地震检测模型

地震检测模型
地震检测模型

楚雄师范学院

2014年“雁峰杯”数学建模竞赛论文

题目地震检测

姓名杨子月

学院数学与统计学院

专业数学与应用数学

2014年5月28日

地震检测模型

摘要

继2008年5月12日在四川汶川大地震之后,2013年4月22日四川雅安又发生了一次7.0级地震,这些重大自然灾害,给我们每一位中国人带来了巨大的伤痛,痛定思痛,我们应该为减少震后灾害做些事情。当地震发生时,震中位置的快速确定对第一时间展开抗震救灾起到非常重要的作用,而震中位置可以通过多个地震观测站点接收到地震波的时间推算得到。

现已采集到某地观测的30个指标的数据,和该地区该时期内已发生地震的经纬度、地震波到达的时间的数据。科学地截取这些数据的有用片段,对数据进行合理地预测处理,用数学方法计算出地震的中心位置。

关键词:地震检测经纬度地震波到达时间震源中心

一、问题重述

假设你是一位地震学家,在某地部署了30座地震台。这些地震台装备了测量和记录地质运动的设备。现已采集了这30座地震台的坐标和某次地震时这些的地震台测得的地震运动到达时间t,现在我们需要建立一个数学模型求出这次地震中心的坐标M(x,y)。

二、模型假设

1、假设震源在地下,发生地震之后地震波沿着各个方向匀速传播,且在传播过程中速度保持不变。

2、假设地震波在各种介质中的传播速度相等。

3、假设地震发生的区域范围内时差为零。

4、、假设由于其他因素而引起10多个指标数据的变化以及非正常波动可以忽略不计。

5、假设地震的前兆指标的数据特征符合一定的概率统计分布。

6、地形各观测点没有剧烈变化。

通过以上条件虽然不能精确求出地震发生的地点,但是可以建立一种在空间和时间上准确模拟地震发生以及预测的模型机制,对于地震预报及防治有很大的现实意义。地震源可能在地下,地震发生之后,地震波从震源点开始以球面方式沿各个方向传播,在空间和时间上是一个三维的立体模型结构。

三、符号说明及名词解释

3.1符号说明

震中位置 M(x,y)

经度 x(度)

纬度 y(度)

震源深度 h(千米)

地震波在各种介质中的传播速度v(千米/秒)

地震波到达时间 t(秒)

3.2 名词解释

地震波:地震被按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。[1]

震源中心:地球内部岩层破裂引起振动的地方称为震源。它是有一定大小的区域,又称震源区或震源体,是地震能量积聚和释放的地方。人为因素引起的地震的震源称人工震源,如人工爆破(炸药爆破,核弹试验)等。天然地震震源和人工爆破震源的性质有很大区别。一般而言,天然地震主要发生在断层上,以剪切错动为止;而人工爆破震源却是以一点为中心向周围膨胀的过程。采用地震波形资料进行地震矩张量反演,人们可以大致地区分这两种震源的特性。[2]

四、模型建立

4.1数据的分析

地震台位置平面展示

图一为30个地震台平面位置分布情况(其中横坐标x表示地震台的经度,纵坐标y表示地震台的纬度)

(图一)[3]

4.2数据处理

设震中位置为M(x,y)点,震源深度为h千米/秒,各个地震台收到地震波的时间为地震发生后t秒。则任意取四个观测点有以下方程式:

地震台1: MS=sqrt((30.16-x)^2+(120.10-y)^2+h^2)=v*45.969

地震台5: MS=sqrt((30.03-x)^2+(119.57-y)^2+h^2)=v*51.254

地震台11: MS=sqrt((29.07-s)^2+(119.39-y)^2+h^2)=v*59.221

地震台27: MS=sqrt((29.18-x)^2+(120.04-y)^2+h^2)=v*83.560

五、模型求解

利用matlab软件[4]解以上方程组,则可得出震中位置M、震源深度h以及地震发生的时间。编写程序,用solve函数求解方程组中参数,程序如下:

S=solve('sqrt((30.16-x)^2+(120.10-y)^2+h^2)=v*45.969','sqrt((30.03-x) ^2+(119.57-y)^2+h^2)=v*51.254','sqrt((29.07-x)^2+(119.39-y)^2+h^2)=v* 59.221','sqrt((29.18-x)^2+(120.04-y)^2+h^2)=v*83.560','x,y,h,v')

求解结果如下:

v: [2x1 sym]

x: [2x1 sym]

y: [2x1 sym]

x=739

y=308

v=3.0066 千米/秒

则由此结果可得到震中位置为M(739,308)。

六、模型检验

地震预报预测之艰难不言而喻,然而通过此次研究分析发现,地震发生前并非不显示任何蛛丝马迹,笔者基于促进其预测预报研究的目的提出以下建议和设想:

确保各指标观测数据的真实性、准确性。数据是供人们研究的平台,其真实性、准确性直接关乎研究方向的正确性及研究结果的实效性。

优化数据挖掘方法。从各指标对事件的函数图像可知,各指标值振荡频繁,然而

不是所有的振荡都是因为地震的发生而引起的,如电磁波的振荡容易受太阳黑子等因素影响而发生明显振荡。如何采取科学、合适的数据挖掘方法关系到所得模型预测预报的准确率,我们所采取的是均值结构模型以达到消除偶然误差的目的,其效果显著,然而由于原理上的限制,还是有所偏差,所以笔者设想能否利用数理统计方法进行估计,以使偏差尽量降低。研究地震发生时各指标异常机理。研究过程发现,各指标异常会出现一定的提前量或滞后性,如何估计这些提前量关乎预测预报的准确性,只有通过研究各指标因地震变化的机理才能用数学方法较为准确的估计这些提前量。

地震活动是一种复杂现象,各种观测数据之间缺乏对比性,难以利用统一的物理场进行描述。为了将各种观测量的异常信息进行表达,可把各前兆异常量转化为无量纲量以便进行对比。各种地震前兆观测量虽然是不同的物理量,但其共同的特点都是随时间变化的数值,即都是时间函数,各种地震前兆异常也都表现为各种观测量随时间的突出变化,异常形态虽多种多样,但究其本质共同点都是观测曲线随时间的斜率变化。因此,观测曲线随时间的斜率变化将是判断异常的重要指标。[5]

