纳米级氢氧化镁阻燃剂

纳米级氢氧化镁阻燃剂
纳米级氢氧化镁阻燃剂

纳米级氢氧化镁阻燃剂的研究现状

氢氧化镁作为阻燃剂的阻燃机理为:氢氧化镁受热分解时,释放出H2O,同时吸收大量的潜热,这就降低了树脂在火焰中实际承受的温度,具有抑制高聚物分解和可燃性气体产生的冷却效应。分解后生成的MgO 是良好的耐火材料,也能帮助提高树脂抵抗火焰的能力,而且氢氧化镁的热分解温度高达340 ℃,因此,其阻燃性能十分优越。但普通氢氧化镁用于聚合物阻燃的主要缺点是阻燃效率低以及与基体的相容性差,要使材料的阻燃性能达到一定要求,氢氧化镁的添加量通常要高达50 %以上,这样会对材料的力学性能和加工性能影响很大,难以达到使用要求。为了使氢氧化镁能更好地用于塑料阻燃,国内外不少研究机构已成功地开发出了不同性能的氢氧化镁。美国Solem 公司开发出了分散性良好,加工温度可达332 ℃的优质氢氧化镁。日本协和化学工业自1973 年开始研究特殊大晶粒,低比表面积的氢氧化镁,1975 年研究成功。该机构最近又开发出了氢氧化镁薄片状粒子和纤维状结晶,但该项技术并未公开。大连理工大学也曾研制出晶粒尺寸大、比表面积小、具有优良阻燃性能的新型氢氧化镁。江苏海水综合利用研究所、兰州化学工业公司研究院以及中科院青海盐湖研究所等相继致力于研制特殊晶形的氢氧化镁阻燃剂。

应用研究表明:当加入的氢氧化物粒径减小到 1 μm 时,其阻燃聚合物体系的氧指数显著提高。不少文献报道随着粒径的减小,无机粒子对聚合物材料有增强增韧的作用。因此,超细化成为氢氧化镁阻燃剂的一个重要发展方向。在材料科学里面,人们将超细微粒子称谓纳米粒子,是一种介于固体和分子间的亚稳中间态物质。纳米氢氧化镁是指颗粒粒度介于1~100 nm 的氢氧化镁,作为一种纳米材料,它具有纳米材料所具有的共同特点,即小尺寸效应,量子尺寸效应,表面效应,宏观量子效应等,用它填充于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。研究表明,采用纳米Mg(OH)2的塑料阻燃性能优于普通Mg(OH)2填充的塑料,具有更好的机械加工性,与含磷和卤素的有机阻燃剂相比,纳米氢氧化镁无毒,无味,且具有阻燃,填充,抑烟三重功能,是开发阻燃聚合物的理想添加剂,已受到人们的广泛关注。

姚佳良等研究了纳米氢氧化镁与微米氢氧化镁填充聚丙烯(PP)体系的阻燃性能、流动性能和力学性能。实验结果表明:添加相同质量分数Mg(OH)2时,纳米Mg(OH)2填充体系的阻燃性能要好于微米Mg(OH)2填充体系,并在填充量为60 %时达到V-0 级标准,且发烟量少,流动性能和力学性能也要好于微米Mg(OH)2填充体系。

1 制备方法

液相化学法是目前广泛采用的制备纳米氢氧化镁粉体的方法,已用于制备纳米Mg(OH)2的液相法有:直接沉淀法、水热反应法等。

1.1 直接沉淀法

直接沉淀法是在金属盐溶液中加入沉淀剂,仅通过沉淀操作从溶液中直接得到某一目标金属的纳米颗粒沉淀物,将阴离子从沉淀中除去,经干燥即可得到纳米粉体。常见的沉淀剂有NaOH、NH3.H2O、CO(NH2)2等。该法操作简便易行,对设备、技术要求不高,不易引入杂质,产品纯度高,有良好的化学计量性,制备成本较低;但产品粒度较大,粒度分布较宽。邱龙臻等以氯化镁、氢氧化钠为原料,采用表面活性剂包覆的溶液沉淀法制备出了不易团聚的纳米Mg(OH)2粉体,经透射电镜表征,其形态是短轴方向尺寸为6~9 nm,长轴方向尺寸为50~100 nm 的针状粒子。随着Mg(OH)2粒径的减小,光致发光光强度显著增强。将其以1︰1 的比例与EV A 混合,能很好地均匀分散在EV A 基体中,氢氧化镁几乎没有发生团聚现象。而且,EV A/纳米Mg(OH)2复合材料也表现出了优异的阻燃性能,该材料的

极限氧指数(LOI)为38.3,而相同填充量的EV A/ 微米级Mg(OH)2材料的LOI 仅为24。王志强等以工业氯化镁、氨水为前驱体,在水-乙醇体系下合成了粒度为100~200 nm 的氢氧化镁超细粉体。研究了水与乙醇的比例对粉体颗粒形貌、粒度、Mg2+沉淀率的影响。

1.2 水热反应法

水热反应法是利用水热反应制备粉体的一种方法。在高温高压下,反应物在水溶液或蒸汽等流体中反应生成目的产物,再经分离和热处理得到纳米粉体。反应温度一般在100~400 ℃,压力从0.1 MPa~几十乃至几百MPa。该法为各种前驱物的反应和结晶提供了一个在常压条件下无法得到的、特殊的物理和化学环境,粉体的形成经历了溶解-结晶的过程。与其他制备方法相比,具有晶粒发育完整、粒度小、分布均匀、颗粒团聚较轻,易得到合适的化学计量物和晶形等优点。也就是说,该法制备的纳米颗粒纯度高,分散性好,晶体好且大小可控。林慧博等以氯化镁、氢氧化钠为原料,通过水热法合成了粒度小于100 nm 的纳米级、片状、粒度均匀且分散性好的氢氧化镁。考察了反应温度、反应时间、镁离子初始反应浓度以及Mg2+与OH-的摩尔比对Mg(OH)2粒度和形貌的影响,得出了制备纳米级氢氧化镁的最佳条件。但水热反应法等制备纳米Mg(OH)2过程复杂,从工业应用成本的角度考虑是不可接受的。

2 团聚问题

团聚现象是纳米粉体制备及收集过程中一个难题。纳米颗粒由于粒度小,表面原子比例大比表面积大,表面能大,处于能量不稳定状,因而很容易凝并、团聚,形成二次粒子,使粒子粒径变大,失去纳米颗粒所具备的特性,给纳米粉体的制备和保存带来了很大的困难。在当今的纳米粉体制备工艺中,防止粒子团聚作为一项重要工作,其目的就是收集粒度分布较窄、分布均匀且无团聚大颗粒出现的高纯粉体。

2.1 团聚的分类

纳米粉体的团聚可分为两种:软团聚和硬团聚。软团聚主要是由颗粒间的静电力和范德华力所致,由于作用力较弱,可以通过一些化学作用或施加机械能的方式来消除;硬团聚形成的原因除了静电力和范德华力之外,还存在化学键作用,因此硬团聚体不易破坏,需要采取一些特殊的方法进行控制。因此,研究纳米颗粒的团聚控制对纳米粉末制备极为重要。

2.2 影响团聚的因素和控制团聚的措施

影响粉末团聚程度的因素很多,包括在粉末制备的各个步骤中,要有效地减少团聚就必须针对其形成原因,在制备过程中采取有效措施。制备纳米Mg(OH)2的一个关键技术问题就是掌握解决粒子不会产生一次或多次团聚现象,而且稳定性要高,这就涉及到许多技术和工艺问题需要解决。一般制备Mg(OH)2时易产生胶状物,不加处理,极易产生粒子团聚现象。因此,在合适条件下沉淀时,需加入一种有效的表面活性剂,以使生成的Mg(OH)2经表面改性后不产生团聚,从而稳定地存在。纳米Mg(OH)2颗粒表面吸附水分子形成氢键,-OH 基团间易形成液相桥,导致颗粒在干燥过程中强烈结合产生硬团聚。因此,克服硬团聚的关键在于尽可能地除去水分子和表面自由非桥接羟基。实际上,团聚问题贯穿整个工艺过程,故解决团聚问题不是轻而易举的,难度是不小的。

