浅谈量子力学与量子思维

浅谈量子力学与量子思维
浅谈量子力学与量子思维

量子力学:不平凡的诞生预示了不平凡的神奇

——浅谈量子力学与量子思维

理学院物理系林功伟

量子力学自诞生以来,极大地推动了现代科学和技术的发展,已经深刻地改变了我们的生活方式。从电脑、电视、手机到核能、航天、生物技术,处处它都在大显身手,它已经把人类社会带入量子时代。但量子理论究竟带给了我们什么?这个问题,至今带给我们的仍只是无尽的想象。近年来,校长钱旭红院士,从改变思维的角度出发,在多种场合呼吁全社会要重视量子思维方式并加以运用,不久前又在“文汇科技沙龙”上,提议让“量子思维”尽早走入中小学课堂。那么,量子力学究竟是什么?

量子力学的诞生是一段波澜壮阔的传奇。它的发展史是物理学乃至整个科学史上最为动人心魄的篇章之一。不平凡的诞生预示了不平凡的神奇。在量子世界中,处事原则处处与我们熟悉的牛顿力学主宰的世界截然不同。在我们熟悉的世界,要么是波,要么是粒子。在量子世界,既是波也是粒子,既不是波也不是粒子,兼具波和粒子的特质,即波粒二象性。从而引申出量子叠加、测量塌缩、量子纠缠等种种神奇的现象。

量子叠加:鱼和熊掌亦可得兼

在经典的牛顿力学体系中,把粒子的运动都归结为确定轨道的机械运动。知道粒子某个时刻的运动状态与力的作用,就可以推断粒子的过去,也可以预知粒子的未来。就像一个算命先生,你告诉他生辰八字,他掐指一算就知道你的前世来生。在这种机械观下,仿佛一切都是注定的、唯一确定的。然而,在量子世界,一切都变得不一样。比如,有一天要从上海去北京,异想天开的你既想乘坐京沪高铁体验沿途的风光,又想搭乘飞机享受鸟瞰大地的感觉。我们习惯的方式是同

一时间我们只能选择其一,必须割爱其一。但在量子世界中你可以在火车上和飞机里共存量子叠加态上,鱼和熊掌亦可得兼。

这种量子叠加状态非常奇特。同一时刻,你既体验着高铁沿途的风光,也享受着飞机上鸟瞰大地的感觉,如果说同一时刻有两件事,但分别要求在火车上和在飞机里完成,量子叠加态的你完全可以神奇地一一照做。就像《西游记》中的孙悟空有分身术,同时一个上天一个入地。现在科学家们正利用这一原理来研制未来的量子计算机。量子计算机中的量子比特可以在无数的空间中量子叠加。它们并行地操作完成复杂的计算。已有研究表明这种量子并行计算确实可以在某些特定的复杂计算问题上大大提高效率。例如:一个400位的阿拉伯数字进行质数因子分解,目前即使最快的超级计算机也要耗时上百亿年,这几乎等于宇宙的整个寿命;而具有相同时钟脉冲速度的量子计算机可能只需要几分钟。还有利用量子快速搜索算法,可能很快从一个大森林里找到一片叶子,或者在一个沙滩上找到一颗沙子。在量子世界,“大海捞针”已不再是没有可能的事,简直“易如反掌”。

量子叠加不仅可以是同一个物质在它不同状态的叠加,还允许不同物质的叠加,哪怕这两个物质是迥然不同类的。比如光和原子,前者是宇宙中最快的,一眨眼可以绕地球好几周;后者可以慢悠悠地停留在某处。如果让它们量子叠加一起会怎么样呢?有种叫电磁诱导透明的技术就可以让光和原子相干叠加。叠加后我们称之为暗态极子,它是半光半原子的混合体,就像希腊神话中半人半神的帕尔修斯,既具备人的情感,也具备神的能力。人们发现这种半光半原子混合体的速度是介于之间的,它既不像光速那么快,也不像原子慢悠悠停留在某处,它的速度取决于光在其中叠加的比重。人们通过调节这个比重就可以让光乖乖地慢下来,需要的时候还可以让光再飞奔起来。在运用上,光子相互作用很小,而原子之间容易产生大的相互作用。有趣的是:最近,我们研究小组通过合理设计可以利用原子的优点来弥补光子的缺点,设计出强的单光子相互作用。如果把这个过程提升到量子思维的话,不就是我们生活中的“取长补短”“协同合作”吗?而这个思维能力正是当代社会所迫切需要的。

量子测量:“上帝”开始玩骰子了

如果说到这里,也许给人的印象是:在量子世界,不论多少事情原则上只要有孙悟空的量子分身术,一下子变出千千万万个孙悟空,都可以轻而易举地同时把它们都搞定。事实上不是这么简单的!前面提到的量子计算机可以提高计算效率是有条件的,要对应于某些问题进行巧妙设计才行。到目前为止,人们找到的可以提高计算效率的例子也还局限于一些典型的问题。为什么会这样?这个问题关乎于量子力学的一个神秘特质:量子测量塌缩。

在经典力学,物体的状态可以被精确测量,而且这个状态测与不测一个样,你测和我测也一样。这个意境就像一首诗《见与不见》中描绘的那样:“你见,或者不见我,我就在那里,不悲不喜”。量子测量则完全不同于经典力学中的测量:有测不准原理限制精确的测量,物体的状态会因测量和观察而改变,测量结果还依赖于测量的角度和方式。量子测量中,“上帝”开始玩骰子了!以至于爱因斯坦作为量子理论的奠基人之一却至死也不认同量子测量。然而直至今天,科学实验一次又一次地表明:“上帝”真玩骰子了!