七、模型评价与推广

7.1模型评价

7.11 模型优点

1、本数据预处理使用了均值结构模型消除了其他偶然因素的影响,使地震前兆指标数据更加准确的反应地震发生的前兆信息。

2、优化数学研究方法。本模型在求解任务一时采用均值结构模型达到较良的消除误差的效果;采用综合指标法求解任务二,考虑全面周到,效果较好,在模型改进中所提出的判别分析法,科学有效,对数据利用率较高。在任务三中采用各年份指标值和历年各指标均值作差以消除地核、外空对电磁波的影响,巧妙科学,适宜推广使用。任务三中采用非线性组合模型,较好的解决数据携带信号较弱的缺点。限于知识、能力,对于上述数学方法在地震预测预报中的应用没有达到预期效果,须进一步研究改进。由于地震的发生及受其影响的各指标间的复杂关系,很难采用现有的技术探测,笔者试想,能否应用Bp神经网络解决此难题,设定科学的学习规则,利用神经网络的自我学习特性,达到预测预报的目的。

7.12 模型缺点

1、在地震活动性分析中有许多前兆性的数据指标,例如题中数据给出的氡值、水位、磁场强度等因素。这些指标在不同的侧面反映了地震活动的各种特征。但在实际的预报中,常常有些参数在一些中强以上的地震前出现比较明显。在正常情况下,也常常有些参数出现较明显的异常,而另一些参数并不出现异常。这些都给实际预报带来了困难。

2、在地震分析中经常要分析各个变量间相互依存关系,本文模型只能分析每一个变量对因变量的直接影响,且要求其余自变量之间相互独立。事实上,变量之间的关系错综复杂,一个自变量可能对一个因变量有直接影响,也可能通过

其他的自变量对因变量有间接地影响,显然本模型无能为力。

7.2 模型推广

建立地震预测模型,通过各种环境、气象、地壳运动的监测,当地的地质地貌及历史数据等可以更加精确的预测地震的时间、位置及级数。这个需要地震专家的高度支持。比如云南地震局的数学专家李家稳,通过各种临震监测数据、历史数据,建立数学模型分析,自1991年到现在,云南地区发生5级以上地震,只有一次没有预测准确,极大地减少了人员伤亡及经济损失。当然,这一模型建立的精确程度与其各相关数据的多少,模型决策变量设定的科学程度等都有紧密联系。

八、参考文献

[1]百度百科,地震波,https://www.360docs.net/doc/198493195.html,/view/66121.htm?fr=ala0_1_1,2010年8月16日。

[2]百度百科,震源,https://www.360docs.net/doc/198493195.html,/view/217810.htm?fr=aladdin 2013年05月。

[3]刘胜利,几何画板课件制作教程,北京,科学出版社,2010年02月。

[4]姜启源,数学模型,北京,高等教育出版社,2012年05月。

[5]胡运权,运筹学基础及运用,北京,高等教育出版社,2008年06月。

九、附录

9.1 Matlab程序:

S=solve('sqrt((30.16-x)^2+(120.10-y)^2+h^2)=v*45.969','sqrt((30.03-x) ^2+(119.57-y)^2+h^2)=v*51.254','sqrt((29.07-x)^2+(119.39-y)^2+h^2)=v* 59.221','sqrt((29.18-x)^2+(120.04-y)^2+h^2)=v*83.560','x,y,h,v')

9.2各个地震台经纬度及地震波到达时间表

地震紧急撤离问题数学建模

辽宁工业大学2010年数学建模(论文) 题目:地震紧急撤离问题 院(系):电子与信息工程学院 专业班级:计算机071班 学生:伟、何林强、章杰 起止时间:2010.4.5—2010.4.16

摘要 本文借用流体动力学中的微分关系,通过将离散的人员转化为连续的人流,以人流密度为研究主体,建立了人员撤离的动态微分方程优化模型,分析了地震发生时人员紧急撤离的问题。并根据我们所在教学楼的楼层建筑的数据分别估算了混乱状况下与有组织时人员撤离的时间,为人员的紧急撤离提供了参考方案。 第一,本文分析了在无组织的状态下,人员撤离的一般情形。一方面,无组织下人员的运动具有随机性,故此引入人流密度作为基本研究对象。另一方面,流量的变化率是人流密度对距离积分后对时间的导数,人流量对时间的积分即为撤离人员的数量。由此几方面关系,可以列出整个动态过程的微分方程。经分析发现,单位时间的人流量与密度和速度成正比关系,而整体的人流速度与密度之间又是成一次线性关系,恰好符合流体力学中的流量、流速与密度之间的关系。根据实际情况对整求解过程做了简化,以楼道中的平均人流量为研究主体,最终以数值解求得全部人员逃离所需时间大约为420s. 第二,利用得出的人流量随时间变化的图像可知,由于人员无组织的涌出教室,导致人流密度很大,人群得不到有效的移动,从而使流量达到最大值后又迅速减小。故最好的撤离方式是在达到流量最大的时候,保持住一定的人流密度从而来维持最大的流量。结合数据后可知,在撤离开始一分钟的时候应该有人组织撤离,这样可以避免由于人员的过多涌入楼道而导致的拥堵现象。这样子调控后最佳的撤离时间可以降到240秒左右。 第三,除去人为堵塞的因素对撤离时间影响较大外,改变楼层的设计同

全球地震采集技术发展趋势分析

全球地震采集技术发展趋势分析 2014-12-04 15:16:00 1 地震采集声波多普勒传感器波场旋转分量多源地震采集双圆形采集吴伟分布式震源组合dsa 文|吴伟等 中石化石油物探技术研究院

地震技术结合多学科高新技术发展最新成果,在油气勘探开发中发挥了日益重要的核心支撑作用。在遵循采集、处理、解释一体化的发展思路下,借助于先进仪器装备和各种采集新技术的不断推出,地震采集技术近年来的发展明显加快,正向着适应更恶劣地表条件、更复杂地下构造和更隐蔽含油气圈闭勘探需求的精细采集方向发展。 采集理念由过去的追求共中心点叠加次数向“以记录波场为中心”转变,采用24位超万道地震仪、数字检波器加网络技术支撑,精细表层调查和模型驱动的采集设计,进行单点接收、大动态范围、无线化传输、超多道记录、小面元网格、高覆盖次数、高品质震源、多分量接收、全方位信息、环保型作业的高密度三维地震全波场采集,不断提高地震资料的纵、横向分辨率和有效信息的精确度。多源地震等高效地震采集技术的出现,提高了采集效率并给数据处理技术带来变革。本文从采集理念、新型传感器、多源高效地震、海上地震新技术等方面总结了近年来地震采集技术的发展动态,展望采集技术的发展方向。限于篇幅,没有详细介绍目前在采集中已普遍使用的一些方法技术,如采集前的模拟技术(局部照明分析、振幅分析等),激发接收条件的分析与改进,地震采集脚印的模拟与采集效应的消除,山前带、沙漠、滩海等特殊环境的采集等。 一些新的技术在采集中的应用,如稀疏采样(包括随机采样、压缩采样等在空间、时间域中突破采样定理要求的采集)、光纤传输等,文中也没有涉及。 1 “以记录波场为中心”的采集新理念

