元素发现史——卤素

元素发现史——卤素
元素发现史——卤素

个性鲜明的卤族元素

一、氟,一段悲壮的发现史

在化学元素史上,参加人数最多、危险最大、工作最难的研究课题,莫过于氟元素的发现。氟的发现被认为是19世纪最困难的事情之一。1529年,德国化学家阿里科尔证实了萤石的存在,人们从此开始认识氟的漫漫征程。

1768年马格拉夫研究萤石,发现它与石膏

和重晶石不同,判断它不是一种硫酸盐。1771年化

学家舍勒用曲颈甑加热萤石和硫酸的混合物,发现

玻璃瓶内壁腐剂。1810年法国物理学、化学家安培,

萤石

根据氢氟酸的性质的研究指出,其中可能含有一种与氯相似的元素。

化学家戴维的研究,也得出同样的看法。1813年戴维用电解氟化物的方法制取单质氟,用金和铂做容器,都被腐蚀了。后来改用萤石做容器,腐蚀问题虽解决了,但也得不到氟,而他则因患病而停止了实验。

接着乔治·诺克斯(Knox,G.)和托马斯·诺克斯(Knox,R.T.)两弟兄先用干燥的氯气处理干燥的氟化汞,然后把一片金箔放在玻璃接受瓶顶部。实验证明金变成了氟化金,可见反应产生了氟而未得到氟。在实验中,弟兄二人都严重中毒。继诺克斯弟兄之后,鲁耶特(Louyet,P.)对氟作了长期的研究,最后因中毒太深而献出了生命。

法国化学家尼克雷(Nickles,J.)也遭到了同样的命运。法国的弗雷米(Fremy,E.1814-1894)是一位研究氟的化学家,曾电解无水的氟化钙、氟化钾和氟化银,虽然阴极能析出金属,阳级上也产生了少量的气体,但始终未能收集到。同时英国化学家哥尔(Gore,D.G.1826-1908)也用电解法分解氟化氢,但在实

验的时候发生爆炸,显然产生的少量氟与氢发生了反应。他以碳、金、钯、铂作电极,在电解时碳被粉碎,金、钯、铂被腐蚀。这么多化学家的努力,虽然都没有制得单质氟,但他们的经验和教训都是极为宝贵的,为后来制取氟创造了有利条件。莫瓦桑出生于巴黎的一个铁路职员家庭。因家境贫穷,中学未毕业就当了药剂师的助手。他怀着强烈的求知欲,常去旁听一些著名科学家的讲演。1872年他在法国自然博物馆馆长和工艺学院教授弗雷米的实验室学习化学,1874年到巴黎药学院的实验室工作,1877年获得理学士学位。1879年通过药剂师考试,任高等药学院实验室主任。1886年成为药物学院的毒物学教授。1891年当选为法国科学院院士。1907年2月20日在巴黎逝世。他在化学上的创造发明很多,现在主要介绍他在氟方面的研究。

1872年莫瓦桑当上弗雷米教授的学生,开始在真正的化学实验室工作了。弗雷米教授是当时研究氟化物的化学家,莫瓦桑在他的门下不仅学到了化学物质一般的变化规律,而且还学到了有关氟的化学知识和研究过程。他知道早在60年代安培和戴维就已证明,盐酸和氢酸是两种不同的化合物。后一种化合物中含有氟,由于这种元素反应能力特别强,甚至和玻璃也能发生反应,以致人们无法分离出游离的氟。弗雷米反复做了多种实验,都没有找到一种与氟不起作用的东西。虽然他知道制单质氟这个课题难着了许多化学家,可是莫瓦桑对氟的研究却非常感兴趣,不但没有被困难所吓倒,反而下定决心要攻克这个难关。由于工作的变化,这项研究没有及时进行,所以在10年以后,才集中精力开展研究。

莫瓦桑先花了好几个星期的时间查阅科学文献,研究了几乎全部有关氟及其化合物的著作。他认为已知的方法都不能把氟单独分离出来只有戴维设想的方法还没有试验过。戴维认为:磷和氢的亲合力极强,如果能制氟化磷,再使氟化

磷和氧作用,则可能生成氧化磷和氟,由于当时还没有方法制得氟化磷,因而设想的实验没有实现。于是莫瓦桑用氟化铅与磷化铜反应,得到了气体的三氟化磷,然后把三氟化磷和氧的混合物通过电火花,虽然也发出了爆炸的反应,但并没有获得单质的氟,而是氟氧化磷。