2.2.1 液相反应阶段

反应时溶液的浓度、温度、pH、反应时间、反应物配比、表面活性剂及其加入量等都直接影响生成晶粒的尺寸及溶液的稳定性,从而决定了最后粉体的团聚程度。吕建平等通过控制合成温度、反应物浓度、滴加速度,助剂用量可以有效控制氢氧化镁的形貌和粒径大小。

2.2.2 洗涤阶段

众所周知,沉淀物中的水是引起纳米粒子团聚的因素之一,因此采用适当的洗涤方法将沉淀物中的水洗去是防止纳米粒子团聚的主要方式。用表面张力小的有机溶剂充分洗涤纳米颗粒,可以置换颗粒表面吸附的水分,减小氢键的作用,减少颗粒聚结的毛细管力,使颗粒不再团聚。目前此方法采用的洗涤溶剂为醇类,例如无水乙醇、乙二醇等。用醇类可以洗去粒子表面的配位水分子,并以烷氧基取代颗粒表面的羟基团。

2.2.3 干燥阶段

纳米材料的干燥是液相法制备纳米粉体不可避免的固-液分离过程,干燥方法对纳米粉体产品的团聚程度影响很大。要获得团聚程度小或无团聚的干燥效果可以从降低表面张力,减少干燥时间等方面考虑。实验证明,在保证沉淀物干燥完全的基础上,温度越低、时间越短越好。目前,纳米粉体的干燥可采用以下几种方式:闪蒸、冷冻干燥、超临界干燥、喷雾干燥、真空干燥等。

2.2.4 表面活性剂

表面活性剂主要是通过吸附改变粒子的表面电荷分布,产生静电稳定和空间位障稳定作用来达到分散效果,所以选择合适的表面活性剂是目前采用的粉体防团聚的主要措施之一。纳米粒子具有极高的表面能,降低表面积从而降低表面能使吉布斯能减小,是一个自发的过程,这也是防团聚的原因及困难所在。根据实验条件,选用合适的表面活性剂,合适的加入量,在不影响工艺性能及材料性能的前提下,使颗粒表面能下降,键合作用减弱或消失,从而起到防团聚的作用。目前,在沉淀、洗涤和干燥过程都有加入表面活性剂的报道。吕建平等以氯化镁为镁源,氨水或氢氧化钠为沉淀剂,在水溶性高分子化合物和表面活性剂的共同作用下,分别合成了针状、片状和棒状三种不同形貌的纳米氢氧化镁粉体。除了以上针对各种原因的防团聚方法,还有电晕荷电、低温处理、超声波分散、表面包覆等物理方法。

3 结论

目前中国在氢氧化镁的研究开发上,与国外相比还有较大的差距。中国具有丰富的镁资源,研制附加值高、具有特殊性能的高科技的镁系产品具有重大的意义。利用现有的镁资源来合成纳米级氢氧化镁,进而开发氧化镁纳米粉体是一种有效的途径,但这项工作还处于研究的起始阶段,还有许多技术和理论的问题有待于得到解决:

(1)纳米氢氧化镁粉体团聚形成机理以及防团聚技术研究;

(2)纳米氢氧化镁制备过程的化学反应机理及制备过程中的结晶动力学和热力学研究;

(3)方便、快捷的纳米粉体产品性能的分析检测技术;

(4)高纯度纳米氢氧化镁粉体的工业化制备技术;

(5)纳米氢氧化镁材料的应用研究等。

一旦这些问题得到解决,必将把纳米级氢氧化镁的开发与应用带到一个崭新的阶段。

[1]Wang W G,Shao W J,Hu X.The effect of additive particle size on properties of plastics[J].Plastics Science and Technology,1998,123:27.

[2]Wang X ,Huang R .Study on nano-CaCOreinforced polypropylene[J].China Plastics,1999,13(10):22.

[3]Wu W,Xu Z D.Study on the reinforced and toughened PP blends with rigid nano-particles and the elastic rubber-particles[J].Acta Polymerica Sinica,2000,1:99.

[4]Xu W P ,Huang R ,Cai B H ,et al .Nano-CaCO3filled HDPE composite[J].China Plastics,1998,12(6):30.

[5]姚佳良,彭红瑞,张志琨.聚丙烯/纳米氢氧化镁阻燃复合材料的性能研究[J].青岛科技

大学学报,2003,24(2):142-144.

[6]邱龙臻,吕建平,谢荣才,等.纳米氢氧化镁的结构表征和阻燃特性[J].半导体学报,2003,24(增刊):81-84.

[7]王志强,吕秉玲,刘建平,等.沉淀法合成高纯超细氢氧化镁的研究[J].无机盐工业,2001,33(4):3-4.

[8]林慧博,印万忠,南黎,等.纳米氢氧化镁制备技术研究[J].有色矿冶,2003,19(1):33-36.

[9]Li Y D ,Sui M ,Ding Y ,et al .Preparation of Mg(OH)

2

nanorods[J].Advanced Materials,2000,12:818.

[10]Ding Y,Zhang G T,Wu H,et al.Nanoscale magnesium hydroxide and

magnesium oxide powders:Control over size,shape,and structure via hydrothermal synthesis[J].Chem of Mater,2001,13:435.

[11]吕建平,邱龙臻,瞿保钧.不同形貌纳米氢氧化镁的可控合成及其应

用[A].全国第三届纳米材料和技术应用会议论文集,2003,172-175.

[12]王宝和,于才渊,王喜忠.纳米多孔材料的超临界干燥[A].第八届全

国干燥大会论文集[C].2002:22-31.

氢氧化镁阻燃剂

氢氧化镁阻燃剂 简介 氢氧化镁简称MH,分子式Mg(OH)2,分子量重58.33.白色粉末,相对密度2.39。折射率1.561-1.581。在300℃以下稳定,320℃开始分解,生成氧化镁和水,430℃时分解速度最快,490℃时分解完结。溶于烯酸和铵盐溶液,不溶于水、乙醇。氢氧化镁不仅有阻燃作用,还有一眼功能,无毒、无腐蚀性,多种性能优于氢氧化铝,安全廉价,属于环保型无机阻燃剂。 阻燃机理 氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。 分类 阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。有机阻燃剂又分为磷系和卤系两个系列。由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。

无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。 涂料等高分子材料中,特别是对矿用导风筒涂覆布、PVC整芯运输带、阻燃胶板、蓬布、PVC电线电缆料、矿用电缆护套、电缆附件的阻燃、消烟抗静电,可代替氢氧化铝,具有优良的阻燃效果。 种类间比较 目前国内氢氧化铝用量较多,但随着高聚物加工温度的提高,氢氧化铝易分解,降低阻燃作用,氢氧化镁较氢氧化铝具有如下优点: ①氢氧化镁热分解温度达330℃,比氢氧化铝高100℃,故有利于塑料加工温度的提高,加快挤塑速度,缩短模塑时间; ②氢氧化镁与酸的中和能力强,可较快地中和塑料燃烧过程产生的酸性气体SO2、NOx、CO2等; ③氢氧化镁分解能高,有利于吸收燃烧热,提高阻燃效率; ④氢氧化镁抑烟能力强、硬度小,对设备摩擦小,有助于延长生产设备