地震检测模型

楚雄师范学院 2014年“雁峰杯”数学建模竞赛论文 题目地震检测 姓名杨子月 学院数学与统计学院 专业数学与应用数学 2014年5月28日

地震检测模型 摘要 继2008年5月12日在四川汶川大地震之后,2013年4月22日四川雅安又发生了一次7.0级地震,这些重大自然灾害,给我们每一位中国人带来了巨大的伤痛,痛定思痛,我们应该为减少震后灾害做些事情。当地震发生时,震中位置的快速确定对第一时间展开抗震救灾起到非常重要的作用,而震中位置可以通过多个地震观测站点接收到地震波的时间推算得到。 现已采集到某地观测的30个指标的数据,和该地区该时期内已发生地震的经纬度、地震波到达的时间的数据。科学地截取这些数据的有用片段,对数据进行合理地预测处理,用数学方法计算出地震的中心位置。 关键词:地震检测经纬度地震波到达时间震源中心

一、问题重述 假设你是一位地震学家,在某地部署了30座地震台。这些地震台装备了测量和记录地质运动的设备。现已采集了这30座地震台的坐标和某次地震时这些的地震台测得的地震运动到达时间t,现在我们需要建立一个数学模型求出这次地震中心的坐标M(x,y)。 二、模型假设 1、假设震源在地下,发生地震之后地震波沿着各个方向匀速传播,且在传播过程中速度保持不变。 2、假设地震波在各种介质中的传播速度相等。 3、假设地震发生的区域范围内时差为零。 4、、假设由于其他因素而引起10多个指标数据的变化以及非正常波动可以忽略不计。 5、假设地震的前兆指标的数据特征符合一定的概率统计分布。 6、地形各观测点没有剧烈变化。 通过以上条件虽然不能精确求出地震发生的地点,但是可以建立一种在空间和时间上准确模拟地震发生以及预测的模型机制,对于地震预报及防治有很大的现实意义。地震源可能在地下,地震发生之后,地震波从震源点开始以球面方式沿各个方向传播,在空间和时间上是一个三维的立体模型结构。 三、符号说明及名词解释 3.1符号说明 震中位置 M(x,y) 经度 x(度) 纬度 y(度) 震源深度 h(千米) 地震波在各种介质中的传播速度v(千米/秒) 地震波到达时间 t(秒) 3.2 名词解释 地震波:地震被按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。[1]

《数学建模》选题.

《数学建模》选题(一) 1、选址问题研究 在社会经济发展过程中, 经常需要在系统中设置一个或多个集散物质、传输信息或执行某种服务的“中心”。在设计和规划商业中心、自来水厂、消防站、医院、飞机场、停车场、通讯系统中的交换台站等的时候,经常需要考虑将场址选在什么位置才能使得系统的运行效能最佳。选址问题, 是指在指定的范围内, 根据所要求的某些指标,选择最满意的场址。在实际问题中,也就是关于为需要设置的“设施”选择最优位置的问题。选址问题是一个特殊类型的最优化问题,它属于非线性规划和组合最优化的研究范围。由于它本身所具有的特点,存在着单独研究的必要性和重要性。 1.1“中心”为点的情形 如图1,有一条河,两个工厂P 和Q位于河岸L(直线)的同一侧,工厂 P 和 Q 距离河岸L分别为8千米和10千米,两个工厂的距离为14千米,现要在河的工厂一侧选一点R,在R处建一个水泵站,向两工厂P、Q 输水,请你给出一个经济合理的设计方案。 图1 图2 (即找一点 R ,使 R 到P、Q及直线l的距离之和为最小。) 要求和给分标准: 提出合理方案,建立坐标系,分情况定出点R的位置,0分——70分。 将问题引申: (1)、若将直线 L缩成一个点(如向水库取水),则问题就是在三角形内求一点R,使R到三角形三顶点的距离之和为最小(此点即为费尔马点)。 (2)、若取水的河道不是直线,是一段圆弧(如图2),该如何选点? 对引申问题给出给出模型和讨论30分——50分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺点讨论扣10分。 1.2“中心”为线的情形

在油田管网和公路干线的设计中提出干线网络的选址问题: 问题A :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ∑=n i i i L P d w 1 ),( (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题B :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ∑=n i i i L X d w 1 ),( (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 问题C :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ),(max 1L P d w i i n i ≤≤ (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题D :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ),(max 1i i n i L X d w ≤≤ (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 参考文献 【1】林诒勋, 尚松蒲. 平面上的点—线选址问题[J]. 运筹学学报,2002,6(3):61—68. 【2】尚松蒲, 林诒勋. 平面上的min-max 型点—线选址问题[J]. 运筹学学报,2003,7(3):83—91. 要求和给分标准: 选择问题A 和B(或者C 和D)进行研究:根据文献重述模型(10分),提出自己的算法(30分),计算机仿真验证算法的正确性(40分,含如何在平面上随机产生n 个点,对每个点随机赋权,按照算法编程实现求干线的程序,并将寻得的干线和点在平面上图示,建议用MATLAB 编程)。 将问题引申: 如果同时确定两条、三条干线,应该如何讨论?其他情形的讨论? 对引申问题给出给出模型和讨论20分——30分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺

数模论文-数据说教学楼地震疏散

北京邮电大学 数学建模课程期末论文 [数据说教学楼地震疏散] 作者:[何志鹏] 专业名称:[软件学院] 学号:[2012212038] 指导教师:[张文博] 2015年5月19日

目录 一、摘要--------------------------------------------------------------------- 3 二、问题描述--------------------------------------------------------------- 4 三、问题一求解------------------------------------------------------------ 5 3.1基本假设---------------------------------------------------- 5 3.2符号说明---------------------------------------------------- 5 3.3模型--------------------------------------------------- 6 3.4单元体--------------------------------------------------- 6 3.5并联系统--------------------------------------------------- 7 3.6串联系统--------------------------------------------------- 8 3.7举例应用---------------------------------------------------- 9 3.8模型求解---------------------------------------------------- 12 四、问题二求解------------------------------------------------------------ 12 4.1假设---------------------------------------------------- 12 4.2解决方案---------------------------------------------------- 14 五、问题三求解------------------------------------------------------------ 14 六、模型的评估------------------------------------------------------------ 15 七、模型的改进和推广----------------------------------------------------- 15 八、参考文献----------------------------------------------------------------- 16