还用刚开始的例子:在火车上和在飞机里的量子叠加态。测量之前你既在火车上也在飞机里,但如果对你测量(比如有人对你GPS定位),你可能忽然掉到火车上也可能忽然掉到飞机里,但最终你是掉到火车上还是在飞机里是无法预知的(唯一知道的是你掉到火车上或飞机里的概率)。量子测量结果还强烈地依赖观察测量的角度和方式。处于相同状态的量子系统,最后的结果跟观察的角度和方式有巨大的差别。如果观察的角度不同,对于相同状态,无论你观察得多仔细,得到的结果永远不同。这里绝对是“仁者见仁,智者见智”。在量子信息学里,人们就充分利用这一点,选择合适的角度测量得到自己想要的结果,如果方式不对,你看到的永远是另一面。由此可见,换个角度看问题是何其重要!量子力学中,两个共轭的物理量一起测量就必然有内在的不确定度,即使用再精准的实验仪器也无法消除,这是量子力学测不准原理决定的。通俗地讲,我们不可能对一个事物的方方面面都全面了解。量子力学告诉你,对其中的一方面知道得越全面,就

意味着对另一个方面必然会了解得越模糊,这不是靠你观察能力的提高所能避免的,这是量子力学原理决定的。

现在我们回到前面的问题:基于量子分身术为何不能解决所有事情?虽然量子叠加允许在无穷多的空间中并行操作所有的事情,但当要把办好的事情拿去交差时,就需要你提取结果,即要观察测量。这时量子态就可能塌缩到一个空间去,这就意味着,只有你在塌缩后的空间中办的事还留着,其余空间经历的事就像你梦中的事情一样,醒来时已经无影无踪,徒留一些伤感。所以对特定的问题需要人们巧妙地设计,并选择合适的测量方式方可得到想要的结果。不然可能由于叠加相消,事倍功半。这似乎说很多人一起做事情,需要合理的分工和合作,否则效果反而比一个人还要差。

量子纠缠:“爱情”的力量让一切都变得可能

量子纠缠又是量子力学一个神奇的表现。处于纠缠的两个物体,它们之间的距离无论多么的遥远,它们都是一个整体。哪怕一个留在地球上,一个远在太阳系之外,当其中一个遭遇什么事情(例如量子测量),太阳系之外的另一方也会马上随之感应。处于量子纠缠的两个物体,就像电影里一对深深相爱的恋人,彼此心灵相通,他们远在天边却时时思念并无形地连着彼此。这种神秘的关联使得量子纠缠成为宝贵的资源。利用它可以完成你很多意想不到的事情,比如量子信息中的量子隐形传态,它有一个生动形象的英文名字“Quantum teleportation”,“Quantum”指量子,“teleportation”在英语字典就是“心灵运输”的意思。在量子隐形传态中,借助量子纠缠可以把量子态从一个地方传到另一个地方,即使发送的人对自己要传的东西一无所知。量子纠缠还可以用来发送安全的量子密码,这种密码就像恋人间的悄悄话,只有他们心领神会,别人却听不懂。还有量子纠缠还能实现超密编码,原本你只能拿起一百斤东西,爱情力量却让你拿起两百斤东西。还有量子纠缠可以实现测量式的量子计算……

总之,个人体会:从物理过程分析,量子力学看似诡异,因它与我们习惯的

方式格格不入;但从它的结果发现似乎又更加优化、更加合理。最近著名杂志《科学》报道,科学家发现了室温下光合作用中的量子机制,并证明这一机制帮助光合作用获得高效的转化效率。也许正是这种大自然巧夺天工的优化和合理才是我们学习量子力学时所要吸取的营养。这里只是个人学习得到的一点粗浅体会。最后,欢迎大家关注我们即将推出的公选课——《来自量子世界的新技术》,我们可以一起探讨和遨游神奇的量子世界。

个人简介林功伟,1981年生于福建福州,2011年中国科技大学、中科院量子信息重点实验室博士毕业,同年进入华东理工大学物理系工作。现在激光物理与量子调控研究室主要从事电磁诱导透明与腔量子电动力学相关的量子光学与量子信息研究。

对量子力学的认识

对量子力学的认识 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。它有很多基本特征,如不确定性、量子涨落、波粒二象性等,其基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。量子力学的关键现象有黑体辐射、光电效应、原子结构和物质衍射,前人正是在在这些现象的基础上建立了量子力学。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。 黑体是一个理想化了的物体,它可以吸收所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。但从经典物理学出发得出的有关二者间关系的公式(维恩公式和瑞利公式)与实验数据不符(被称作“紫外灾变”)。1900年10月,马克斯·普朗克通过插值维恩公式和瑞利公式,得出了一个于实验数据完全吻合的黑体辐射的普朗克公式。但是在诠释这个公式时,通过将物体中的原子看作微小的量子谐振子,他不得不假设这些原子谐振子的能量,不是连续的,而是离散的。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。 1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹和菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子理论,来解释这个现象。光的量子的能量在光电效应中被用来将金属中的电子射出和加速电子。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。照射时间有多长,都不会发生光电效应,而入射光的频率高于极限频率时,即使光不够强,当它射到金属表面时也会观察到光电子发射。 20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(来曼系)、一个可见光系列(巴耳麦系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。1913年,尼尔斯·玻尔提出了以他名字命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量的轨道上运转。假如一个电子,从一个能量比较高的轨道,跃到一个能量比较低的轨道上时,它发射的光的频率为通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即He+, Li2+, Be3+ 等。 1919年克林顿·戴维森等人,首次成功地使用电子进行了衍射试验,路易·德布罗意由此提出粒子拥有波性,其波长与其动量相关。简单起见这里不详细描写戴维森等人的试验,