莫瓦桑又进行了一连串的实验,都没有达到目的。经过长时间的探索,他终于得出了这样的结论:他的实验都是在高温下进行的,这正是实验失败症结所在。因为氟是非常活泼的,随着温度的升高,它的活泼性也就大大地增加了。即使在反应过程中它能够以游离的状态分离出来,它也会立刻和任何一种物质相化合。显然,反应应该在室温下进行,当然,能在冷却的条件下进行那就更好一些。看来电解是唯一可行的方法了。他想如果用某种液体的氟化物,例如用氟化砷来进行电解,那么怎样呢?这种想法显然是大有希望的。莫瓦桑开始制备剧毒的氟化砷了,随即遇到了新的困难,原来氟化砷是不导电的。在这种情况下,他只好往氟化砷里加入少量的氟化钾。这种混合物的导电性能好,可是在反应开始几分钟后,阴极表面覆盖了一层电解析出的砷,于是电流中断了。莫瓦桑疲倦极了,十分艰难地支撑着。他关掉了联通电解装置的电源,随即倒在沙发椅上,心脏病剧烈发作,呼吸感到困难,面色发黄,眼睛周围出现了黑圈。莫瓦桑想到,这是砷在起作用,恐怕只好放弃这个方案了。出现这样的现象不是一次,曾因中毒而中断了四次实验。莫瓦桑的爱妻莱昂妮看到他漫无节制地给自己增加工作,而且又经常冒着中毒危险,对他的健康状况极为担心。可是莫瓦桑仍然继续进行实验,设计在低温下电解氟化氢。由于干燥的氟化氢不导电,于是往里面加入少量的氟化钾。他把这个混合物放在一支U形的铂管中,然后通电流。在阴极上很快就出现了氢气泡,但阳极上却没有分解出气体。电解持续近一小时,分解出来的都是

氢气,连一点氟的影子也没有。莫瓦桑一边拆卸仪器,一边苦恼地思索着,也许氟根本就不能以游离状态存在。当他拨掉U形管阳极一端的塞子时,惊奇地发现塞子上覆盖着一层白色粉末状的物质。可不是么,原来塞子被腐蚀了!氟到底还是分解出来了,不过和玻璃发生了反应。这一发现使莫瓦桑受到了极大的鼓舞。他想,如果把装置上的玻璃零件都换成不能与氟发生反应的材料,那就可以制得单体的氟了。萤石不与氟起作用,用它来试试吧,于是把萤石制成试验用的器皿。莫瓦桑把盛有液体氟化氢和氟化钾的混合物的U形铂管浸入制冷剂中,以铂铱合金作电极,用萤石制的螺旋帽盖紧管口,管外用氯化甲烷作冷冻剂,使温度控制在-23℃,进行电解。终于在1886年第一次制得单质氟。

莫瓦桑的成就经过著名化学家的审查,认为是无可争论的。为了表彰他在制氟方面所作的突出贡献,法国科学院发给他一万法郎的拉·卡泽奖金。20年以后,又因他研究氟的制备和氟的化合物上的显著成就,而获得了1906年的诺贝尔化学奖。

二、一日三餐离不开的氯

在1774年,瑞典化学家舍勒(Scheele K W,1742-1786)在从事软锰矿的研究时发现:软锰矿与盐酸混合后加热就会生成一种令人窒息的黄绿色气体,这种气体微溶于水,使水显酸性。能漂白有色花朵和绿叶,还能和各种金属发生反应。当时,大化学家拉瓦锡认为氧是酸性的起源,一切酸中都含有氧。舍勒及许多化学家都坚信拉瓦锡的观点,认为这种黄绿色的气体是一种化合物,是由氧和另外一种未知的基所组成的,所以舍勒称它为“氧化盐酸”。但英国化学家戴维(Davy S H,1778-1829)却持有不同的观点,他想尽了一切办法也不能从氧化盐酸中把氧夺取出来,他怀疑氧化盐酸中根本就没有氧存在。1810年,戴维以无可辩驳的

事实证明了所谓的氧化盐酸不是一种化合物,而是一种化学元素的单质。他将这种元素命名为“Chlorine”。它的希腊文原意是“绿色”。中文译名为氯。 氯气常温下为黄绿色气体,可溶于水,1体积水能溶解2体积氯气。有毒,与水部分发生反应,生成盐酸(HCl )与次氯酸(HClO),次氯酸(HClO)不稳定,分解放出氧气,并生成盐酸,次氯酸氧化性很强,可用于漂白。氯的水溶液称为氯水,不稳定,受光照会分解成HCl 与氧气。液态氯气称为液氯。HCl 溶液是一种强酸。氯有多种可变化合价。氯气对肺部有强烈刺激。氯可与大多数元素反应。氯气具有强氧化性 氯气与变价金属反应时,生成最高金属氯化物 。