地震成因及风险模型

摘要首先,介绍了地震形成的自然因素和非自然因素,并对其发生原因进行了分析和研究;其次,通过对1999-2009年间的地震现场的灾害调查资料和损失评估的资料进行研究,对其进行分析与处理,采取以实际烈度区作为分配单元,建立适用于县级区域小尺度的地震风险分析模型;最后基于烈度的地震分析模型与基于建筑物易损性地震分析模型预测结果进行比较,由此说明在县级区域小尺度上,地震风险分析模型的适用性。 关键词分析模型烈度地震灾害损失评估 A Study on the Analysis Mode for the Causes and Risks of Earthquakes//Wang Xingyu[1],Chen Peng[2]* Abstract We first introduced the earthquake causes which con-sist of the natural factors and unnatural factors.Second,we use data from the investigation of earthquake disasters and the inf-ormation of disaster losses1999-2009,gathering respective sec-tions strength data of the population,the per capita GDP and the area of land,from evaluation information of earthquake disa-ster and statistics of the earthquake province when the earthqu-ake happens.By analyzing and handling the above data,use virtual broken-level areas as allocation units and establish risk analysis model for medium and small scale earthquake of https://www.360docs.net/doc/198493195.html,parison the two forecast results from the earthquake analysis model based on strength and building damage to prove that the earthquake analysis model based on strength is more suitable for medium and small scale county.Finally,we introduced some knowledge about self-protection when the earthquake happens. Key words analysis model;strength;earthquake disaster;evalu-ation of losses First-author's address Changkou Middle School of Fuyang City,311400,Hangzhou,Zhejiang,China 1引言 地震作为中国灾害中破坏力最强,损失最严重的灾种,而被研究者所重视。因此,对地震成因的分析以及如何减轻地震风险是这篇文章的主要内容。随着城市化进程日益加快,承灾数量不断增加,但是,灾害评价分析模型还不能满足现代应急的需求。以往的地震评价研究模式,主要是针对地震风险分析模型在地震减灾中长期规划研究,但不适用于突发性地震事件。如何快速、准确地对突发性地震事件发生前或者发生时做出应急管理是决策者面临的重大难点。本文提出了一个地震风险分析模型,该模型能够很好地满足地震应急需求,同时在一定程度上满足抗震风险分析需求。 2地震发生的自然原因 地震是地壳运动的一种特殊表现形式,也是极为常见的地质现象。地震有多种成因,根据其成因分为构造地震、火山地震和陷落地震三种主要类型。 2.1构造运动 构造地震是由地壳运动所引起的地震。一般而言,地壳运动是长期的、缓慢的,一旦地壳所积累的地应力超过了组成地壳岩石极限强度时,岩石就要发生断裂而引起地震,也就是说地应力从逐渐积累到突然释放时才发生地震。构造地震是一种活动频繁、影响范围大、破坏力强的地震,世界上最多(90%以上)和最大的地震都属于构造地震[1]。 2.2火山运动 由于火山活动时岩浆喷发的冲击力或热力作用而引起的地震,称为火山地震。火山地震一般较小,数量约占地震总数的7%左右,地震和火山往往存在关联,火山爆发可能会激发地震,而发生在火山附近的地震也可能引起火山爆发,通常发生在板块的生长边界。其特点是震源常限于火山活动地带,一般深度不超过10公里的浅源地震,震级较大,多属于没有主震的地震群型,影响范围小。 2.3陷落运动 陷落地震是由于岩层大规模崩塌或陷落而引起的地震。这种地震为数很少,只占地震总数的3%左右,一般震级较小,影响范围不大,地震能量主要来自重力作用。陷落运动主要发生在石灰岩或其他易溶的岩石地区,由于地下溶洞不断扩大,洞顶崩塌,引起震动,导致矿洞塌陷或大规模山崩、滑坡等也可能导致这类地震发生。 3地震发生的非自然原因 在特定地区由于某种地壳外界的非自然因素而引起的地震,称为诱发地震。这些外界因素可能是地下核爆炸、陨石坠落、油井灌水等,其中最常见的是水库地震。水库蓄水,石油和天然气、盐卤、地下热(汽)储的开发,废液处理和油田开采中的深井注水,钻进过程中的井漏,矿山抽排水,固 ([1]杭州市富阳市场口中学浙江·杭州311400; [2]吉林师范大学旅游与地理科学学院吉林·四平136000) 中图分类号:K909文献标识码:A文章编号:1672-7894(2012)15-0081-03 81