几个哲学思想实验

想过什么是哲学吗?可能大家都不是很说的清楚。看看下面这些“史上最著名的10个思想实验”,可能你对哲学会有自己的理解了。 10.电车难题(The Trolley Problem) “电车难题”是伦理学领域最为知名的思想实验之一,其内容大致是:一个疯子把五个无辜的人绑在电车轨道上。一辆失控的电车朝他们驶来,并且片刻后就要碾压到他们。幸运的是,你可以拉一个拉杆,让电车开到另一条轨道上。但是还有一个问题,那个疯子在那另一条轨道上也绑了一个人。考虑以上状况,你应该拉拉杆吗? 解读: 电车难题最早是由哲学家Philippa Foot提出的,用来批判伦理哲学中的主要理论,特别是功利主义。功利主义提出的观点是,大部分道德决策都是根据“为最多的人提供最大的利益”的原则做出的。从一个功利主义者的观点来看,明显的选择应该是拉拉杆,拯救五个人只杀死一个人。但是功利主义的批判者认为,一旦拉了拉杆,你就成为一个不道德行为的同谋——你要为另一条轨道上单独的一个人的死负部分责任。然而,其他人认为,你身处这种状况下就要求你要有所作为,你的不作为将会是同等的不道德。总之,不存在完全的道德行为,这就是重点所在。许多哲学家都用电车难题作为例子来表示现实生活中的状况经常强迫一个人违背他自己的道德准则,并且还存在着没有完全道德做法的情况。 9.空地上的奶牛(The Cow in the field) 认知论领域的一个最重要的思想实验就是“空地上的奶牛”。它描述的是,一个农民担心自己的获奖的奶牛走丢了。这时送奶工到了农场,他告诉农民不要担心,因为他看到那头奶牛在附件的一块空地上。虽然农民很相信送奶工,但他还是亲自看了看,他看到了熟悉的黑白相间的形状并感到很满意。过了一会,送奶工到那块空地上再次确认。那头奶牛确实在那,但它躲在树林里,而且空地上还有一大张黑白相间的纸缠在树上,很明显,农民把这张纸错当成自己的奶牛了。问题是出现了,虽然奶牛一直都在空地上,但农民说自己知道奶牛在空地上时是否正确? 解读: 空地上的奶牛最初是被Edmund Gettier用来批判主流上作为知识的定义的JTB(justified true belief)理论,即当人们相信一件事时,它就成为了知识;这件事在事实上是真的,并且人们有可以验证的理由相信它。在这个实验中,农民相信奶牛在空地上,且被送奶工的证词和他自己对于空地上的黑白相间物的观察所证实。而且经过送奶工后来的证实,这件事也是真实的。尽管如此,农民并没有真正的知道奶牛在那儿,因为他认为奶牛在那儿的推导是建立在错误的前提上的。Gettier利用这个实验和其他一些例子,解释了将知识定义为JTB 的理论需要修正。 8.定时炸弹(The Ticking Time Bomb) 如果你关注近几年的政治时事,或者看过动作电影,那么你对于“定时炸弹”思想实验肯定很熟悉。它要求你想象一个炸弹或其他大规模杀伤性武器藏在你的城市中,并且爆炸的倒计时马上就到零了。在羁押中有一个知情者,他知道炸弹的埋藏点。你是否会使用酷刑来获取情报? 解读:

量子力学论文

量子理论及技术的发展 【摘要】本文简述了在量子力学的发展过程中所带动的激光、半导体、扫描 隧道显微镜、量子信息等技术的形成及影响,并借此强调了基础理论对于技术发明的重要性。 【关键词】量子力学激光半导体扫描隧道显微镜量子信息 回顾科技史,以量子论、相对论为代表的近代物理学掀起了以能源、材料、信息为代表的现代技术革命,其中量子理论在形成中便带动了相关技术群的出现并促进了自身研究的深入和拓展。 一、从“光量子假说”到激光技术 1900年,德国物理学家普朗克为了解决有关热辐射现象的“黑体辐射”难题,提出了“普朗克假设”,其“能量子”概念的提出标志着量子力学的诞生。随后,爱因斯坦于1905年提出了“光量子假说”以解释“光电效应”,使人们对能量量子化的认识更深入了一步的认识。1916年,爱因斯坦指出辐射有两种形式:自发辐射和受激辐射,从而为激光器的发明奠定了理论基础。 激光器在技术上的最终实现得益于二战后对与雷达相关的微波的深人研究。其中标志性的工作有:1933年拉登伯格观测到了负色散现象;1939年法布里坎特指出辐射放大的必要条件是实现粒子数反转;1946年布洛赫观察到了粒子数反转的信号;1951年珀塞尔第一次在实验中实现了粒子数反转并观察到了受激辐射;1951年汤斯首次提出实现微波放大的可能性;1954年汤斯等人成功地制成了世界上第一台“辐射的受激发射微波放大”的装置(简称脉塞Maser);1958年汤斯和肖洛论证了把微波激射技术扩展到 论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行为,但得到的定量比热关系在低温时与实验 偏离较大。1907年爱因斯坦应用了量子假说,所得结果得到了能斯特的实验验证和大力宣传,使量子论开始被人们认识,从而打开了迅速发展的局面。从1913年玻尔提出半 经典的量子论原子模型到1928年狄拉克发表电子的相对红外区和可见光区的可能性。最终,美国休斯研究所的梅曼于1960年成功制造并运转了第一台激光器——红宝石脉冲激光器,同年12月贾万研制出第一台气体激光器——氦氖激光器。 这两种激光器的相继问世引起了全世界科技界研究激光的热潮,各种激光器陆续出现。其中有可获得大功率脉冲的钕激光器,连续输出大功率的二氧化碳激光器,可在室温下工作的小型半导体激光器,从化学反应获得能量的化学激光器,光谱线很宽的可以连续改变激光输出波长的染料激光器。后来,还出现了自由电子激光器、准分子激光器、离子激光器等等。激光的波长范围已扩展到从红外到紫外以至x射线的所有波段,激光的应用更涉及到从日常生活到高新科技各个领域.如工业上的激光切割、焊接、打孔、表面改性、测距、大气污染分析;生物上的激光育种、水产养殖、品种改良、生命活细胞的全息照相;医疗上的激光外科手术、诊断;军事上的激光制导炸弹、强激光武器;此外,激光还应用于通信、光盘、分离同位素、激光核聚变等许多方面。