自然界的氯大多以离子的形式存在于化

合物中。约旦死海的海水中盐的质量分数为

28%,是世界上氯离子浓度最大的海水。

青海察尔汗盐湖由于水分不断蒸发,盐湖

上形成了坚硬的盐层。

青海察尔汗盐湖是座聚宝盆,堆积了

足够全国人民食用千年的食盐。

氯是重要化工原料,可制盐酸、漂白

粉,用于制造杀虫剂、自来水消毒、制塑

料、合成橡胶的原料。 氯具有毒性,每升

空气中含有2.5毫克氯气时即可在几分钟

内使人死亡。氯是不可缺少的常量元素之一, 约旦死海 青海察尔汗盐湖

是维持体液和电解质平衡必需的,也是胃液的一种成分。(成年人每天大约要摄入5克食盐,以补充流失的盐分,所以我们的一日三餐离不开氯。)

三、沉睡海底千年的美人—溴

法国化学家巴拉尔(1802-1876),1842年在研究盐湖中植物的时候,将从大西洋和地中海沿岸采集到的黑角菜燃烧成灰,然后用浸泡的方法得到一种灰黑色的浸取液。他往浸取液中加入氯水和淀粉,溶液即分为两层:下层显蓝色,这是由于淀粉与溶液中的碘生成了化合物;上层显棕黄色。为什么会出现这种现象呢?经巴拉尔的研究,认为可能有两种情况:一是氯与溶液中的碘形成新的氯化碘,这种化合物使溶呈棕黄色;二是氯把溶液中的新元素置换出来了,因而使上层溶液呈棕黄色。于是巴拉尔想了些办法,试图把新的化合物分开,但都没有成功。所以他断定这次一种与氯、碘相似的新元素。

1825年德国海德堡大学学生罗威把家乡克罗次纳的一种矿泉水通入氯气,产生一种红综色的物质。这种物质用乙醚提出,再将乙醚蒸发,则得到红综色的液溴。所以他也是独立发现溴的化学家。

液溴,在常温下为深红棕色液体,可溶于水,100克水能溶解约3克溴。挥发性极强,有毒,蒸气强烈刺激眼睛、粘膜等。水溶液称为溴水。溴单质需要存储容器的封口带有水封,防止蒸气逸出危害人体。有氧化性,有多种可变化合价,常温下与水微弱反应,生成氢溴酸和次溴酸。加热可使反应加快。氢溴酸是一种强酸,酸性强于氢氯酸。溴一般用于有机合成等方面。还可用于一些物质的萃取(如碘)

灭火器中也有溴,我们平时看到的诸如“1211”灭火器,就是分子里面有一个溴原子的多卤代烷烃,不仅能扑灭普通火险,在泡沫灭火器无法发挥作用的时候,

例如油火,它也能扑灭火险.

现在医院里普遍使用的镇静剂,有一类就是用溴的化合物制成的,如溴化钾、溴化钠、溴化铵等,通常用以配成“三溴片”,可治疗神精衰弱和歇斯底里症。大家熟悉的红药水,也是溴与汞的化合物.此外,青霉素等抗菌素生产也需要溴,溴还是制造农业杀虫剂的原料.

溴可以用来制作防爆剂.把溴的一种采购化合物与铅的一种有机化合物同时掺入汽油中,可以有效地防止发动机爆烯.溴化银是一种重要的感光材料,被用于制作胶卷和相纸等.我国近年已制造出了溴钨灯,成为取代碘钨灯的新光源.

四、智力元素—碘

最后他只好请法国化学家德索尔姆和克莱芒继续这一研究,并同意他们自由地向科学界宣布这种新元素的发现经过。1813年德索尔姆和克莱芒,在《库特瓦先生从一种碱金属盐中发现新物质》的报告中写道:“从海藻灰所得的溶液中含有一种特别奇异的东西,它很容易提取,方法是将硫酸倾入溶液中,放进曲颈甑内加热,并用导管将曲颈甑的口与彩形器连接。溶液中析出一种黑色有光泽的粉末,加热后,紫色蒸气冉冉上升,蒸气凝结在导管和球形器内,结成片状晶体。”

克莱芒相信这种晶体是一种与氯类似的新元素,再经戴维和盖·吕萨克等化学家的研究,提出了碘具有元素性质的论证。1814年这一元素被定名为碘,取希腊文紫色的意义。

碘在常温下如右图为紫黑色固体,具有金属光

泽,易升华和凝华,易溶于汽油、乙醇、苯等溶

剂,微溶于水,加碘化物可增加碘的溶解度并加

快溶解速度。低毒,氧化性弱,有多种可变化合

价。氢碘酸为无放射性的最强氢卤酸,也是放射性的最强无氧酸。但腐蚀性是所有无放射氢卤酸中最弱的,因为碘原子的半径较大,电子亲和能与电负性较小,易于损失氢离子。有还原性。碘是所有卤族元素中最安全的,因为氟、氯、溴的毒性、腐蚀性均比碘强,而砹虽毒性比碘弱,但有放射性。