基于分形理论的地震裂缝检测方法

第42卷第2期2003年6月 石油物探 GDOPlIYSI(:AI。PRfjSPDeTlNGF()RPETROI』EUM Vol_42.No. J1m.,2000 文章编号:10001441(2003)02019卜05 基于分形理论的地震裂缝检测方法 王兴建,曹俊兴,李学民,郑圻森 (成都理工大学“7由气藏地质及开发工程”国家重点实验室,四川成都610()59) 摘要:依据地震渡的动力学参数对裂缝的敏感性和裂缝的分形特征。以地震层位振幅数据为检测时象,基于图像处珲中的分形边缘检测技术,提出了分形理论的裂缝检测力法(多K度分形参数的地毯覆盖方法和分形压缩片法)。用计算机生成了MandeIbrot分彤集和TFS分形.并分别进行了椅测试验.效果显著。垃用多尺度分形参数和分形压缩2种方法对某油田的层位振幅数据进行了裂缝检测,检测结果清楚地反映了裂缝发育带的分布状况。 关键词:分形;裂缝检测;多R度分形参数;分形嘲像压缩;选代函数系统(IFs);子块;父块 中围分类号:TEi22.2+3文献标识码:A SeismicfracturedetectionbasedonfI.actaltheory WangXin由ian,CaoJunxing,I。iXuemin,ZhengQisen(StateKeyl.ah0foilandGasReservolrGeol。gyandExploitati。n,L’hengduUniver出yofTechnoIogy,f11cngdu61()059.China) Abstr扯t:AccordirlgtothesensItjvityofdyrmmicalparameterstofracture,t11efractalcharacterlstIcs。ffracture,arldbased onfractaledgedetectloninlm89eproccssirlg,thispape’presentstwofracluredetectionmethods:m州tl—s∞】ehc训parameter∞掣fcoveragemefhodandn口cfa】compressj。nmetbodTesfs。nda佃ofM柚de卜brotsetanditeratedfuncnonsystems(1FS)fractaIyidddesiredresults.Thctwonlemodshavebeenusedjnthr fracturedetectIononthcrcaldatafrom anoilfield.Thefracture_richzonesarereveaIedclearlv on出edetectionrP一‘ultH Keywor出:f“lctaI;fracturedeIcctEon;multi_scalefractaIparaIlleter;fracta【imagecompresslon;lteratedfuncti。nsy引ems;range bl()ck8;dormjnbIocks 自相似性是分形的本质特征之一,提取分形特征参数,是研究不规则物体的强有力的工具之一[1。,分形特征参数的变化,反映了物体自相似性的程度。基于图像处理的多尺度分形参数变化的目标检测方法,提出了多尺度分形参数的地毯覆盖裂缝检测方法。 分形理论应用到图像压缩是在1987年。1990年,美国数学家M.F.Bamsley的博士生AEJac—quin发表了一种基于方块划分的分形图像压缩方案,以寻找图像的局部自相似性实现全自动图像压缩编码,相应的算法为迭代函数系统和拼帖定理。该方法引起了广泛的注意,使分形图像压缩方法产生了质的飞跃口一。我们把分形图像压缩方法应用于裂缝检测,在局部分割的基础上,应用仿射变换后的父块与子块的相似程度来对裂缝进行检测‘3’“。 低渗透率地层中的裂缝可作为储集体或运移通道.对石油天然气开采有重要的意义,所以对于裂缝检测方法的研究显得尤为重要。理论上认为, 人工地震在各道对应层位上的振幅值是连续变化的,而如果有振幅异常.在排除其他干扰的情况下,则认为是地层属性的局部突变造成的”~一。分形理论应用于裂缝检测正是以此为检测依据。 我们以地震层位解释数据为基础,运用多尺度分形参数的地毯覆盖和分形图像压缩的裂缝检测方法,分别对地震层位振幅数据进行检测,找出层位的裂缝信息,提高地震层位的横向分辨率。 l方法原理 1.1多尺度分形参数的地毯覆盖裂缝检测多尺度分形参数的地毯覆盖即是面积度量维数,地震层位振幅数据可构成一个自然的纹理表面‘“。用厚为2£的地毯进行覆盖,则表面积可由 收稿日期:2003一0605;政回日期:2003一ol2l。 作者简介:王兴建(1974).男,顾士,现从事三维地震裂缝检测鹱其可视化方面的研究工作。 基盒项目:国家自然科学基金项目(49894190.401440l6j。 万方数据

实用文库汇编之数学建模地震预测模型

*实用文库汇编之 * 题目:地震预测数学建模 姓名:张志鹏 学号:12291233 学院:电气工程学院 姓名: 赵鑫 学号:10291033 学院:电气工程学院 数学建 模竞赛 论文

姓名:张书铭学号:12291232 学院:电气工程学院 目录 摘要 (3) 一、问题重述 (4) 二、问题的分析 (4) 三、建模过程 (5) 问题1:地震时间预测 (5) 1、问题假设 (5) 2、参数定义 (6) 3、求解 (6) 问题2:地震地点预测 (7) 1、问题假设: (7) 2、参数定义 (7) 3、求解过程: (7) 四、模型的评价与改进 (10) 参考文献 (11)

摘要 大地振动是地震最直观、最普遍的表现。在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。在大陆地区发生的强烈地震,会引发滑坡、崩塌、地裂缝等次生灾害。对人们的生产生活成巨大影响,严重威胁人们的生命和财产安全,所以,对地震的预测是十分必要的。 本文根据从1900年以来中国发生的八级以上地震的时间和地点分析,利用合理的数学建模方法,对下一次中国可能发生的八级以上地震的和时间和地点进行合理的预测。建模方法分为对于时间的预测和地点的预测两个方面。 问题1:对于时间的预测 采用的方法为指数平滑法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。 问题2:对于地点的预测 根据长久的数据表明,八级以上地震主要发生在东经70°——110°,北纬20°——50°这个范围内,据此将整个地震带划分为100个区域,按顺序进行编号。建立时间与地震区域编号的数学模型,利用线性回归的方法对下次地震地点预测。

地震预测模型doc

精心整理2011年赣南师院数学建模竞赛选拔赛 题目地震预测模型 摘要: 本文前三个任务主要考虑是各指标的变化对地震发生问题的影响,通过对各指标数据量的分析建立相应的模型,并对任务四和任务五给出了合理的解答。 针对任务一:我们从原始数据中计算出各项指标的日均值,绘制出各指标分年度的时间序列图, 磁波幅度 。 关键词: 一·问题的重述 1.1背景分析 地震是地壳快速释放能量过程中造成的振动。虽然预测地震是世界性难题,但迄今科学界普遍认为,有可能反映地震前兆特征的指标可能不少于10个。已经有专业仪器在多个定点实时按秒记录这些指标的数据,期望通过对记录数据的分析研究找到地震的前兆特征。 现已采集到某地2005年1月1日至2010年6月30日按小时观测的10多个指标的数据,和该地区该时期内已发生地震的时刻、经纬度、震级及震源深度的数据。这些数据中隐藏着地震发生的前兆特征。科学地截取这些数据的有用片段,对数据进行合理地预处理,用数学方法揭示地震前兆

的数据特征,是一项很有意义的研究工作。 题给数据中的这10多个指标,究竟哪些与地震的发生有关,有何种关系,是单一关系还是复合关系;除这10多个指标外还有哪些因素及含题给指标在内的哪些指标的哪种数学模型更能反映地震的前兆特征等等,人们迄今仍不很清楚,需要进行深入地研究。地震数据的观测是持续进行的,随着时间的推移数据的规模会不断扩大。从中挖掘地震的前兆特征,必须有合理的数学模型,也必须有科学高效的算法分析平台。因此,需要我们结合附件中给出的实际记录数据,尝试完成以下任务。 1.2任务的提出 任务一:分析数据特征,建立数学模型以度量各指标对地震发生的敏感程度。 越大 任务三:中要结合题给数据,建立数学模型来研究地震发生前的数量特征。主要运用贝叶斯判别分析法进行建模,对已给数据进行先验信息、后验信息分析。 任务四:要将计算程序集结成地震数据分析平台,能够完成其它地震数据的分析,并能自动输出前任务的重要分析结果。 任务五:是针对进一步的研究设想写一篇切实可行的报告。 三·问题的基本假设 (1)地震监测点的监测设施能正常运转; (2)地震监测设施周围不存在影响其工作效能的干扰源,如飞机场、发电厂等;