浅谈量子力学的前沿进展

量子力学论文 题目:浅谈量子力学的前沿进展 学院: 专业: 学号: 姓名: 时间:2014年7月1日 指导教师:

浅谈量子力学的前沿进展 摘要:量子力学是在19世纪末发展起来的一门新科学,而且它还一直处于不断地发展中,在自然科学中具有重要作用。量子力学的规律已成功地运用于各个领域,物理、材料、化学、生命、信息和制药等,量子力学与我们的生活密切相关。量子力学是研究微观粒子的运动规律,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。本文将对量子力学目前的发展、应用以及前沿进展做出阐述。

关键词:量子力学;发展;前沿 Abstract Quantum Mechanics was a new subject that was formulated at the end of the 19th century and is still under development. It plays a key role in natural sciences. The theory of Quantum Mechanics is applied to a variety of areas, such as physics, materials, chemistry, life science, informatics and pharmacy and is closely related to our daily life. Quantum Mechanics is a basic theory that studies the motion law of microscopic particles and studies mainly atoms, molecules, condensed matter, and the structure and nature of atomic nucleus and fundamental particles. It has been one hundred years up to now when Quantum Mechanics was founded. It extended from kinetic theory at atomic level to Physics and other subjects and high-tech within one hundred years of development. As a matter of fact, it has beyond the scope of Physics; it is not only the backbone of modern matter science, but also one of the main theoretical basis of modern science and civilization construction. This paper will make a simple exposition for the modern development, application and leading edge of Quantum Mechanics.

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

量子力学论文

从波函数到薛定谔方程 摘要:本文从波函数出发,阐述薛定谔的推导过程,并且根据哈特里福克方程,克莱因戈尔登方程完善薛定谔方程的泡利不相容原理,洛伦兹不变性。 关键词:波函数薛定谔方程哈特里福克方程克莱因戈尔登方程 一.波函数: 微观粒子的运动状态称为量子态,是用波函数来描述的,这个波函数所反映的微观粒子波动性,这个波函数所反映的微观粒子波动性,就是德布罗意波。(量子力学的基本假设之一)并且,玻恩指出:德布罗意波或波函数不代表实际物理量的波动,而是描述粒子在空间的概率分布的概率波。 (1)推导过程: 在波动学中,描述波动过程的数学函数都是空间、时间二元函数一列沿X轴正向传播的平面单色简谐波的波动方程,即: 应用欧拉公式,可以推广到复数域: 再通过德布罗意公式,可以得到自由粒子的波函数: (2)波函数性质 1.自由粒子的能量和动量为常量,其波函数所描述的德布罗意波是平面波。 2.对于处在外场作用下运动的非自由粒子,其能量和动量不是常量,其波函数所描述的 德布罗意波就不是平面波。 3.外场不同,粒子的运动状态及描述运动状态的波函数也不相同。 (3)波函数的统计假设 设描述粒子运动状态的波函数为,则 1.空间某处波的强度与在该处发现粒子的概率成正比; 2.在该处单位体积内发现粒子的概率(概率密度)与 的模的平方成正比。 (4)波函数统计意义的具备条件 1.连续- 因概率不会在某处发生突变,故波函数必须处处连续; 2.单值- 因任一体积元内出现的概率只有一种,故波函数一定是单值的; 3.有限- 因概率不可能为无限大,故波函数必须是有限的;

二.薛定谔方程: 1.1925年德国物理学家薛定谔提出的非相对论性的量子力学基本方程,质量为m的粒 子,在势能函数为的势场中运动,当其运动速度远小于光速时,它的波函数 所满足的方程为: 这就是薛定谔方程,它反映微观粒子运动状态随时间变化的力学规律,又称含时薛定谔方程。 其中,为哈密顿算符。 2.若粒子所在的势场只是空间函数,那么对应于一个可能态有一个能量值E,即可得到定态薛定谔方程: 3.定态是指波函数具有的形式。它的特点是其概率密度与时间无关。 4.定态波函数中振幅函数满足统计的条件: (1)连续,单值,有限的标准条件 (2)归一化条件 (3)对坐标的一阶导数存在并且连续 5.可以看出定态波函数和定态薛定谔方程可以通过势能函数互相导出。 三.哈特里-福克方程: 1.为了解决多电子体系薛定谔方程近似求解的问题量子化学家道格拉斯·哈特里在1928年提出了哈特里假设,他将每个电子看做是在其他所有电子构成的平均势场中运动的粒子,并且首先提出了迭代法的思路。哈特里根据他的假设,将体系电子哈密顿算子分解为若干个单电子哈密顿算子的简单代数和,每个单电子哈密顿算子中只包含一个电子的坐标,因而体系多电子波函数可以表示为单电子波函数的简单乘积,这就是哈特里方程。 2.由于哈特里没有考虑电子波函数的反对称要求,事实上他的方程还是有问题的。1930年,哈特里的学生弗拉基米尔·福克,提出了考虑泡利原理的自洽场迭代方程和单行列式型多电子体系波函数,这就是今天的哈特里—福克方程。 3.所以,在薛定谔没有解决的情况下,哈特里福克方程使得量子力学是满足泡利原理的。