纳米氢氧化镁阻燃剂的制备工艺

2009年第1期 青海师范大学学报(自然科学版) Journal of Qinghai Norm al U niversity(Natural Science) 2009 No.1纳米氢氧化镁阻燃剂的制备工艺 王书海,温小明 (青海师范大学化学系,青海西宁 810008) 摘 要:本文主要研究了湿法纳米氢氧化镁阻燃剂的制备工艺过程,对制得纳米氢氧化镁阻燃剂进行测试,并将粉体添加到 软质PVC体系中测定该体系的活化数、氧指数、拉伸强度和断裂伸长率等.通过单因素优选法和正交试验法分析,结果表 明,最佳的工艺条件:聚乙二醇(PEG)为分散剂,硬脂酸为改性剂,分散剂的用量为2 5%,改性时间为90min,改性温度为 70 ,改性剂用量为5%(质量分数);添加了纳米氢氧化镁阻燃剂粉体的软质PVC体系的阻燃性能有了显著提高,同时减少 了氢氧化镁添加剂的用量和降低了对体系机械力学性能的影响. 关键词:氢氧化镁;阻燃剂;纳米;表面改性;分散剂 中图分类号:O157 5 文献标识码:A 文章编号:1001-7542(2009)01-0043-05 0 引言 随着有机高分子材料的迅速发展和广泛应用,有机物的易燃性和燃烧后放出大量的 卤烟 越来越受到人们的关注.无机阻燃剂的研究被提上日程,无机阻燃剂氢氧化镁由于其分解温度高(340 ~ 490 )、无毒、无烟、抗酸、无腐蚀性、价格便宜等[1]优点受到人们的欢迎.但由于氢氧化镁其表面的强极性的,自身容易聚合.添加到有机材料中很难使其均匀分散,而且界面难以形成很好的结合.通常氢氧化镁阻燃剂在较高的填充量下(填充量高达60%[2])才有较好的阻燃效果,但较高的填充量下有机材料的机械性能和成形性急剧下降.很难在两者之间中和,氢氧化镁的超细化和表面改性成为制约氢氧化镁阻燃剂大量应用的关键. 李克民[3]通过用偶联剂对氢氧化镁表面改性处理添加到有机高分子材料中取得了较好的效果,显著的提高了有机高分子材料的阻燃、抗酸等性能.改性后的氢氧化镁一般颗粒较大,很难在有机高分子材料中达到较好分散的效果.何昌洪、张密林等[4]人以氯化镁和氨水为原料制得了粒径100nm~ 150nm的纳米氢氧化镁,较小颗粒的氢氧化镁由于表面强极性很容易二次聚合,易胶结,洗涤过滤困难,而且收率较低.刘立华、宋云华等[5]人选择了几种常用的表面改性剂对纳米氢氧化镁进行湿法表面改性处理,降低了对有机材料机械力学性能的影响,但制备纳米氢氧化镁条件较为苛刻,工艺较为复杂. 本文首次通过把湿法制得纳米氢氧化镁并不将其从体系中分离,直接在水溶液体系中对其进行包裹改性处理,可以有效的防止了纳米氢氧化镁的二次聚合和胶结.同时通过对不同的试剂和反应条件进行试验,确定了制备纳米氢氧化镁阻燃剂的最佳工艺条件. 1 实验 1 1 主要原料和仪器 1 1 1 原料和试剂 氢氧化镁粉末(由青海镁业有限公司提供;d>10um);聚乙二醇(PEG),(分子量6000上海化学试剂采购供应站);硬脂酸,(大连大平油脂化学有限公司);硬脂酸钠,(常州市环琦贸易有限公司);十二烷基苯磺酸钠,(上海英鹏化学试剂有限公司);钛酸酯偶联剂,(南京能德化工有限公司);十二烷基硫酸钠、 收稿日期:2008-04-09 作者简介:王书海(1986-),男(汉族),江苏徐州人,2007级研究生,研究方向:材料添加剂研究.

纳米级氢氧化镁阻燃剂

纳米级氢氧化镁阻燃剂的研究现状 氢氧化镁作为阻燃剂的阻燃机理为:氢氧化镁受热分解时,释放出H2O,同时吸收大量的潜热,这就降低了树脂在火焰中实际承受的温度,具有抑制高聚物分解和可燃性气体产生的冷却效应。分解后生成的MgO 是良好的耐火材料,也能帮助提高树脂抵抗火焰的能力,而且氢氧化镁的热分解温度高达340 ℃,因此,其阻燃性能十分优越。但普通氢氧化镁用于聚合物阻燃的主要缺点是阻燃效率低以及与基体的相容性差,要使材料的阻燃性能达到一定要求,氢氧化镁的添加量通常要高达50 %以上,这样会对材料的力学性能和加工性能影响很大,难以达到使用要求。为了使氢氧化镁能更好地用于塑料阻燃,国内外不少研究机构已成功地开发出了不同性能的氢氧化镁。美国Solem 公司开发出了分散性良好,加工温度可达332 ℃的优质氢氧化镁。日本协和化学工业自1973 年开始研究特殊大晶粒,低比表面积的氢氧化镁,1975 年研究成功。该机构最近又开发出了氢氧化镁薄片状粒子和纤维状结晶,但该项技术并未公开。大连理工大学也曾研制出晶粒尺寸大、比表面积小、具有优良阻燃性能的新型氢氧化镁。江苏海水综合利用研究所、兰州化学工业公司研究院以及中科院青海盐湖研究所等相继致力于研制特殊晶形的氢氧化镁阻燃剂。 应用研究表明:当加入的氢氧化物粒径减小到 1 μm 时,其阻燃聚合物体系的氧指数显著提高。不少文献报道随着粒径的减小,无机粒子对聚合物材料有增强增韧的作用。因此,超细化成为氢氧化镁阻燃剂的一个重要发展方向。在材料科学里面,人们将超细微粒子称谓纳米粒子,是一种介于固体和分子间的亚稳中间态物质。纳米氢氧化镁是指颗粒粒度介于1~100 nm 的氢氧化镁,作为一种纳米材料,它具有纳米材料所具有的共同特点,即小尺寸效应,量子尺寸效应,表面效应,宏观量子效应等,用它填充于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。研究表明,采用纳米Mg(OH)2的塑料阻燃性能优于普通Mg(OH)2填充的塑料,具有更好的机械加工性,与含磷和卤素的有机阻燃剂相比,纳米氢氧化镁无毒,无味,且具有阻燃,填充,抑烟三重功能,是开发阻燃聚合物的理想添加剂,已受到人们的广泛关注。 姚佳良等研究了纳米氢氧化镁与微米氢氧化镁填充聚丙烯(PP)体系的阻燃性能、流动性能和力学性能。实验结果表明:添加相同质量分数Mg(OH)2时,纳米Mg(OH)2填充体系的阻燃性能要好于微米Mg(OH)2填充体系,并在填充量为60 %时达到V-0 级标准,且发烟量少,流动性能和力学性能也要好于微米Mg(OH)2填充体系。 1 制备方法 液相化学法是目前广泛采用的制备纳米氢氧化镁粉体的方法,已用于制备纳米Mg(OH)2的液相法有:直接沉淀法、水热反应法等。 1.1 直接沉淀法 直接沉淀法是在金属盐溶液中加入沉淀剂,仅通过沉淀操作从溶液中直接得到某一目标金属的纳米颗粒沉淀物,将阴离子从沉淀中除去,经干燥即可得到纳米粉体。常见的沉淀剂有NaOH、NH3.H2O、CO(NH2)2等。该法操作简便易行,对设备、技术要求不高,不易引入杂质,产品纯度高,有良好的化学计量性,制备成本较低;但产品粒度较大,粒度分布较宽。邱龙臻等以氯化镁、氢氧化钠为原料,采用表面活性剂包覆的溶液沉淀法制备出了不易团聚的纳米Mg(OH)2粉体,经透射电镜表征,其形态是短轴方向尺寸为6~9 nm,长轴方向尺寸为50~100 nm 的针状粒子。随着Mg(OH)2粒径的减小,光致发光光强度显著增强。将其以1︰1 的比例与EV A 混合,能很好地均匀分散在EV A 基体中,氢氧化镁几乎没有发生团聚现象。而且,EV A/纳米Mg(OH)2复合材料也表现出了优异的阻燃性能,该材料的