地震紧急撤离问题数学建模

辽宁工业大学2012年数学建模(论文) 题目:火灾紧急撤离问题 院(系):机械工程及自动化 专业班级:机械1106班 学生姓名:王哲、郭爽、吴建彬 起止时间:2012.5.21—2012.5.27

本文借用流体动力学中的微分关系,通过将离散的人员转化为连续的人流,以人流密度为研究主体,建立了人员撤离的动态微分方程优化模型,分析了地震发生时人员紧急撤离的问题。并根据我们所在教学楼的楼层建筑的数据分别估算了混乱状况下与有组织时人员撤离的时间,为人员的紧急撤离提供了参考方案。 第一,本文分析了在无组织的状态下,人员撤离的一般情形。一方面,无组织下人员的运动具有随机性,故此引入人流密度作为基本研究对象。另一方面,流量的变化率是人流密度对距离积分后对时间的导数,人流量对时间的积分即为撤离人员的数量。由此几方面关系,可以列出整个动态过程的微分方程。经分析发现,单位时间的人流量与密度和速度成正比关系,而整体的人流速度与密度之间又是成一次线性关系,恰好符合流体力学中的流量、流速与密度之间的关系。根据实际情况对整求解过程做了简化,以楼道中的平均人流量为研究主体,最终以数值解求得全部人员逃离所需时间大约为420s. 第二,利用得出的人流量随时间变化的图像可知,由于人员无组织的涌出教室,导致人流密度很大,人群得不到有效的移动,从而使流量达到最大值后又迅速减小。故最好的撤离方式是在达到流量最大的时候,保持住一定的人流密度从而来维持最大的流量。结合数据后可知,在撤离开始一分钟的时候应该有人组织撤离,这样可以避免由于人员的过多涌入楼道而导致的拥堵现象。这样子调控后最佳的撤离时间可以降到240秒左右。 第三,除去人为堵塞的因素对撤离时间影响较大外,改变楼层的设计同样可以缩短撤离所用时间。于是,文章讨论了实际楼层中的参数,如楼层中疏散通道的宽度、教室门的宽度以及疏散口的数量等,对紧急撤离时间的影响。并得出结论疏散口的增加与疏散通道的加宽对撤离时间的缩短有明显的提高。 最后,由于不同的楼层人员速度不一样会导致在楼道中的互相推挤现象,此举对人员在楼道中人员的有效流动有较大影响。故我们引入混乱时间的概念,用来具体量化由此导致的时间的浪费情况。分析后可知混乱时间主要决定于相临两层人员的速度差,由于混乱时间与速度差成正比关系,而且在速度差为正值的时候时间较大,而为负值时时间较小,故利用指数函数来表示两者的关系。由此建立了以总的混乱时间最小为目标的优化模型。利用atlab 对各种指派情形进行比较,得出最了优解。 关键词:人流量动态微分方程最佳撤离混乱时间

数学建模--建筑变形问题

第十一届“创新杯”大学生数学建模竞赛 编号专用页 论文编号(竞赛组织者编写): 题号:C题—建筑物的变形问题 姓名: 学号: 电话: 学院:土木与交通学院 专业:土木工程 邮箱:

建筑物的变形问题 摘要论文编号: 本文针对建筑体变形问题,将数据模型化,采用替代法,用已知控制点代表建筑整体,用控制点的中心代表整体建筑的中心。通过对控制点及中心点的量化研究,分析整个建筑的各种变形情况。 对于问题1,给出确定此类建筑物各层中心位置的通用方法,并对题中的建筑物算出其各层中心的具体坐标。我们采用CAD制图软件,先确定出建筑的大体形状,建立建筑物的模型,再对各层的变形进行分析,然后确定中心点应满足的条件,最后用数据求解。 对于问题2,分析该建筑物倾斜、弯曲、扭曲等变形情况,并对其变形趋势进行研究。我们在问题1的基础上,将建筑的变形模型化,分为随各层中心点的平动及绕中心点的定轴转动。其中,平动表现为倾斜,而绕中心的转动又分为绕中心轴的转动和绕平面上过中心点的轴的转动。前者表现为扭曲,后者表现为弯曲。通过已知的数据对模型进行定量计算,推测其未来的变形趋势。在分析现有数据时,我们对明显错误的已知数据进行了舍弃,对建筑物的突然出现的大变形进行了合理假设。 在对以上两问题研究时,我们建立模型后,仅用Excel就完成了数据的分析和对变形的预测,并未动用其它数学软件。 关键词:(3-5个) 替代平动定轴转动绕轴转动倾斜扭转弯曲

第十一届_2014_“创新杯”数学建模竞赛 建筑物的变形问题 2014年5月20日

目录 一、问题的重述 (2) 二、问题的分析 (2) 三、模型假设 (2) 四、建模过程 (2) 1)、问题一 (2) 1、建立模型 (2) 2、模型求解 (3) 2)、问题二 (6) (1)倾斜 (6) 1、定义符号说明 (6) 2、建立模型 (6) 3、模型求解 (10) (2)弯曲 (11) 1、定义符号说明 (11) 2、建立模型 (11) 3、模型求解 (12) (3)扭曲 (12) 1、定义符号说明 (12) 2、建立模型 (12) 3、模型求解 (12) 五、变形趋势 (13) 六、建模的优缺点 (13) 七、参考文献 (13)

数学建模地震预测模型

数学建模竞赛论文 题目:地震预测数学建模 姓名:张志鹏学号:12291233 学院:电气工程学院 姓名:赵鑫学号:10291033 学院:电气工程学院

姓名:张书铭学号:12291232 学院:电气工程学院

目录 摘要 (3) 一、问题重述 (4) 二、问题的分析 (4) 三、建模过程 (5) 问题1:地震时间预测 (5) 1、问题假设 (5) 2、参数定义 (6) 3、求解 (6) 问题2:地震地点预测 (7) 1、问题假设: (7) 2、参数定义 (8) 3、求解过程: (8) 四、模型的评价与改进 (12) 参考文献 (13)