量子力学引发的哲学争论

量子力学引发的哲学争论 哲学史上唯物论和唯心论的斗争,大都集中在关于物质的概念和物质与意识的关系这两个问题上。在20世纪的中叶,随着量子力学的兴起和发展,哲学上关于物质概念的问题的争论也随之变得激烈和尖锐,而这场哲学争论正是由量子力学的不确性定原理引出的。 不确定性原理是量子力学的一个基本原理。若通过位置和动量来确定物质的运动,在宏观世界中,根据经典力学,一个质点的位置和动量是可以同时确定的。而在微观世界里,根据量子力学的不确定性原理,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式 若进行实验测量,如果精确地测定粒子在某一时刻所处的位置,那么运动就会遭到破坏,以至于以后不可能重新找到该粒子。反之如果精确地测出其速度,那么它的位置图像就会模糊不清。除了坐标和动量,方位角和角动量,能量和时间等也都是成对的不确定量。 不确定性原理对于哲学上关于物质概念的思考和研究无疑是一次冲击和挑战。面对微观物质,当我们不能精确地描述出它的运动时,通过宏观世界所得出的物质概念是否还适用呢? 物理学家海森堡在提出不确定性原理后,又用哲学观点对这种现象进行了解释。他认为:量子论的出发点是将世界区分为“研究对象和世界的其余部分;这“世界的其余部分”,物质是客观存在的,而作为“研究对象”的部分(即微观客体的部分)的运动特性,主要依赖于科学仪器的作用,依赖于观察者的作用,由此,他提出了主客观不可分的哲学命题。 第一流物理学家的这种哲学观,在哲学界引起了轩然大波。许多学派纷纷发表了与海森堡相类似的哲学观点,其中最具代表性的是“物质的非物质化”的哲学观。美国哲学家汉生在《物质的非物质化》一文中认为:量子力学的理论表明“物质已经非物质化了”,牛顿可以通过精确测定的状态、点的形式、绝对固体性等,表示物质的性质,而电子并没有这种性质。量子理论排除了构成一个电子的粒子状态的协和概念的绝对可能性。对于电子,我们不能同时精确地说出它的位置和动量,这是“物质的非物质化”的证据。 辨证唯物主义哲学家们和物理学家中的唯物主义者们,对于这一争论自然不会袖手旁观。物理学家冯劳厄对“物质的非物质化”论有过严厉的批评,他认为,不仅是原子,甚至基本粒子也同外在世界的其他事物一样,具有完全的实在性。这场争论在日本的哲学界,反响也十分强烈。为了批判“物质的非物质化”这种唯心主义的哲学观,现代日本物理学界名流武谷三男通过发表《量子力学的观测问题》等文章,指出:“哲学家把在量子力学的观测中主观作用于客观的情况说成是引起不确定的原因是对这种情况的曲解。”武谷三男认为,引起不确定性原理的原因不在于“我”,而依然在于“客体的物”,他从如下两个方面对这种哲学观点进行了批判: 一、不确定性原理所描述的情况是客观存在的粒子本身所具有的特性在科学仪器 中的反映。 武谷三男认为,“不确定性原理所描述的关于电子的位置和速度不可能同时精 确地加以测量的情况,是电子本身具有波粒二象性这一客观存在的特征的一种 放映。在经典力学中,像太阳系行星的运动那样只要给出某一个物体处于某一 位置和朝着某一方向运动作为初始条件,就能够唯一地确定它以后的运动。然 而,当测量电子时,要说明它处于某一位置,由于电子是波动的,必须用波动 来表述所处的位置情况,为此就要把各种各样的波叠加起来,使波的振幅在某 一位置变大,而在其他位置则趋于零。这样一来,由于所叠加的各种波的运动 方向和运动速度各不相同,所以确定了它处于某一位置,同时便无法确定它的

量子力学课程论文由薛定谔方程引发的深思

量子力学课程论文题目:《由薛定谔方程引发的深思》 学院:数理信息工程学院 专业:物理112班 学生姓名:徐盈盈王黎明 学号:11260124 11180216 完成时间: 2013年12月20日