纳米氢氧化镁的制备

纳米氢氧化镁的制备 1 前言 氢氧化镁为新型镁质无机阻燃剂, 具有无毒、无烟、阻燃效果好等特点, 近年来已成为减烟、抑烟、阻燃等方面重要的无机阻燃剂。随着我国高分子合成材料工业快速发展及阻燃法规不断健全和完善, 对阻燃剂需求随之增加, 作为无毒、抑烟型的环保无机阻燃剂Mg( OH) 2 的需求更是十分迫切, 我国无机阻燃剂占整个阻燃剂用量的50% , 其中氢氧化镁阻燃剂 占无机阻燃剂30% 左右, 每年需要氢氧化镁阻燃剂9 万t, 但我国目前氢氧化镁阻燃剂年生产能力约为1. 3 万t , 故我国氢氧化镁发展潜力巨大[1~ 2] 。我国是镁矿资源大国, 具有得天独厚的资源优势和良好的市场前景。因此, 我国应改进Mg(OH) 2 现有生产工艺、规模化生产, 并加强Mg(OH) 2 应用研究, 以促进我国Mg ( OH) 2 阻燃剂的生产和发展。我国生产的氢氧化镁纯度低, 粒度分布较宽, 而目前国外都需要高纯微细氢氧化镁产品, 特别是 高纯纳米级的氢氧化镁产品, 用于各种高档复合材料的阻燃成分[ 3~ 4] 。纳米氢氧化镁是指颗粒粒度介于1~ 100 nm 的氢氧化镁, 作为一种纳米材料, 它具有纳米材料所具有的共性特点, 即小尺寸效应、量子尺寸效应、表面效应、宏观量子效应等, 用它充填于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。 2 氢氧化镁与其他碱类的比较 质言之,氢氧化镁毕竟是一种“碱”,与其他传统碱相比当然是一种弱碱。具有独特的缓冲能力。氢氧化镁除在作为阻燃剂领域应用外,在其他领域应用特别是作为中和剂应用都基于这种特性。现将氢氧化镁比其他传统碱类物质所具有的优点综述如下。使用Mg(OH)2做中和剂时,溶液的pH值一般不会超过9,这恰好是美国环保局的“清洁水条例(CleanwaterAet)”中允许排放物pH值的最高限度[5],而其他碱类物质一般都大于12;与用生石灰、消石灰不同,用Mg(OH)2中和含硫酸的液体时形成可溶性的硫酸镁,可作为硫镁肥代替水镁矾(Kieserite),而用前者则会形成难溶的硫酸钙;Mg(OH)2中和能力强,中和同体积和同浓度的含酸废液,Mg(OH)2用量比通常碱的用量减少30%。由于中和速度慢,形成的砖泥致密,体积小,沉降快,过滤时间缩短,龄泥的处理和排人费用也比传统的处理方法减少30%,在温度零度时不结冰,从而可降低人工和维修费用。属弱碱性物质,作业处理和使用均安全可靠[6]。关于氢氧化镁的这些优点,国外有很多议论,如美国DOW化学公司氢氧化镁市场部经理Mark Tomik说:“这种化学品正在敦促越来越多的厂家对酸性液体进行处理时加以采用,以取代传统方法。他还说,用户通过使用氢氧化镁而不用其他碱类物质,在沉淀物处理和清除方面可节省60%的费用[5]。” 3 纳米氢氧化镁的制备技术[ 7] 3. 1 直接沉淀法 直接沉淀法制备纳米氢氧化镁是向含有Mg2+的溶液中加入沉淀剂, 使生成的沉淀从溶液中析出,最常见的是氢氧化钠法和氨法[ 8- 11] , 反应过程为: Mg2+ + 2NaOH Mg(OH)2 + 2Na+ ( 1) Mg2+ + 2NH3.H2O Mg(OH)2 + 2NH4+ ( 2) 直接沉淀法操作工艺简单, 控制反应条件可制得片状、针状和球形的纳米氢氧化镁粉体。东北大学林慧博等[7]研究了用NaOH 和MgC l2.6H2O制备纳米氢氧化镁的最佳工艺条件为:反应 温度80℃, 反应时间20 min, Mg2+ 和OH- 物质的量比为1 :2 ,Mg2+ 浓度为0. 5 mol/ L, 制得产品粒径约为90nm的片状均匀分散的氢氧化镁。由于氨的挥发性较强, 所以氨法制备纳米氢氧化镁容易造成环境污染。但用氢氧化钠方法制备纳米氢氧化镁成本相对较高,而且制备分散性良好的纳米氢氧化镁所需反应条件苛刻。

氢氧化镁

氢氧化镁综合介绍 基本介绍: 氢氧化镁(化学式:Mg(OH)2、分子量58.32)是镁的氢氧化物,为白色晶体或粉末,难溶于水,广泛用作阻燃剂、抗酸剂和胃酸中和剂。氢氧化镁在水中的悬浊液称为氢氧化镁乳剂,简称镁乳,用于中和过多的胃酸和治疗便秘。水溶液,呈碱性。用做分析试剂,还用于制药工业。 物化性质: 白色晶体或粉末。水溶液呈碱性。2.36g/cm3。溶于稀酸和铵盐溶液,几乎不溶于水和醇。在水中的溶解度(18℃)为0.0009g/100g 。易吸收空气中的二氧化碳。在碱性溶液中加热到200℃以上时变成六方晶体系结晶。在350℃分解而成氧化镁和水。高于500℃时失去水转变为氧化镁。沸水中碳酸镁可转变为溶解性更差的氢氧化镁。粒径1.5-2μm ,目数10000,白度≥95。 生产工艺: 1、水镁石磨细法 由于由天然水镁石磨细生产氢氧化镁只是一个物理过程,因此需要较纯净的天然水镁石资源。天然矿物水镁石的主要成分是氢氧化镁, 是一种层状结构的氢氧化物, 属于三方晶系, 常见的构造有块状、球状及纤维状, 是迄今自然界发现的含镁量最高的一种矿物。水镁石磨细法制备氢氧化镁, 是将水镁石粉碎成水镁石粉 ( 150μm ) , 再将水镁石粉气流粉碎至 1~ 26μm 粉体 ( 由表面活性剂改性的氢氧化镁 ) 。该氢氧化镁制造工艺简单, 价格也较低。该方法生产的是重质氢氧化镁。 2、化学合成法 化学合成法是利用含有氯化镁的卤水、卤矿等与苛性碱类物质在水介质中反应, 生成氢氧化镁浆料, 经过滤、洗涤、干燥制得氢氧化镁。化学合成法中应用较多的方法包括氢氧化钙法、氨法、氢氧化钠法。采用这些方法生产的是轻质氢氧化镁。氢氧化钙法又称石灰乳法, 是以 Ca(OH)2为沉淀剂, 是一种传统的制备 方法。该法优点是原料易得, 生产工艺简单, 成本较低。但是, 由于所得产品粒度小 (可达 0. 51μm 以下) , 聚附倾向大, 难于沉降、过滤及洗涤, 并且易吸附硅、钙、铁等杂质离子,因此产品纯度低, 只适用于对纯度要求不太高的行业, 如烟气脱硫和酸性废水中和等。 氢氧化钠法是采用氯化镁水溶液与烧碱反应制备氢氧化镁。该方法优点是操作简单, 产物的形貌、粒度分布及纯度、晶体结构均易于控制, 适宜制备高纯微细产品。但是, 烧碱的使用会使成本增大;另外, 由于粒度较细, 过滤有一定困 难。用氢氧化钠沉淀卤水生成碱式氯化镁沉淀, 如果要得到氢氧化镁需要在高压 釜中再进行水热处理, 使之转化成氢氧化镁晶体。由于氢氧化钠是强碱, 如果条件控制不当会使生成的氢氧化镁形成胶体, 给产物性能的控制带来困难, 同时 也易带入较多的Na 和 Cl 。与氨法比较, 该方法的母液回收不如氨法容易。 + - +