摘要 大地振动是地震最直观、最普遍的表现。在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。在大陆地区发生的强烈地震,会引发滑坡、崩塌、地裂缝等次生灾害。对人们的生产生活成巨大影响,严重威胁人们的生命和财产安全,所以,对地震的预测是十分必要的。 本文根据从1900年以来中国发生的八级以上地震的时间和地点分析,利用合理的数学建模方法,对下一次中国可能发生的八级以上地震的和时间和地点进行合理的预测。建模方法分为对于时间的预测和地点的预测两个方面。 问题1:对于时间的预测 采用的方法为指数平滑法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。 问题2:对于地点的预测 根据长久的数据表明,八级以上地震主要发生在东经70°——110°,北纬20°——50°这个范围内,据此将整个地震带划分为100个区域,按顺序进行编号。建立时间与地震区域编号的数学模型,利用线性回归的方法对下次地震地点预测。

数学建模之抗震救灾物资分配问题

这个数学建模是一个解决灾区救灾物资分配的模型,由于各个家庭受灾情况不同,对救灾物资的需求不同对救灾物进行分配。题是从网络找到的,模型基本都是自己做的。 数学与统计学院09级一班 李铭远 222009314011063 抗震救灾物资分配问题 一、提出问题: 2010年4月14日晨,青海省玉树县发生两次地震,最高震级7.1级,地震震中位于县城附近。灾区群众遭受了巨大损失。 地震后中外各界纷纷慷慨解囊援助灾区。灾区人们需要衣食住行等各种物质以度过难关。 现设某一灾区有N个受灾家庭,每个家庭成员有Ni人,有救灾物资一批共M类,每类物质分别有Mi个单位要发放给这些受灾者。每种物资数量有限;由于各受灾者的灾情不同,对每种物资的急需程度和需求量不同。需要解决的问题如下: (1)制定分配原则并给出合理的分配方法。 (2)对受灾家庭假设N=10,每个家庭成员数Ni=1(i=1,2,3),Nj=2(j=4,5),Nk=3(k=6,7,8),Nl=4(l=9,10) (即前三个家庭每户一人,第四户、五户每家2人,以此类推)

救灾物资种类M=3,分别是帐篷类M1=6(顶,大小不一)、食品类M2=100(公斤)和饮用水类M3=200(升)给出具体算例,并说明食品和饮用水能支撑几天。 二、模型假设: 1.灾区受灾情况有硬件设施、田地损害和人口、家畜伤亡等方面。 此处将家庭人口相同的当做一类情况进行分配。 2.所有参与分配物资都是灾区急需的重要物资,不同救灾物资之 间不可替代。 3.受灾程度越严重,受灾损失越大,分配的物资也就越多,反之 就越少。在物资分配之前,当地民政等部门已经对灾情进行了 调查统计并分析评估出了基本的数据,如受灾区群众对各种物 资的急需程度和急需量等; 4.在实际的分配操作中,为了能使所有的受灾者都能得到急需的 救灾物资,必须对现有救灾物资进行分析,来确保物资分配的 合理性。 5.物资的急需程度和需求量是依据一定时间内生存需求而得到 的近似评估值;为了方便模型建立,急需量统一化为整数,若 非整数的则通过数据整数化处理转换为整数来考虑。 三、问题分析与模型建立 物资通过量纲化后,分别为:M1=6,M2=100,M3=200.假设至少每

基于MATLAB的地震正演模型实现[1]

基于MATLAB的地震正演模型实现 贾跃玮 (中国地质大学(北京) 北京100083) 摘 要 人工合成地震正演模型是进行三维模型计算的基础。针对地震勘探的原理,本文运用MATLAB强大数学计算和图像可视化功能,对一个三层介质模型制作了人工合成地震记录。文章首先说明了地震记录形成的物理机制,然后介绍了地质模型的构造及参数选择,最后针对该具体地质模型制作了合成地震记录。 关键词 地震;MATLAB;正演 0引 言 地震勘探就是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理方法。地震勘探是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用。 人工合成二维地震模型记录是各种复杂地震模型正演计算的基础,是对地震勘探经典理论的忠实实现。在实际工作中,针对具体地质构造进行二维地震模拟能够有效帮助地球物理工作者在地震剖面上识别各种地质现象。MATLAB环境集编程、画图于一体,特别适合人工合成地震记录的快速实现。因此,我们在MATLAB环境下设计了一个三层地质模型,并对该模型模拟了地震记录,旨在可视化地观察地震波场记录特征并验证地震褶积模型。 1地震记录形成的物理机制 在地震记录上看到的波形是地震子波叠加的结果,从地下许多反射界面发生反射时形成的地震子波,振幅大小决定于反射界面反射系数的绝对值,极性的正负决定于反射系数的正负,到达时间的先后取决于界面深度和覆盖层的波速。若地震子波波形用S(t)表示,反射系数是双程垂直反射旅行时t的函数,用R(t)表示,地震记录f(t)形成的物理过程在数学上就可表示为:f(t)=S(t)3R(t)=∫0T S(τ)R(t-τ)dτ 地震子波和反射系数资料常常不易取得,因此计算时常做这样一些假设: (1)地质模型的建立是来自大量观察实际地质结构的经验性归纳总结。 (2)为了模型建立和计算过程中突出理论数值,去除了一些干扰因素,对一切衰减、噪声都不进行考虑。 (3)地层在横向上均匀,纵向上是由大量具有不同弹性性质的薄层构成。 (4)地震子波以平面波形式垂直入射到界面,各薄层的反射子波与地震子波形状相同,只是振幅及极性不同。 (5)所有波的转换、吸收及绕射等能量损失都不考虑。 基于以上这些假设条件进行地震记录合就必须已知地震子波以及地层的反射系数,而反射系数又主要由地层的波阻抗反映,所以必须首先获取地层的速度和密度资料。 速度资料可通过连续速度测井获得,密度资料可从密度测井获得,得不到密度资料时,可近似假定密度不变,以速度曲线代替波阻抗曲线来计算反射系数。加德纳根据实际资料提出了一个由速度推算密度的经验公式: ρ=0.23V0.25 (速度单位:英尺/秒) 或 ρ=0.31V0.25 (速度单位:米/秒)