由薛定谔方程引发的深思 【摘要】 薛定谔方程的提出揭示了微观物理世界物质运动的基本规律,它是原子物理学中处理一切非相对论问题的有力工具[1]。作为量子力学之魂,薛定谔方程完整的向我们诠释了微观世界的魅力。为更加深入地学习薛定谔方程和量子力学,我们将分析薛定谔方程的推导过程、介绍其在求解粒子问题中的应用以及其在原子物理、核物理、固体物理等学科的应用,最后谈谈自己的想法。 【引言】 随着“任何粒子都具有波粒二象性”的德布罗意假说成功被戴维森-革末实验所证实,薛定谔思考着会有一个波动方程可以反应粒子的这种量子行为。于是,基于众多前人研究成果,薛定谔于1926年提出薛定谔方程,完美的解释了波函数的行为。正是因为薛定谔方程在量子力学进程中起着举足轻重的作用,所以我们必须深入学习其推导过程和应用。并且由薛定谔方程出发,深刻思考我们在物理学习过程中所必须具备的思维方式和学习态度。 【关键词】 薛定谔方程玻尔理论波函数深思 【正文】 一、薛定谔方程的提出与推导 1、薛定谔方程的历史背景 爱因斯坦认为普朗克的量子为光子,并且提出了奇妙的“波粒二象性”。1924年,路易·德布罗意提出“物质波”的概念,认为任何粒子都具有波粒二象性,并且这个假说于1927年成功被戴维森-革末实验所证实。薛定谔由此认为一定会有一个波动方程能够恰当的描述粒子的这种性质。最后他借助于经典力学的哈密顿原理以及光学的费马原理,将牛顿力学与光学类比,并且以哈密顿-雅克比方程为工具,成功建立了薛定谔方程,并且准确的计算了氢原子的谱线。 2、薛定谔方程的推导思路 ①首先自由粒子可用平面波来表示,可当粒子收到随时间或位置变化的力场的作用时,应该用波函数来表示。波函数描写体系的量子状态。波函数是指在空间中某一点的强度和在该点找到粒子的概率成比例[2]。 ②当讨论粒子状态随时间变化所遵从的规律时,必须建立波函数随时间变化的方程。 ③用平面波描写自由粒子的波函数ψ(r,t)=Ae i(p.r-Et)/h,并且对时间求偏微商,对位置求二次偏微商,再利用能量和动量的关系式E=p2/2m+V(r),最终可得到薛定谔方程: ④从一维薛定谔方程出发,可以得出三维薛定谔方程和定态薛定谔方程:

浅析量子力学

Despite the name, the Underground Railroad was not really a railroad, but was a network of people who assisted fugitive slaves. Many fugitives who escaped to the North and Canada received assistance along the way from individuals who were involved in this network. By the early 19th century, the organization became so successful that it is estimatal that between 1810 and 1850,100,000 slaves escaped from the South through the Underground Railroad. It was not a coincidence that it was called the Underground Railroad. Steam railroads had just emerged and the terms used to describe the people who helped and the fugitives were related to the railroad line. Fugitive slaves were called “parcels”and “passengers”, the helpers were the “conductors”, the people who provided their homes as refuge were called “stationmasters”, and the homes were referred to as “depots” or “station”. The route used was an important part of a successful escape. There were numerous secret routes that a conductor could use. The one used depended on where the search parties and slave catchers were stationed . Some trips required the use of many different routes. If it appeared that they might be in danger, a guide would change paths. Some guided and

浅谈量子力学的哲学含义

浅谈量子力学的哲学含义 【摘要】量子力学的产生和发展受到经济生活的多方面影响,量子力学的产生也相应地对于政治、经济生活提供积极因素影响,量子力学中包含的量子场理论和微观粒子的提出,微观世界物质的特性等提出都在一定程度上包含一定的哲学含义。 【关键词】量子力学;哲学含义 1.量子力学的主要表述 量子力学确立了普遍的量子场实在理论。宇宙最基本的物理是量子场,量子场是第一性的,而实物粒子是第二性的。微观粒子没有经典物理学中的决定论表述,只有非决定论论述。量子力学的微观粒子理论中,包含具有叠加态的波函数,秉有波粒二象性和非定论的远程联系。特定的测量方式造成波函数的失落,越来越显露出它的本质特征。量子场实在论证明了宇宙的实在性,不同于德谟克里特所说的宇宙存在,宇宙更多如毕达哥拉斯和柏拉图描述的:宇宙是用数学公式表达的波函数以及所显示的各种图形的组合。 量子力学对于波粒二象性的揭示和微观粒子中反粒子存在的表述,阐释着物质和反物质的辩证存在关系。量子力学的多世界论认为世界大系统由多个平行世界构成,世界论中也存在反世界物质。无论是物质和反物质还是世界论中的反世界物质都表现着哲学中黑格尔和马克思主义哲学的正确性和真理性成分。其中物质与反物质是一对矛盾体,物质相对于反物质而存在。矛盾的普遍性阐释了时时刻刻存在矛盾的真理性。宇宙世界的基本属性是矛盾性和对立统一性。矛盾的特殊性要求必须正确把握主要矛盾和次要矛盾以及矛盾的主要方面和次要方面。主要矛盾的主要方面决定事物的根本性质。然而,在矛盾的哲学理论体系中,矛盾的双方是相对立而存在的,所谓物质和反物质的矛盾性从表象上分析是对立的存在,对立关系就是阐释着物质和反物质的相对应。在某一特殊世界领域中,各种客观实在具有方面上的相对关系。历史经验告诫区分“现实矛盾”和“逻辑矛盾”。 2.量子力学包含的矛盾哲理 其中逻辑矛盾表现在概念提出中的逻辑关系的对立;现实矛盾是隐藏在逻辑矛盾之下更深层次的以客观事实为导向的矛盾。任何话语系统不允许逻辑矛盾,A是B与A是-B同时为真,正如“正粒子”与“反粒子”碰撞,这两个命题是可以互相抵消为无的。然而,现实的矛盾,如“正电荷”和“负电荷”,“正粒子”和“反粒子”的相互矛盾关系,是长期存在的,共同构成了物质世界的矛盾客体。可以说矛盾的存在是世界物质性发展和产生的基本推动力。世界是充满矛盾的世界,矛盾构成了世界的真实存在。矛盾具有同一性和斗争性,在量子力学理论体系中正电荷和负电荷是在同一和斗争中不断转化的,正电荷和负电荷的交汇形成电荷的不带电中和性质,正负电荷在同一的过程中各自改变其特性以适应向新物质存在的客观转化。正负粒子的斗争性体现于正负粒子的正负电子相互碰撞和作用,不