氢氧化镁总结资料

中国镁矿分布 1.1概述 镁矿资源主要来源于菱镁矿、含镁白云岩、盐湖区镁盐以及海水等。我国是世界上镁矿资源最为丰富的国家之一,总储量占世界的22.5%,居世界第一。 我国已探明菱镁矿储量34亿吨,居世界之首;含镁白云石资源储量达40亿吨以上;我国4大盐湖区蕴藏着丰富的镁盐资源,其中,柴达木盆地内大小不等的33个卤水湖、半干涸盐湖和干涸盐湖镁盐资源储量60.03亿吨。 1.2菱镁矿资源分布 我国菱镁矿资源丰富、质地优良,主要分布在河北、辽宁、安徽、山东、四川、西藏、甘肃、青海、新疆等9个省区,其中以辽宁省资源储量最大,占全国总储量的85.62%,其次是山东,占全国总储量的9.54%。储量稍大的还有西藏、新疆和甘肃等省区。 我国菱镁矿以镁质碳酸盐地层中层控晶质菱镁矿类型为主,这种矿床规模大,质量优良,工业价值大。成矿时代较多,主要有太古宙、元古宙、泥盆纪和三叠纪,其中以元古宙成矿期最为重要。从大地构造位置上看,层控菱镁矿矿床主要分布于中朝准地台的胶辽台隆(辽宁省营口大古桥至海城一带、山东省掖县一带),其余为山西隆起(河北省邢台县)华北断坳(安徽省霍丘县),祁连山褶皱祁连山间隆起带(甘肃省肃北县)、扬子准地台四川台坳(四川省甘洛汉源地区)、冈底斯-念青唐古拉褶皱系那曲褶皱带(西藏自治区类乌齐县)和天山褶皱系南天山冒地槽褶皱带(新疆维吾尔自治区和靖县)。 1.3含镁白云岩 含镁白云岩是以白云石为主要组份的碳酸盐岩,白云石含量约占95%,方解石含量小于5%。白云石成分中的Mg可被Fe、Mn、Co、Zn替代。白云石在自然界分布广泛,按成因分类,白云岩矿床主要有热液型和沉积型两种。 1.3.1热液型白云岩矿床 热液型白云岩矿床一般与前寒武系特别是元古宇镁质碳酸盐岩有关,少数为古生界,成矿时代具有多期多阶段性,一般在区域变质的基础上叠加多次热液作用。常见的矿床组合主要为白云岩+滑石+菱镁矿组合,白云岩一般呈滑石矿、菱镁矿的顶底板或夹层产出,由于该地区菱镁矿矿石质优量大,因此,并没有把白云岩看作矿床。此类组合包括了我国绝大部分的大中型菱镁矿矿床和大部分的大中型滑石矿床,矿石质量好,开采容易。该组合矿床主要在辽东、胶东地区广泛发育。

氢氧化镁阻燃剂的湿法改性研究

氢氧化镁阻燃剂的湿法改性研究 刘建华,郝在晨,梁金龙 (山东海化集团有限公司,山东潍坊262737) 摘要:用湿法改性工艺对氢氧化镁阻燃剂进行了改性研究。在氢氧化镁乳液中加入改性剂和抗流失剂对氢氧化镁实施改性,测试了改性后的氢氧化镁性能。结果表明:抗流失剂的加入有效地防止了改性剂的流失,改性后的氢氧化镁表面亲油疏水,粒径和吸油值均减少。将改性后的氢氧化镁填充于E VA塑料体系中研究其材料的各项性能,发现经湿法改性的氢氧化镁可以显著提高E VA塑料的力学性能和阻燃性能。 关键词:氢氧化镁;湿法改性;阻燃剂 中图分类号:T Q132.2文献标识码:A 文章编号:1006-4990(2005)06-0050-02 Stud i es on wet m od i f i ca ti on of fl am e ret ardan tM g(O H)2 L iu J ianhua,Hao Zaichen,L iang J inl ong (S handong Ha ihua Group Co.,L td.,S handong W eifang262737,Ch ina) Abstract:The wet modificati on of fla me retardantM g(OH) 2 is studied,in which the modifier and anti-bleeding agent are added in the Mg(OH)2slurry.The perfor mance ofM g(OH)2after modified is deter m ined.The results show that anti-bleeding agent can reduce bleeding rate of the modifier,the modified Mg(OH)2is hydr ophobic and both oil abs or p ti on value and the average dia meter of the particle are reduced.W hen the modified M g(OH)2is filled in the E VA p lastic syste m,the mechanical p r operties and fla me retardati on p r operty of the E VA p lastics can be re markably i m p r oved. Key words:Mg(OH) 2 ;wet modificati on;fla me retardant 氢氧化镁作为阻燃剂,其阻燃、无毒、抑烟、热稳定性高的特性日益引起人们的广泛关注。由于氢氧化镁属于无机物,具有亲水性,在高分子材料中的分散性差,因此,必须对氢氧化镁进行改性处理。氢氧化镁改性可分为干法和湿法:干法改性工艺简单,但改性效果不好;湿法改性效果好,但存在着改性剂随水流失、成本上升的问题[1]。本文对氢氧化镁的湿法改性工艺进行了研究,解决了改性剂流失问题,得到了与高分子材料相容性良好的氢氧化镁阻燃剂。 1 实验 1.1 主要原料和仪器 氢氧化镁,脂肪酸改性剂,抗流失剂,EVA40W。激光粒度测试仪,S A-CP3型;机械拉伸实验机,LJ -500N型;氧指数测定仪,DRK-YZY型。 1.2改性方法 在3L烧杯中加入定量一定浓度的没有改性的氢氧化镁乳液,升温至90℃,开动搅拌器,搅拌10m in,加入定量的改性剂,保温搅拌30m in后加入一定量的抗流失剂,继续搅拌1h,过滤,烘干,备用。2 结果与讨论 2.1改性剂流失控制 将计量的改性后氢氧化镁放入烧杯中,加入过量的盐酸后煮沸,过滤、洗涤,将滤出物烘干、称重,即为改性氢氧化镁实际含有的改性剂。 实验表明,未加抗流失剂的改性氢氧化镁含有的改性剂只相当于改性剂加入量的70%。当加入抗流失剂后,改性剂的流失明显减少,当抗流失剂的加入质量为改性剂的20%时,改性剂不再流失。这是因为湿法改性所用的改性剂是水溶性的,部分没有被氢氧化镁吸附的改性剂将随过滤流失,而抗流失剂可以和改性剂形成水不溶的鏊合物,避免了流失,提高了改性剂的利用效率。 2.2改性氢氧化镁的表面性质 2.2.1亲油性的变化 氢氧化镁亲油性的变化可以用在水中的沉降量表示,见表1。由表1可知,氢氧化镁随改性剂加入量增大,在水中沉降量明显减少,当100g氢氧化镁加入6g改性剂时,几乎不产生沉淀。这是由于改 05 无机盐工业 I N ORG AN I C CHE M I CALS I N DUSTRY 第37卷第6期 2005年6月

新型无机阻燃剂氢氧化镁

新型无机阻燃剂氢氧化镁 简介:氢氧化镁属于填加型阻燃剂,受热分解释放出水气,同时吸收了大量的热量,可以降低材料表面的温度,使得聚合物降解的速度放慢,随之小分子可燃物质的产生也减少。释放出来的水气稀释了表面的氧气,使燃烧难以进行。氢氧化镁在材料表面形成炭化层,阻止氧气和热量的进入,并且氢氧化镁分解生成的氧化镁是高级耐火材料,所以当燃烧源消失,火就自动停止,起到阻燃的效果。由于氢氧化镁阻燃作用主要发生在聚合物降解区,减少可燃物的产生,而对预燃区作用很少,可燃物的完全燃烧影响很小,产生的烟雾也减少,并且氢氧化镁可以冲淡和吸收烟雾,所以氢氧化镁具有减烟效果。 1、氢氧化镁阻燃剂的特点 氢氧化镁Mg(OH)2,白色固体粉末,不溶于碱性物质,受热分解为氧化镁和水,加热到340℃时开始分解,430℃时分解速度最快,到490℃时完全分解。氢氧化镁晶体属于2价金属水合物族,晶体结构是层状的CdI2型,形成连续的六边形,Mg2+层和OH-层互相重叠,每个镁离子被6个氢氧根离子配合从而形成Mg(OH)6八面体。标准状态下:Mg(OH)2(s)MgO(s)+H2O(g)△H=mol同样作为无机阻燃剂,氢氧化镁与氢氧化铝相比具有很多优点:①氢氧化铝热分解温度为245~320℃,与氢氧化镁分解温度340~490℃相比,有效使用范围低,适合用于加工温度比较低的树脂如ABS、丙烯酸树脂和环氧树脂等。氢氧化铝由于分解温度较低,其中部分结晶水在材料加工时已经分解,易使制品多泡、多孔,自身的阻燃效果也下降。而氢氧化镁能使得被填加的材料承受更高的加工温度,有利于加快挤塑速度,缩短模塑时间。而且氢氧化镁的分解能比氢氧化铝大、热容高,能够吸入更多的热量,阻燃效果更好[2]。②氢氧化镁的粒度比氢氧化铝小,对材料加工设备磨损小,有利于延长设备的使用寿命。③氢氧化镁的减烟效果