地震灾后物资分配模型(数学建模)范文

[ 请输入文档摘要,摘要通常是 对文档内容的简短总结。输入文档摘要,摘要通常是对文档内容的简短总结。] 汶川地震原油供应的数学建模 一、问题的提出 2008年5月12日14:28在我国四川汶川地区发生了8.0级特大地震,给人民生命财产和国民经济造成了极大的损失。地震引发的次生灾害也相当严重,特别是地震造成的34处高悬于灾区人民头上的堰塞湖,对下游人民的生命财产和国家建设构成巨大威胁。加强对震后次生灾害规律的研究,为国家抗震救灾提供更有力的科学支撑是科技工作者义不容辞的责任。唐家山堰塞湖是汶川大地震后山体滑坡后阻塞河道形成的最大堰塞湖,位于涧河上游距北川县城6公里处,是北川灾区面积最大、危险最大的堰塞湖,其堰塞体沿河流方向长约803米,横河最大宽约611米,顶部面积约为30万平方米,主要由石头和山坡风化土组成。由于唐家山堰塞湖集雨面积大、水位上涨快、地质结构差,溃坝的可能性极大,从最终的实际

情况看,从坝顶溢出而溃坝的可能性比其它原因溃坝的可能性大得多。 经过专家分析,采取有效措施,最终完成了唐家山堰塞湖的成功泄洪。当时的科技工作者记录了大量的珍贵数据,新闻媒体也对唐家山堰塞湖进展情况进行了及时的报道,通过对这些数据的收集(由于数据来源不同,数据有些冲突,以新华社报道的相关数据为准),我们对堰塞湖及其泄洪规律进行了初步研究,完成以下工作: 1.建立唐家山堰塞湖以水位高程为自变量的蓄水量的数学模型,并以该地区天气预报的降雨情况的50%,80%,100%,150%为实际降雨量预计自5月25日起至6月12日堰塞湖水位每日上升的高度(不计及泄洪)。(由于问题的难度和实际情况的复杂性及安全方面的考虑,没有充分追求模型的精度,以下同); 2.唐家山堰塞湖泄洪时科技人员记录下了大量宝贵的数据。我们在合理的假设下,利用这些数据建立堰塞湖蓄水漫顶后在水流作用下发生溃坝的数学模型,模型中包含缺口宽度、深度、水流速度、水量、水位高程,时间等变量。 3.根据数字地图,给出坝体发生溃塌造成堰塞湖内1/3的蓄水突然下泻时(实际上没有发生)的洪水水流速度及淹没区域(包括洪水到达各地的时间),并在此基础上考虑洪水淹没区域中人口密集区域的人员撤离方案。 4.根据我们所建立的数学模型分析当时所采取对策的正确性和改进的可能性。讨论应对地震后次生山地灾害 (不限堰塞湖) ,科技工作中应该设法解决的关键问题,并提出有关建议。 3 二、符号说明 W:堰塞湖内蓄水量,即总库容,单位:亿立方米 ()Ht:坝前水位高程,单位:米 0bH:堰塞湖底部高程,常数667.4 ()Lht:堰塞湖内水深,单位:米 ()Rt:堰塞湖每天的新增水量,单位:亿立方米 ()Jt:第t天的降雨量,单位:毫米 ()bt:泄流槽的宽度,单位:米 ()INQt:t时刻的单位入湖流量,单位:立方米/秒 ()OUTQt:t时刻的单位泄流量,单位:立方米/秒 4 三、模型的建立与求解

数学建模之马尔可夫预测

马尔可夫预测 马尔可夫过程是一种常见的比较简单的随机过程。该过程是研究一个系统的 状况及其转移的理论。它通过对不同状态的初始概率以及状态之间的转移概率的研究,来确定状态的变化趋势,从而达到对未来进行预测的目的。 三大特点: (1)无后效性 一事物的将来是什么状态,其概率有多大,只取决于该事物现在所处的状态如何,而与以前的状态无关。也就是说,事物第n 期的状态,只与第n 期内的变化和第n-1期状态有关,而与第n-1期以前的状态无关。 (2)遍历性 不管事物现在所处的状态如何,在较长的时间内马尔可夫过程逐渐趋于稳定状态,而与初始状态无关。 (3)过程的随机性。 该系统内部从一个状态转移到另一个状态是,转变的可能性由系统内部的原先历史情况的概率值表示。 1.模型的应用, ①水文预测, ②气象预测, ③地震预测, ④基金投资绩效评估的实证分析, ⑤混合动力车工作情况预测, ⑥产品的市场占有情况预测。 2.步骤 ①确定系统状态 有的系统状态很确定。如:机床工作的状态可划分为正常和故障,动物繁殖后代可以划分为雄性和雌性两种状态等。但很多预测中,状态需要人为确定。如:根据某种产品的市场销售量划分成滞销、正常、畅销等状态。这些状态的划分是依据不同产品、生产能力的大小以及企业的经营策略来确定的,一般没有什么统一的标准。在天气预报中,可以把降水量划分为旱、正常和涝等状态。 ②计算初始概率()0i S 用i M 表示实验中状态i E 出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L ③计算一步转移概率矩阵

令由状态i E 转移到状态j E 的概率为()|ij j i P P E E =,则得到一步转移概率矩阵为: 1112121 2221 2n n n n nn p p p p p p P p p p ??????=??????L L M M M M L ④计算K 步转移概率矩阵 若系统的状态经过了多次转移,则就要计算K 步转移概率与K 步转移概率矩阵。 K 步转移概率矩阵为: 11121212221 2()k n n k n n nn p p p p p p P k p p p p ??????==??????L L M M M M L ⑤预测及分析 根据转移概率矩阵对系统未来所处状态进行预测,即: () ()111210212221 2K n K n n n nn p p p p p p S S p p p ??????=??????L L M M M M L 例题: 设某企业生产洗涤剂为A 型,市场除A 型外,还有B 型、C 型两种。为了生产经营管理上的需要,某企业要了解本厂生产的A 型洗涤剂在未来三年的市场占有倩况。为此,进行了两项工作,一是进行市场调查,二是利用模型进行预测。 市场调查首先全面了解各型洗涤剂在市场占有情况。年终调查结果:市场洗涤剂目前总容量为100万件,其中A 型占40万,B 型和C 型各占30万。 再者,要调杏顾客购买各型洗涤剂的变动情况。调查发现去年购买A 型产品的顾客,今年仍购A 型产品24万件,转购B 型和C 型产品备占8万件,去年购买B 型产品顾客,今年仍购B 型产品9万件,转购A 型15万件,转购C 型6万件,去年购买C 型产品的顾客,今年仍购C 型产品9万件,转购A 型15万件,转购B 型6万件。计算各型产品保留和转购变动率。 模型的建立: ①计算初始概率 用i M 表示i E 型产品出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L (1) ②计算各类产品保留和转购变动率

相关文档
最新文档