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

浅谈量子力学与量子思维

量子力学:不平凡的诞生预示了不平凡的神奇 ——浅谈量子力学与量子思维 理学院物理系林功伟 量子力学自诞生以来,极大地推动了现代科学和技术的发展,已经深刻地改变了我们的生活方式。从电脑、电视、手机到核能、航天、生物技术,处处它都在大显身手,它已经把人类社会带入量子时代。但量子理论究竟带给了我们什么?这个问题,至今带给我们的仍只是无尽的想象。近年来,校长钱旭红院士,从改变思维的角度出发,在多种场合呼吁全社会要重视量子思维方式并加以运用,不久前又在“文汇科技沙龙”上,提议让“量子思维”尽早走入中小学课堂。那么,量子力学究竟是什么? 量子力学的诞生是一段波澜壮阔的传奇。它的发展史是物理学乃至整个科学史上最为动人心魄的篇章之一。不平凡的诞生预示了不平凡的神奇。在量子世界中,处事原则处处与我们熟悉的牛顿力学主宰的世界截然不同。在我们熟悉的世界,要么是波,要么是粒子。在量子世界,既是波也是粒子,既不是波也不是粒子,兼具波和粒子的特质,即波粒二象性。从而引申出量子叠加、测量塌缩、量子纠缠等种种神奇的现象。 量子叠加:鱼和熊掌亦可得兼 在经典的牛顿力学体系中,把粒子的运动都归结为确定轨道的机械运动。知道粒子某个时刻的运动状态与力的作用,就可以推断粒子的过去,也可以预知粒子的未来。就像一个算命先生,你告诉他生辰八字,他掐指一算就知道你的前世来生。在这种机械观下,仿佛一切都是注定的、唯一确定的。然而,在量子世界,一切都变得不一样。比如,有一天要从上海去北京,异想天开的你既想乘坐京沪高铁体验沿途的风光,又想搭乘飞机享受鸟瞰大地的感觉。我们习惯的方式是同

一时间我们只能选择其一,必须割爱其一。但在量子世界中你可以在火车上和飞机里共存量子叠加态上,鱼和熊掌亦可得兼。 这种量子叠加状态非常奇特。同一时刻,你既体验着高铁沿途的风光,也享受着飞机上鸟瞰大地的感觉,如果说同一时刻有两件事,但分别要求在火车上和在飞机里完成,量子叠加态的你完全可以神奇地一一照做。就像《西游记》中的孙悟空有分身术,同时一个上天一个入地。现在科学家们正利用这一原理来研制未来的量子计算机。量子计算机中的量子比特可以在无数的空间中量子叠加。它们并行地操作完成复杂的计算。已有研究表明这种量子并行计算确实可以在某些特定的复杂计算问题上大大提高效率。例如:一个400位的阿拉伯数字进行质数因子分解,目前即使最快的超级计算机也要耗时上百亿年,这几乎等于宇宙的整个寿命;而具有相同时钟脉冲速度的量子计算机可能只需要几分钟。还有利用量子快速搜索算法,可能很快从一个大森林里找到一片叶子,或者在一个沙滩上找到一颗沙子。在量子世界,“大海捞针”已不再是没有可能的事,简直“易如反掌”。 量子叠加不仅可以是同一个物质在它不同状态的叠加,还允许不同物质的叠加,哪怕这两个物质是迥然不同类的。比如光和原子,前者是宇宙中最快的,一眨眼可以绕地球好几周;后者可以慢悠悠地停留在某处。如果让它们量子叠加一起会怎么样呢?有种叫电磁诱导透明的技术就可以让光和原子相干叠加。叠加后我们称之为暗态极子,它是半光半原子的混合体,就像希腊神话中半人半神的帕尔修斯,既具备人的情感,也具备神的能力。人们发现这种半光半原子混合体的速度是介于之间的,它既不像光速那么快,也不像原子慢悠悠停留在某处,它的速度取决于光在其中叠加的比重。人们通过调节这个比重就可以让光乖乖地慢下来,需要的时候还可以让光再飞奔起来。在运用上,光子相互作用很小,而原子之间容易产生大的相互作用。有趣的是:最近,我们研究小组通过合理设计可以利用原子的优点来弥补光子的缺点,设计出强的单光子相互作用。如果把这个过程提升到量子思维的话,不就是我们生活中的“取长补短”“协同合作”吗?而这个思维能力正是当代社会所迫切需要的。

量子力学论文(1)