氢氧化镁阻燃剂现状及前景

氢氧化镁阻燃剂现状及发展前景 发布日期:2010-06-15 浏览次数:5 本文综述了无机添加型氢氧化镁阻燃剂国内外生产现状。汇集了国外主要的氢氧化镁阻燃剂生产厂家,以及生产厂家的生产规模和原料来源,并提出了从合成法和天然矿石加工法制取氢氧化镁阻燃剂的近期研究开发动向。 1前言 据统计,1989年世界阻燃剂消耗量达45万吨,其中无机物占一半以上,仅次于增塑剂。在无机阻燃剂中,氢氧化镁阻燃剂由于无毒、无烟、阻燃效果良好,自1980年以来已成为以减毒、抑烟为目标的阻燃研究领域较为活跃的研究课题,受到人们的广泛关注。 氢氧化镁受热分解时释放出结合水,同时吸收大量的潜热,这就降低了由它所填充的合成材料在火焰中的实际温度,具有抑制聚合物分解和对所产生的可燃气体的冷却作用。分解生成的氧化镁又是良好的耐火材料,也能帮助提高合成材料抗火的性能,这就是氢氧化镁具有阻燃性能的根本原因。氢氧化镁的热分解温度始于340℃,在490℃分解完全。在与热塑性树脂混炼加工过程中是稳定的。就加工的稳定性和难燃性而言,在目前推广的添加型阻燃剂中,氢氧化镁是一种比较理想的阻燃材料。此外,氢氧化镁还具有在燃烧初期发烟抑制作用,这一性能具有极其重要的意义。 氢氧化镁做为一种正式的无机化工产品,到目前为止尚未引起国人的足够重视,其实,该产品近几年来在国外受到广泛的关注。除做为阻燃剂外,应用领域在不断扩展,在诸如工业含酸废水中和处理,烟气脱硫,重金属脱除,水处理等领域较之传统的处理剂(石灰、烧碱、纯碱等)具有无可争议的优越性。加之氢氧化镁不具腐蚀性,PH值较低(仅9. 0 ),使用处理上安全可靠。因此,无论是合成法生产氢氧化镁还是天然资源加工法生产氢氧化镁,近年来均有较快的发展。做为镁质阻燃剂仅仅是氢氧化镁众多应用中的一项应用而已。 随着国内水镁石(天然氢氧化镁矿,Brucite )资源的不断发现(陕西、吉林、辽宁已发现三处具有工业开采价值的矿床),其开发利用工作已越来越受到人们的重视。做为综合利用项目之

硅烷偶联剂改性氢氧化镁阻燃剂

硅烷偶联剂改性氢氧化镁阻燃剂 氢氧化镁阻燃剂具有抑烟、绿色和环保等优势,但是由于其较低的阻燃效率,应用在高分子基材中往往需要较大的填充量,又因为氢氧化镁作为无机粉体具有亲水疏油,极性大的特点,不利于无机/有机材料的界面复合,较高的填充量会导致添加有氢氧化镁的高分子复合材料力学性能大幅下降。为了改善氢氧化镁与高分子基材之间无机/有机界面相容性的问题,本章选用3-甲基丙烯酰氧基丙基三甲氧基硅烷(A-174)对氢氧化镁进行干法改性,该种硅烷偶联剂可以与醋酸乙烯、丙烯酸或甲基丙烯酸单体共聚,常用于电线电缆行业,在提高复合材料界面相容性的同时,还可以改善电缆料防静电性能[47-48]。 本章对影响干法工艺改性氢氧化镁效果的因素,既改性剂用量、改性温度、改性时间和搅拌速度进行了研究。采用单因素实验方法,通过对改性粉体活化指数的测定,确定了硅烷偶联剂A-174改性氢氧化镁效果的最佳工艺条件,并通过SEM、热重分析和红外光谱等表征手段探讨了硅烷偶联剂A-174改性氢氧化镁的改性机理及改性效果。 1.1 实验 1.1.1 试剂及仪器 Magnifin H-5型氢氧化镁(美国雅宝公司) 3-甲基丙烯酰氧基丙基三甲氧基硅烷(湖北武大有机硅新材料有限公司) 邻苯二甲酸二辛酯DOP(国药集团化学试剂有限公司) DHG-9140A型电热恒温鼓风干燥箱(上海一恒科技有限公司) FA2004型电子天平(上海上天精密仪器有限公司) Y100L2-4高速搅拌机(张家港锦丰万科机械厂) DJ-1定时电动搅拌器(金坛市大地自动化仪器厂) JSM-5610LV/INCA扫描电子显微镜(日本电子株式会社) STA449F3同步热分析仪(德国耐驰) Nexus傅立叶变换红外光谱仪(美国热电-尼高力公司) 1.1.2 改性方法 首先,将氢氧化镁粉体放入干燥箱中,在120℃下干燥5小时以排除原料中吸附的水分,将干燥后的氢氧化镁冷却至室温备用。称取1kg已干燥的氢氧化镁粉末加至高速搅拌机中,在1000rpm的搅拌速度下预热至实验设计温度,当温度升至指定温度时,提高高速搅拌机搅拌速度至某设定值,并使用医用注射器向粉体中加入一定量硅烷偶联剂A-174。在改性进

