱动电路之间采用了光电耦合器进行隔离,从而有效地抑制尖峰脉冲及其他噪声干扰。传感器的输入端也采用了运算放大器跟随输出,并设置了滤波电路,抑制输入端。这样ARM核心处理器系统与外界完全隔离开来,极大的提高了控制器的抗干扰能力,增加了系统的可靠性。 4.5.2 软件抗干扰 硬件抗干扰措施的目的是尽可能切断干扰进入测控系统通道,因此是十分必要的。但是当干扰严重时,有可能使运行程序发生混乱导致程序跑飞或进入死循环,这时需要进一步借助软件措施去克服某些干扰。软件抗干扰技术是当系统受干扰后是系统恢复正常运行或输入信号受干扰后去伪求真的一种辅助方法,具有设计灵活、节省硬件自愿等优点。 在测控系统软件中,采用了一下抗干扰方法: 1、指令冗余 程序跑飞之后,往往将一些操作数作为指令码执行,从而引起整个程序的混乱,所谓“指令冗余”,就是在一些关键的地方插入一些单字节的空操作数作为指令代码执行的错误,而是在连续执行几个空操作后,继续执行后面的程序,是程序恢复正常运行。通常只在一些对程序的流向其关键作用的指令前面插入两条NOP指令,指令冗余使用过多会降低程序执行效果。 2、利用Watchdog(看门狗)使CPU复位 当程序跑飞到一个临时构成的死循环中时,只能依靠看门狗解决。看门狗电路所起的作用是一旦CPU运行出现故障,就强制对CPU进行硬件复位,使整个系统重新处于可控状态,CPU复位是程序跑飞后使其恢复正常运行的最简单有效的方法。

PCB的电磁兼容性设计

PCB的电磁兼容性设计 印制电路板(PCB)是电子产品中电路元件和器件的支撑件.它提供电路元件和器件之间的电气连接。随着电于技术的飞速发展,PGB的密度越来越高。PCB设计的好坏对抗干扰能力影响很大.因此,在进行PCB设计时.必须遵守PCB设计的一般原则,并应符合抗干扰设计的要求。要使电子电路获得最佳性能,元器件的布且及导线的布设是很重要的。为了设计质量好、造价低的PCB.应遵循以下一般原则: 布局 首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。重量超过15g的元器件、应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。 对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。应留出印制板定位孔及固定支架所占用的位置。根据电路的功能单元.对电路的全部元器件进行布局时,要符合以下原则: 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上.尽量减少和缩短各元器件之间的引线和连接。在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观.而且装焊容易.易于批量生产。位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形。长宽比为3:2成4:3。电路板面尺寸大于200x150mm时.应考虑电路板所受的机械强度。 布线 布线的原则如下: 输入输出端用的导线应尽量避免相邻平行。最好加线间地线,以免发生反馈藕合。印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。当铜箔厚度为 0.05mm、宽度为1 ~ 15mm 时.通过2A的电流,温度不会高于3℃,因此.导线宽度为 1.5mm可满足要求。对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。当然,只要允许,还是尽可能用宽线.尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则.长时间受热时,易发生胀和脱落现?。必须用大面积铜箔时,最好用栅格状.这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。印刷线路板的布线要注意以下问题:专用零伏线,电源线的走线宽度≥1mm;电源线和地线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到均衡;要为模拟电路专门提供一根零伏线;为减少线间串扰,必要时可增加印刷线条间距离,在意;

抗干扰设计原则

抗干扰设计原则 1.电源线的设计 (1)选择合适的电源 (2)尽量加宽电源线 (3)保证电源线、底线走向和数据传输方向一致 (4)使用抗干扰元器件 (5)电源入口添加去耦电容(10~100uf) 2.地线的设计 (1)模拟地和数字地分开 (2)尽量采用单点接地 (3)尽量加宽地线 (4)将敏感电路连接到稳定的接地参考源 (5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开 (6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积 3.元器件的配置 (1)不要有过长的平行信号线 (2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件 (3)元器件应围绕核心器件进行配置,尽量减少引线长度 (4)对pcb板进行分区布局 (5)考虑pcb板在机箱中的位置和方向 (6)缩短高频元器件之间的引线 4.去耦电容的配置 (1)每10个集成电路要增加一片充放电电容(10uf) (2)引线式电容用于低频,贴片式电容用于高频 (3)每个集成芯片要布置一个0.1uf的陶瓷电容 (4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容 (5)电容之间不要共用过孔 (6)去耦电容引线不能太长 5.降低噪声和电磁干扰原则 (1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合) (2)用串联电阻的方法来降低电路信号边沿的跳变速率 (3)石英晶振外壳要接地 (4)闲置不用的们电路不要悬空 (5)时钟垂直于IO线时干扰小 (6)尽量让时钟周围电动势趋于零 (7) IO驱动电路尽量靠近pcb的边缘 (8)任何信号不要形成回路 (9)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略 (10)通常功率线、交流线尽量在和信号线不同的板子上