量子力学和物质波 量子力学是20世纪最成功的理论之一,物质波是量子力学从建立到完成过程中起决定性作用的概念之一。本文从量子力学的建立和发展过程出发,对量子力学与物质波的关系给出了论证:量子力学的建立过程就是对物质波的认识过程;量子力学的框架就是围绕粒子的波动性(波函数)来完成的;量子力学的含义就是给物质波一个物理解释。文章最后作者根据自己的观点给出了解决“量子物理论战”的一条可能途径。 量子力学是关于微观粒子运动的一门科学,其核心内容是描述微观粒子的波粒二象性——微观粒子的运动规律类似于波的运动;而微观粒子在被一些实验手段测量时又体现经典粒子的性质,如,具有动量、质量、电荷——这看似矛盾的性质被统一于物质波的概念中。虽然我们对量子力学仍有疑问,但是它的成功已经被无数实验确认,而且数学证明它也是自洽的,它自身的内部体系已经变得几乎无懈可击;所以我们要有所突破只能从外部,从它的假设入手。我想,最有可能突破的就是它的统计解释,也就是量子力学的主要任务——描述物质波。当然这一切需要实验的支持。由此可见物质波对于量子力学的意义。。 量子力学是20世纪最成功的物理理论之一,熟悉它的建立过程对我们更好的理解量子力学会有很大的帮助。我们将会看到,量子力学的建立过程就是对物质波的认识过程。 1914年,密立根用实验完全确认了爱因斯坦的光量子理论。1923年,康普顿的X射线散射实验证实了辐射的粒子性;在康普顿的“X射线在轻元素上的散射的量子理论”中写道:“这个实验非常令人信服的指出,辐射量子确实既带有能量,也带有定向的动量。” 至此能量的量子化观念就完全建立起来了。需要说明的是,普朗克、爱因斯坦等人的关于能量量子化的工作虽然与物质波没有直接联系,但是确实为物质波的提出提供了很好的启示。 能量量子化观念建立以后,考虑到光子和实物粒子的类比,1923年9月到10月间,德布罗意在《法国科学院通报》上先后发表了分别题为《辐射——波与量子》、《光学——光量子、衍射和干涉》、《量子、气体分子运动论和费马原理》的论文,逐步阐述了他关于物质波的思想,随后在1924年向巴黎大学科学院提交的博士论文《量子理论研究》中完善了物质波的理论:能量子(光子)的波粒二象性同样也适应于物质,写出了有关物质波的关系式 物质波的概念在量子物理学发展过程中起了纽带的作用,它既深化了量子化的观念,把量子化推广到所有物质,使我们对世界物质有了新的认识;又是波动力学的出发点,正是对于物质波的追问,才导致了量子力学的诞生。 物质波的概念提出后,接下来的任务就是找到一个描述它的数学理论,这就导致了量子力学的建立。我们将看到量子力学的体系是怎样围绕物质波的概念建立的。 波函数,确定力学量的取值情况

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

量子力学的产生与发展

量子力学的产生与发展 量子力学是描述微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。 量子的诞生 19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。1900年德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hV为最小单位,一份一份交换的。普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来.在1900年提出了一个新的公式。量子论就这样随着二十世纪开始由伟大的物理学家普朗克把它带到我们这个世界来。虽然在围绕原子论的争论过程中,玻尔兹曼(1844—1966年)在反驳唯能论时说过“怎么能说能量就不像原子那样分立存在呢?”这样的话,马赫(1838—1916年)曾经表明化学运动不连续性的观点,但真正把能量不连续的概念引入物理学的是普朗克。因为能量不连续的概念与古典物理学格格不入,物理学界对它最初的反映是冷淡的。物理学家们只承认普朗克公式是同实验一致的经验公式,不承认他的理论性的量子假说。普朗克本人也惴惴不安,因为他的量子假设是迫不得已的“孤注一掷的举动”。他本想在最后的结果中令h→0,但却发现根本办不到。他其后多年试图把量子假说纳入古典物理学框架之内,取消能量的不连续性,但从未成功。只有爱因斯坦最早认识到普朗克能量子概念在物理学中的革命意义。

著名科学家爱因斯坦经过认真思考,于1905年提出了光量子说。1916年美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。 量子的青年时代 杂乱的数字以及有趣的台阶想法 从光谱学中,我们知道任何元素都产生特定的唯一谱线。这些谱线呈现什么规律以及为什么会有这些规律,却是一个大难题。拿氢原子的谱线来说吧,这是最简单的原子谱线了。它就呈现为一组线段,每一条线都代表了一个特定的波长。比如在可见光区间内,氢原子的光谱线依次为:656,484,434,410,397,388,383,380……纳米。这些数据无疑不是杂乱无章的,1885年,瑞士的一位数学教师巴尔末(Johann Balmer)发现了其中的规律,并总结了一个公式来表示这些波长之间的关系,这就是著名的巴尔末公式。将它的原始形式稍微变换一下,用波长的倒数来表示,则显得更加简单明了:ν=R(1/2^2 - 1/n^2) 1913年丹麦物理学家玻尔疑惑于卢瑟福原子行星模型的不稳定,建了一所“诺贝尔奖幼儿园”的卢瑟福向他推荐了这个公式。在玻尔眼里,这无疑是一个晴天霹雳,它像一个火花,瞬间点燃了玻尔的灵感,所有的疑惑在那一刻变得顺理成章了,玻尔知道,隐藏在原子里的秘密,终于向他嫣然展开笑颜。一个大胆的想法在玻尔的脑中浮现出来:如同具有一定势能的人从某一层台阶上跳下来一样。台阶数“必须”是整数,就是我们的量子化条件。原子内部只能释放特定量的能量,说明电子只能在特定的“势能位置”之间转换。也就是说,电子只能按照某些“确定的”轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来。氢原子的光谱线代表了电子从一个特定的台阶跳跃到另外一个台阶所释放的能量。因为观测到的光谱线是量子化的,所以电子的“台阶”(或者轨道)必定也是量子化的,它不能连续而取任意值,而必须分成“底楼”,“一楼”,“二楼”等,在两层“楼”之间,是电子的禁区,它不可能出现在那里。正如一个人不能悬在两级台阶之间漂浮一样。如果现在电子在“三楼”,它的能量用W3表示,那么当这个电子突发奇想,决定

相关文档
最新文档