新型无机阻燃剂氢氧化镁的特点和阻燃机理简介

新型无机阻燃剂氢氧化镁的特点和阻燃机理简介 孙永明刘建兰俞斌(南京工业大学理学院,南京210009) 金属氢氧化物阻燃剂中,氢氧化铝进入市场早,消费量比氢氧化镁大得多。尽管得到合适的晶形已经很多年,氢氧化镁晶体生长比较难控制,原来生产氢氧化镁的过程很复杂,导致氢氧化镁价格相对高,一直困扰着它的实际应用[1]。近年来在沉淀法和水合法基础上开发了氢氧化镁生产的新工艺,使得氢氧化镁具有取 代氢氧化铝的趋势。 1氢氧化镁阻燃剂的特点氢氧化镁Mg(OH)2,白色固体粉末,不溶于碱性物质,受热分解为氧化镁和水,加热到340℃时开始分解,430℃时分解速度最快,到490℃时完全分解。氢氧化镁晶体属于2价金属水合物族,晶体结构是层状的CdI2型,形成连续的六边形,Mg2+层和OH-层互相重叠,每个镁离子被6个氢氧根离子配合从而形成Mg(OH)6八面体。标准状态下:Mg(OH)2(s)MgO(s)+H2O(g)△H=81.02kJ/mol同样作为无机阻燃剂,氢氧化镁与氢氧化铝相比具有很多优点:①氢氧化铝热分解温度为245~320℃,与氢氧化镁分解温度340~490℃相比,有效使用范围低,适合用于加工温度比较低的树脂如ABS、丙烯酸树脂和环氧树脂等。氢氧化铝由于分解温度较低,其中部分结晶水在材料加工时已经分解,易使制品多泡、多孔,自身的阻燃效果也下降。而氢氧化镁能使得被填加的材料承受更高的加工温度,有利于加快挤塑速度,缩短模塑时间。而且氢氧化镁的分解能比氢氧化铝大、热容高,能够吸入更多的热量,阻燃效果更好[2]。②氢氧化镁的粒度比氢氧化铝小,对材料加工设备磨损小,有利于延长设备的使用寿命。③氢氧化镁的减烟效果比氢氧化铝好,能中和聚合物燃烧产生的有毒气体如二氧化硫、二氧化碳等。④原料丰富、易得,海水资源中含有大量的镁盐,同时还有镁矿如菱镁矿、白云石和水镁石等。 2氢氧化镁阻燃的机理氢氧化镁属于填加型阻燃剂,受热分解释放出水气,同时吸收了大量的热量,可以降低材料表面的温度,使得聚合物降解的速度放慢,随之小分子可燃物质的产生也减少。释放出来的水气稀释了表面的氧气,使燃烧难以进行。氢氧化镁在材料表面形成炭化层,阻止氧气和热量的进入,并且氢氧化镁分解生成的氧化镁是高级耐火材料,所以当燃烧源消失,火就自动停止,起到阻燃的效果。由于氢氧化镁阻燃作用主要发生在聚合物降解区,减少可燃物的产生,而对预燃区作用很少,可燃物的完全燃烧影响很小,产生的烟雾也减少,并且氢氧化镁可以冲淡和吸收烟雾,所以氢氧化镁具有减烟效果[3]。 3氢氧化镁的制备 3.1氢氧化镁阻燃剂的特性要求普通氢氧化镁一般为无定形或六方晶形晶体,比表面积大,晶粒容易2次聚集,极性很强,填充在树脂、塑料等中时分散性不好,而且容易使得材料机械强度明显下降,特别是冲击强度,所以普通氢氧化镁是不适合用作填充用阻燃剂。氢氧化镁用作阻燃剂时,必须经过特殊处理和表面改性,具备特定的晶形。一般要求:①晶形为纤维形,这样能够增加材料的延伸率和挠曲强度。②纯度必须高,纯度越高,阻燃效果越好。③颗粒越小越好实验证明纳米氢氧化镁作为阻燃剂填充到材料中时,各方面性能包括阻燃效果、消烟和机械性能都比微米氢氧化镁优越。④表面极性低,普通氢氧化镁正是由于表面极性高、微观内应力大,作为阻燃剂填充到材料中时影响了材料的机械性能。当表面极性低时,颗粒积聚成团性降低,在材料中分散性和相容性增加,对材料机械性能影响减少[4]。所以要用适当的表面活性剂及用量进行表面处理,来提高与高分子聚合物的相容性。⑤比表面积小于20m2/g,在(101)方位扭歪值小于

氢氧化镁阻燃剂

氢氧化镁阻燃剂 姓名:单显朋学号:20130591 班级:材料1305班 【摘要】:随着高分子材料日新月异飞速发展,高分子复合材料应用在人类生活的每一个领域,高分子材料的阻燃技术发挥着越来越重要的作用,市场发展的需要,对氢氧化镁的阻燃剂的研发方向也有着改变,更加注重对氢氧化镁的阻燃剂新的性能的研究,励志开发出更加高效的阻燃剂适应市场的进一步的发展。无论从合成资源还是从天然资源制得的氢氧化镁,用于阻燃剂量与日俱增,利用我国丰富的镁资源,依托技术创新开发高附加值的阻燃性氢氧化镁,是镁盐行业面临地一个共同课题。氢氧化镁是阻燃性能好的高效无卤阻燃剂,火灾后不会产生二次污染,都具有抑烟性强、无毒、无腐蚀、不挥发、不析出、安全等特点,已经被公认是环保型阻燃剂,正因为氢氧化镁的安全、环保特性,在塑料、电缆、橡胶等行业得到广泛的应用。我国拥有丰富的含镁矿物、富镁废弃物资源,因此氢氧化镁阻燃填料的前景是十分广阔的。本文简单介绍了阻燃剂的分类,氢氧化镁阻燃机理。重点介绍了氢氧化镁阻燃剂的作用、研究现状和发展方向。并指出氢氧化镁阻燃剂是一种新型的,环境友好型的无机阻燃剂。 【关键词】:氢氧化镁阻燃剂环保发展方向 【前言】:随随着高分子材料的发展,高分子材料的易燃性日益受到了人们的重视,对阻燃剂的需求量也随之增加。然而,随着人们对环境等因素提出了更加严格的要求,阻燃的无卤化、高效性、抑烟性、无毒成为未来的发展趋势。 1.阻燃剂的分类 阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。有机阻燃剂又分为磷系和卤系两个系列。由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。 无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。 2.氢氧化镁的阻燃机理 氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。氢氧化镁阻燃剂通过受热分解时释放出结合水,吸收大量的潜热,来降低它所填

氢氧化镁阻燃剂的表面改性进展

氢氧化镁阻燃剂的表面改性进展 介绍了氢氧化镁阻燃剂的阻燃机理,阐述了近年来氢氧化镁阻燃剂的表面改性进展,展望了氢氧化镁阻燃剂的研究方向。 标签:氢氧化镁;阻燃剂;表面改性 卤系阻燃剂虽然具有较好的有机聚合物材料阻燃性能,但材料一经燃烧产生大量的有毒气体,严重危害身体健康,加之北美西欧等国家已经取缔卤系阻燃剂的使用,发展新型有效的无卤阻燃剂成为研究的热点。新型无机阻燃剂氢氧化镁用于材料的阻燃不产生有毒物质,具有安全环保的特点,在高分子材料中应用广泛。本文对氢氧化镁阻燃剂的特点进行了论述,重点对其改性研究进行了阐述。 1 氢氧化镁阻燃剂特点 氢氧化镁是白色粉末状的六角形或无定性的片状结晶,其密度为2.39g/cm3,难溶于水,18℃时的溶解度为9*10-3g/L。Mg(OH)2的起始热分解温度比Al (OH)3要高,接近300℃。其最大分解峰温比Al(OH)3高约100℃,约400℃[1,2]。氢氧化镁阻燃性能来源于其特殊的热分解性能。氢氧化镁受热分解为氧化镁和水蒸气。总结其阻燃机理和特点如下[3,4]: (1)氢氧化镁热分解产生的水蒸气可有效稀释氧气浓度,阻碍燃烧; (2)氢氧化镁的热容大,热分解过程中可有效降低高分子基材所吸收的热能,使高分子基材的热分解有所延缓; (3)氢氧化镁形成的表面炭化层可以延缓燃烧,并能够抑制分解气体的燃烧; (4)氢氧化镁分解吸收大量的热量,降低被阻燃材料的溫度,可有效延缓高聚物分解速度; (5)氢氧化镁热分解产生的氧化镁本身就是优良的耐火材料,覆盖于高分子基材表面能够隔绝空气使燃烧受阻; (6)氢氧化镁用作阻燃剂时添加量较大才能提高高聚物的难燃性。 虽然氢氧化镁因其独特的热分解特性赋予其阻燃和抑烟的特性,但氢氧化镁用于高分子基材的阻燃仍受到一定的限制。首先,氢氧化镁具有較高的表面能,未经改性的氢氧化镁易于团聚,分散性能差。其次,氢氧化镁具有很好的亲水性能,而多数聚合物基体材料则是疏水的,两者的相容性差,氢氧化镁过量使用时影响高分子基材的加工性能和力学性能。此外,高填充氢氧化镁导致无机阻燃剂与基体材料的界面处产生裂纹的“夹生”现象[5]。改善氢氧化镁与高分子基材的相