碘是人体必需的微量元素之一,有“智力元,”

之称主要用于合成甲状腺素。健康人体内碘的总量

为30毫克,国家规定在食盐中添加碘的标准为

20~30毫克每千克。

碘主要用于制药物、染料、碘酒、试纸和碘化

合物等。碘酒就是用碘、碘化钾和乙醇制成的一种药

物,棕红色的透明液体,有碘和乙醇的特殊气味。

碘能够促进人体甲状腺的发育,所以缺碘的人容易得大脖子病。

五、门捷列夫预测的类碘—砹

门捷列夫的猜想:

1940年,意大利化学家西格雷迁居到美国。他和美国科学家科里森、麦肯齐在加利福利亚大学用回旋加速器加速氦原子核轰击金属铋290,成功制的第85号元素—“类碘”,就是砹。

所以说,砹是一个人造元素。

砹(At)极不稳定。砹210是半衰期最长的同位素,其半衰期也只有8.3小时。地壳中砹含量只有10亿亿亿分之一,主要是镭、锕、钍自动分裂的产物。砹是放射性元素。其量少、不稳定、难于聚集,其“庐山真面目”谁都没见过(金属性应该更强。颜色应比碘还要深,可能呈黑色固体)。但科学家却合成砹的同位素20种。砹的金属性质比碘还明显一些,可以与银化合形成极难还原的AgAt。砹与氢化合产生的氢砹酸(HAt)是最强的、最不稳定的氢卤酸,但腐蚀性是所有氢卤酸中最弱的。

砹除了最稳定同位素以外,由于极其短暂的半衰期在科学研究方面没有实际应用,但较重的同位素有医疗用途。

但砹有放射性,会造成放射性中毒,应特别小心处理。

高中化学卤素知识点

卤族元素的代表:氯 卤族元素指周期系ⅦA族元素。包括氟(F)、氯(Cl)、溴(Br)、碘(I)、砹(At),简称卤素。它们在自然界都以典型的盐类存在,是成盐元素。卤族元素的单质都是双原子分子,它们的物理性质的改变都是很有规律的,随着分子量的增大,卤素分子间的色散力逐渐增强,颜色变深,它们的熔点、沸点、密度、原子体积也依次递增。卤素都有氧化性,氟单质的氧化性最强。卤族元素和金属元素构成大量无机盐,此外,在有机合成等领域也发挥着重要的作用。 Halogen 卤素的化学性质都很相似,它们的最外电子层上都有7个电子,有取得一个电子形成稳定的八隅体结构的卤离子的倾向,因此卤素都有氧化性,原子半径越小,氧化性越强,因此氟是单质中氧化性最强者。 除F外,卤素的氧化态为+1、+3、+5、+7,与典型的金属形成离子化合物,其他卤化物则为共价化合物。卤素与氢结合成卤化氢,溶于水生成氢卤酸。卤素之间形成的化合物称为互卤化物,如ClF3、ICl。卤素还能形成多种价态的含氧酸,如HClO、HClO2、HClO3、HClO4。卤素单质都很稳定,除了I2以外,卤素分子在高温时都很难分解。卤素及其化合物的用途非常广泛。例如,我们每天都要食用的食盐,主要就是由氯元素与钠元素组成的氯化物。 卤素单质的毒性,从F开始依次降低。 从F到At,其氢化物的酸性依次增强。但氢化物的稳定性呈递减趋势。氧化性:F?> Cl?> Br?> I?> At?,但还原性相反。 氟 氟气常温下为淡黄色的气体,有剧毒。与水反应立即生成氢氟酸和氧气并发生燃烧,同时能使容器破裂,量多时有爆炸的危险。氟、氟化氢和氢氟酸对玻璃有较强的腐蚀性。氟是氧化性最强的元素,只能呈-1价。单质氟与盐溶液的反应,都是先与水反应,生成的氢氟酸再与盐的反应,通入碱中可能导致爆炸。水溶液氢氟酸是一种弱酸。但却是稳定性、腐蚀性最强的氢卤酸,如果皮肤不慎粘到,将一直腐蚀到骨髓。化学性质活泼,能与几乎所有元素发生反应(除氦、氖)。 氯 氯气常温下为黄绿色气体,可溶于水,1体积水能溶解2体积氯气。有毒,与水部分发生反应,生成HCl与次氯酸,次氯酸不稳定,分解放出氧气,并生成盐酸,次氯酸氧化性很强,