电子系统的抗干扰分析与设计

电子系统的抗干扰分析与设计 摘要:抗干扰对数字电路非常重要,也是决定其工作性能的关 键因素。该文描述了数字电子系统中不易解决的电源噪声干扰和传导干扰问题,并介绍了几种硬件跟软件解决该类问题的途径和方法。 一.引言 几乎每一个电气工程技术人员都希望他所设计的设备工作可靠,不会被其它设备干扰,也不会干扰其它设备。但是,由于电气噪气和电磁干扰几乎无处不在,所以,我们设计的产品往往达不到这些目标,无法完全杜绝这方面的干扰。如果不能有效地解决这些问题,我们可能必须放弃这些项目或者采取修修补补的办法,这样一来既浪费了我们投资项目的所有时问、资金和努力,又可能使产品性能大打折扣。因此在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性的要求,避免在设计完成后再去进行抗干扰的补救措施。 二. 抗干扰设计 大多数情况下在工作的开始就必须将干扰措施设计成产品。 2.1 抗干扰设计包含四个基本步骤的过程: (1)了解干扰的类型和来源 干扰源:是指产生干扰的元件、设备或信号,用数学语言描述:du /dt,di/dt大的地方就是干扰源。如:继电器、雷电、电机、可控硅、高频时钟等都可能。 典型的干扰传播路径是通过导线的传导和空间的辐射。 干扰一般有电源噪声干扰、空间干扰(即场干扰)和传导干扰。空间干扰都通过电磁波辐射窜人系统;传导干扰则通过与系统相连接的导线,如,以与前向通道和后向通道等进人系统;电源噪声干扰有过压、欠压、浪涌电压、尖峰电压等。 (2)在设计电路时尽量消除或减小这些干扰对系统的影响;

(3)设计线路板、导线的结构尽量消除这些问题,必要时,使用干扰抑制器件; (4)将系统分成模块调试,保证每个子系统组装正确无误、工作正常,在进行进一步组装前不会有任何问题。通过一开始就正确地设计系统,经常提前完成任务,成本也较低。 2.2 抗干扰设计的几个基本原则: (1)抑制干扰源 (2) 切断干扰传播路径 (3)提高敏感器件的抗干扰性能 2.2.1 抑制干扰源 就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。 减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 常用的抑制干扰源的措施有: ①继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。 (图1)仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 图1 消除线圈反电势干扰 ②在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选 几K到几十K,电容选0.01μF~0.1μF),减小电火花影响。(图2) 图2 减小继电器火花