氢氧化镁阻燃剂的制备

氢氧化镁阻燃剂的制备 介绍了氢氧化镁阻燃剂的特点和阻燃机理,重点阐述了氢氧化镁阻燃剂的制备方法,并讨论了其存在问题和发展方向。 标签:氢氧化镁;阻燃剂;制备 非卤化无机阻燃剂近年来成为研究的热点。非卤化无机阻燃剂应用于高分子材料的阻燃,可减少高分子材料燃烧时产生的有毒物质及污染物的产生量,保护环境,减少火灾损失。非卤化无机阻燃剂氢氧化镁是无机阻燃剂的新起之秀,引起广大研究者的兴趣。本文介绍氢氧化镁阻燃剂的特点和阻燃机理,重点介绍纳米氢氧化镁阻燃剂的制备方法,并对其研究方向进行展望。 1 氢氧化镁阻燃剂的特点和阻燃机理 氢氧化镁作为新型的无卤阻燃剂来源于其高温下的热分解反应。当温度达到340℃时,氢氧化镁开始分解,其分解方程式如下: 氢氧化镁热分解过程中生成氧化镁和水,完全分解时温度高达490℃。氢氧化镁热分解所产生的水蒸气能够吸收大量的热量,降低材料的表面温度,减少可燃小分子物质的产生,同时也稀释了高分子材料表面的氧气,使燃烧难以进行;此外,氢氧化镁与可燃物反应产生的碳化层可有效隔绝氧气阻碍可燃物的热分解;热分解产生耐火材料氧化镁能够覆盖聚合物的表面,有效阻止燃烧。同时,氢氧化镁还具有吸烟的作用。 氢氧化镁作为阻燃剂在高分子材料燃烧过程中不产生有害物质,且能够中和酸性气体,避免二次污染,绿色环保。但氢氧化镁表面具有较强的亲水性,与疏水性的聚合物分子亲和力较差。此外,氢氧化镁用作阻燃剂时只有其填充量>40%才具有较好的阻燃效果,但高填充量降低了高分子聚合物材料的机械性能和加工性能。采用特殊的方法制备分散性能好的氢氧化镁阻燃剂成为研究的重点。 2 氢氧化镁的制备 氢氧化镁的制备方法有多种,根据物态的不同,可分为固相法、气相法、液相法。液相法主要有沉淀法和水热反应法,沉淀法依据沉淀剂的种类不同细分为石灰法、氨法和氢氧化钠法,根据沉淀实施的具体方式不同又可分为直接沉淀法、均相沉淀法、溶液沉淀法和沉淀-共沸法以及反向沉淀法。沉淀法是将沉淀剂与Mg2+反应得到氢氧化镁的方法,也是最常用的氢氧化镁制备方法。水热法是以水为溶剂,在一定温度和压力下进行化学反应制备氢氧化镁的方法。水热处理氢氧化镁时需特殊的高压反应器,成本相对较高。 石灰法制备氢氧化镁的反应式如下所示:

镁系阻燃剂

镁系阻燃剂 来源:世界化工网https://www.360docs.net/doc/1418388486.html, 全文请访问:https://www.360docs.net/doc/1418388486.html,/睡过站了 氢氧化镁是一种阻燃填料,同前面讨论的氢氧化铝一样,是一种无毒阻燃剂,燃烧时不产生腐蚀性气体,不腐蚀模具‘所不同的是,它的热稳定性要比氢氧化铝高,可用于加工温度较高的聚丙烯等塑料。 一、阻燃级氢氧化镁的制备 原理上是以含有氮化镁的卤水、卤矿为原料与苛性碱类在水介质中反应,生成氢氧化镁沉淀,经过滤、洗涤、干燥而得,但用一般方法制得的氢氧化镁由于表面极性大、粒子之间的集聚成团性强,在塑料中的分散性和相容性都很差,因而大大降低塑料的机械强度和表现性能。 为制得适合于塑料阻燃用的氢氧化镁,必须经过特殊的工艺过程,现以我国兰州化学工业公司研究院制备阻燃剂氢氧化镁的方法为例说明如下。兰化100吨/年阻燃刑氢氧化镁酌生产工艺流程如图4—4。

卤液浓度、反应温度和反应时间。这些因索是影响能否生成新型碱式氯化镁的关键。这种新型碱式氯化镁的x—光谱图与普通Mg(OH)2:或针状城式氯化镁[Mg3(OH)5Cl·4H2O]及其他各种有记载的碱式氯化镁的x—光谱图均不同。 生产工艺的第二阶段是由碱式氮化镁经水热处理,促使生成品粒大、比表面积小、具有较好分散性的氢氧化镁。水热处理须严格控制温度为120一250℃,时间1—10h,然后分离出母液和水洗。水热处理是在蒸压釜中进行的、处理时的各项工艺条件对产品质量都有重要影响。

二、阻燃剂氢氧化镁的特性 普通氢氧化镁由于延伸串大、晶粒度大、比表面小这几个因素,和树脂亲和性差,再由于氢氧化镁晶粒间的强力鼓聚,在树脂中分散性差,而且加到树脂中后使加工性能变差,冲击强度明显下降。为了克服这些缺点,已研制出新颖的纤维状阻燃级氢氧化镁。从x—衍射结果看出,它具有三个特点:①在(l01)品面上的延伸率不大于3.O×10-3 ,在3.0×10-3 ~0.1×10-3 之间。②(101)品面上的晶粒在800一1000A之间。⑧比表面积低于20㎡/g,但至少在1㎡/g以上。由于这样的结构,晶粒的表面极性几乎接近于零。 阻燃级氢氧化镁的技术指标为: Mg(OH)2(%)>93 比表面积(㎡/8)<20 粒度分布95%以上粒径<3μm CaO(%)<3.0 C1-1 (%)<0.27 热分解温度(℃)340℃ 三、氢氧化镁的表面处理 和氢氧化铝一样,氢氧化镁需要表面改性处理。包膜剂一般用油酸钠(或铝、镁)、有机硅偶联剂、阳离子表面活性剂、氟聚合物等。用油酸钠的处理方法是将60℃以上的油酸钠水溶液加到氢氮化镁悬浮液中,温度保持在60℃以上,搅摔30min到2h,过滤、干燥。改性后的氢氧化镁加到乙烯—丙烯共荣物中,可达到UL一94的V—0级,冲击强度可达到

氢氧化镁

氢氧化镁 氢氧化镁在340℃~490℃之间分解,吸热量为187cal/g。氢氧化镁的起 始分解温度比水合氧化铝高得多,热稳定性好,具有良好的阻燃及消烟效果,特别 适宜于加工温度较高的聚烯烃塑料。Mg(OH)2用于PP时(添加量大于50%)具有良好的阻燃效果,将Mg(OH)2用于PE时,其阻燃效果优于Al(OH)3。这是因为氢氧化镁在燃烧时不仅仅进行脱水反应,还对聚合物有一定的碳 化作用16],形成一个保护层,起到阻燃作用。在相同的填充量下,不同的氢氧化铝、氢氧化镁配{TodayHot}比其阻燃效果差别不明显,但两种复合使用比单独使用效果要好,因为虽都是脱水反应,但在分解温度和吸热量上有差别。氢氧化镁需在更高的温度下才脱水,并同时有碳化效果。而氢氧化镁的吸热量相对小些,因其抑制材料温度上升的效果不如氢氧化铝,两者复合使用则能相互补充,其阻燃性能比单独使用效果要好。氢氧化镁具有较好的抑烟效果,含Mg(OH)2的PP试样的 发烟开始时间明显延迟,其最大发烟量及4分钟后的发烟量要比卤化物/Sb2O3的PP试样低得多。因此,在适当添加量的条件下,Mg(OH)2是PP的高效消 烟填料。Mg(OH)2的耐酸性差,在酸中会急速溶解,也容易受乳酸所影响 而使制品表面留下指纹。为克服Mg(OH)2分散性、相容性差的缺点,需开发 相容性好的新品种。可采用改善结晶粒径及凝集性能的方法,也可采用不饱和高级脂肪酸、饱和脂肪酸及热传导性优异的组分进行表面处理的方法。氢氧化镁 阻燃机理如下:氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量起到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧 化镁附着于可燃物表面又进一步阻止了燃烧的进行。氢氧化镁在整个阻燃过程

相关文档
最新文档