北斗卫星导航系统抗干扰技术研究与实现

109 1 北斗卫星导航系统抗干扰技术概述 1.1 北斗卫星导航系统的概述 北斗卫星导航系统是一项高效的定位、导航技术,目前已被应用于我国的很多城市中。然而,由于我国领土面积广阔,不同省市地区的地形地貌等方面存在一定的差异,而卫星导航会在一定程度上受到环境条件、电磁波变化等因素的影响,因此在北斗卫星导航系统运行过程中,很容易受到干扰影响。相关技术人员应不断加强对导航系统抗干扰技术的研究,确保该系统能够正常稳定地运行下去,为使用者提供更加安全的定位导航服务。 1.2 北斗卫星导航系统受到的干扰类型 目前来看,北斗卫星导航系统所受到的干扰类型可以大致分为两种类型:(1)欺骗型的干扰方式,即通过对非正式基站进行操作,向北斗卫星导航系统发送一系列错误的信号,从而导致导航终端的定位信息发生错误。(2)压制型的干扰方式,即通过操作干扰能力较强的干扰机,发出具有一定的干扰性信号来对导航终端进行干扰,从而导致卫星导航系统无法对正确信号进行科学的处理,进而对接收设备的功能受到极大的破坏。 1.3 北斗卫星导航系统抗干扰技术类型 当前国内外已存在的卫星导航抗干扰技术类型主要包括几种[1]:(1)空域滤波抗干扰技术,该技术通过对大量阵元进行排列,从而将正确信号与错误信号有效进行分隔,进而将干扰程度降到最低。(2)时域滤波抗干扰技术。该技术通过对数字信号进行科学的处理,从而对分贝较大的干扰信号产生较强的削弱效果,该技术能够对单频、窄带等类型的干扰信号产生很好的抑制效果,但与此同时,该技术也会对原本的信号产生一定的影响,从而对信号的接收产生较大的不良影响。(3)空时自适应滤波抗干扰技术。该技术的原理就是在二维空间内对干扰信号进行抑制和处理,很好地弥补了空域滤波抗干扰技术中所存在的缺陷。 2 北斗卫星导航系统抗干扰技术当前应用状况 2.1 滤波技术的应用情况 滤波技术分为以阵列天线为基础的空域滤波抗干扰技术及空时二维滤波抗干扰技术,以及以单天线为基础的频域滤波抗干扰技术和时域滤波抗干扰技术。在应用过程中,滤波技术当前所存在的优缺点如下: (1)空域滤波技术的应用。该技术通过处理器与天线阵之间的连接,来实现降低干扰信号的功能,然而该技术存在的缺陷为其自身 移项机的精准度有限,因此会对最终所测得的相位结果产生一定的影响。此外,该技术所能处理的干扰信号数量有限,在高强度的工作环境下,其自身的性能损耗相对来说比较明显。(2)空时二维滤波技术的应用。该技术相对于空域滤波技术来说做出了一定的调整,即在各阵源内加设一定量的延迟抽头。这样一来,能够使整个天线阵的自由度得到明显的增强,进而有效提高系统的抗干扰能力。(3)频域滤波技术的应用。该技术是利用傅立叶变换来对信号进行处理,相较于其他抗干扰技术来说,此类技术的处理过程更加简便,所能提供的零态深度及处理范围也更加广泛。然而频域滤波技术对带宽不同的干扰信号来说,其抑制效果往往也不同,对于窄带的抑制能力明显要强于对宽带的抑制。(4)时域滤波技术的应用。该技术是通过对数字信号进行接收和处理,从而完成对三十分贝以上窄带干扰信号的抑制。该技术往往可以同时对大量的窄带信号进行处理,但是在对宽带信号的处理方面明显不具有优势。 2.2 波束形成技术的应用情况 波束形成技术是通过对阵列天线进行利用,以提高正确信号在传播过程能够受到增益的效果,进而对其他干扰信号起到很好的抑制作用。相较于滤波抗干扰技术的应用,波束形成技术具有更强大的性能,能够明显降低滤波技术应用过程中所出现的误差,从而做到更加精准地导航。除此之外,波束形技术还能减小设备自身的受损程度,确保卫星导航系统能够具有更加强大的抗干扰能力。 3 北斗卫星导航系统抗干扰技术的实现 3.1 波束形成抗干扰技术的实现 干扰信号及卫星信号混合而成的信号在经过微波电路中以后,会共同经过一系列的数字变换,最后通过波束形成技术使得干扰信号被分离出来。与此同时,系统通过对相关数据进行处理能够获取相应的控制权值,进而对多重数据信息进行分析组合,确保正确的卫星信号能够得到明显的加强,并同时在干扰信号的方向产生较大的抑制效果。最后,系统通过对混合信号再次进行变换,从而输出相应的中频信号。波束形成抗干扰技术能够同时对大量的卫星信号进行控制,在其应用过程中,技术人员需要对相关的动态放大器进行设计,并选择能够对增益进行自动控制的技术,从而确保微波射频通路能够持续呈现饱和的状态,进而能够对信干噪比进行优化[2]。 3.2 滤波抗干扰技术的实现 滤波抗干扰技术需要通过频域窄带及空时自适应宽带干扰抑制技术的应用来实现,其中频域窄带干扰技术能够对变化较快的干 收稿日期:2019-07-06 作者简介:张高巍(1978—),男,宁夏隆德人,硕士研究生,毕业于北京理工大学,工程师,研究方向:卫星导航定位和惯性导航定位系统的测量。 北斗卫星导航系统抗干扰技术研究与实现 张高巍 (中国人民解放军92785部队,河北秦皇岛 066000) 摘要:本文探讨了北斗卫星导航系统抗干扰技术概述,分析了北斗卫星导航系统抗干扰技术当前应用状况,研究了北斗卫星导航系统 抗干扰技术的实现。 关键词:北斗卫星;导航系统;抗干扰技术中图分类号:TN967.1文献标识码:A 文章编号:1007-9416(2019)08-0109-02 应用研究 DOI:10.19695/https://www.360docs.net/doc/1118404683.html,12-1369.2019.08.59

相关文档
最新文档