卤族元素教案

卤素及其化合物 一、氯气的性质及用途 1.物理性质:通常情况下氯气是呈黄绿色的气体,有刺激性气味,有毒易液化,能溶于水(在常温下1体积水约溶解2体积的氯气)。 注意:①氯气使人中毒的症状是:吸入少量氯气会使鼻和喉头的黏膜受到刺激,引起胸部疼痛和咳嗽,吸入大量的氯气会中毒死亡。 ②在实验室里闻氯气气味时,必须十分小心,采用正确的闻气味方法,即用于在瓶口轻轻扇动,仅使极少量的氯气飘进鼻孔。在实验室中闻其他气体的气味时,也应采用这种方法。2.化学性质:氯气的化学性质很活泼的非金属单质。 (1)与金属反应 2NaCl(产生白烟)②Cu+Cl2CuCl2(产生棕黄色的烟)如:①2Na+Cl2 ③2Fe+3Cl22FeCl3(产生棕色的烟) 说明①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物.其中,变价金属如(Cu、Fe)与氯气反应时呈现高价态(分别生成CuCl2、FeCl3). ②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯. ③“烟”是固体小颗粒分散到空气中形成的物质.如铜在氯气中燃烧,产生的棕黄色的烟为CuCl2晶体小颗粒;钠在氯气中燃烧,产生的白烟为NaCl晶体小颗粒;等等. (2)与非金属反应 如:①H2+Cl22HCl(发出苍白色火焰,有白雾生成)——可用于工业制盐酸H2+Cl22HCl(会发生爆炸)——不可用于工业制盐酸 注意①在不同的条件下,H2与C12均可发生反应,但反应条件不同,反应的现象也不同.点燃时,纯净的H2能在C12中安静地燃烧,发出苍白色的火焰,反应产生的气体在空气中形成白雾并有小液滴出现;在强光照射下,H2与C12的混合气体发生爆炸.②物质的燃烧不一定要有氧气参加.任何发光、发热的剧烈的化学反应,都属于燃烧.如金属铜、氢气在氯气中燃烧等.③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的物质.要注意“雾”与“烟”的区别.④H2与Cl2反应生成的HCl气体具有刺激性气味,极易溶于水.HCl的水溶液叫氢氯酸,俗称盐酸. ②2P+3Cl22PCl3(氯气不足;产生白雾)2P+5Cl22PCl5(氯气充足;产生白烟) (3)与水反应:Cl2+H2O = HCl+HClO (4)与碱反应 Cl2+2NaOH = NaCl+NaClO+H2O(用于除去多余的氯气) 2Cl2+2Ca(OH)2 = Ca(ClO)2+CaCl2+2H2O(用于制漂粉精) Ca(ClO)2+CO2+H2O = CaCO3↓+2HClO(漂粉精的漂白原理) 说明①Cl2与石灰乳[Ca(OH)2的悬浊液]或消石灰的反应是工业上生产漂粉精或漂白粉的原理.漂粉精和漂白粉是混合物,其主要成分为Ca(ClO)2和CaCl2,有效成分是Ca(C1O)2

卤素化学方程式及性质

卤素化学方程式及性质 1、与非金属反应(HX:卤化氢/氢卤酸) F 2 + H 2 ====2HF Cl 2+H 2====2HCl Br 2+H 2 ====2HBr I 2+H 2 加热2HI 反应条件越来越苛刻,且HX 稳定性降低,HI 在加热下易分解 4HF+SiO 2===SiF 4↑+2H 2O (HF 保存在塑料瓶的原因,此反应广泛应用于测定矿样或钢样中SiO 2的含量) HF 为弱酸,酸性比较:HFO 2,置换反应) 4、与碱反应(以NaOH 为例)X 2+2NaOH===NaX+NaXO+H 2O Cl 2+2NaOH===NaCl+NaClO+H 2O 3Cl 2+6NaOH===5NaCl+NaClO 3+3H 2O Br 2+2NaOH===NaBr+NaBrO+H 2O 3Br 2+6NaOH===5NaBr+NaBrO 3+3H 2O I 2+2NaOH===NaI+NaIO+H 2O 3I 2+6NaOH===5NaI+NaIO 3+3H 2O 3Na 2CO 3+3Br 2==5NaBr +NaBrO 3+3CO 2↑ 以上均为歧化反应。 制备漂白粉:2Cl 2+2Ca(OH)2===CaCl 2+Ca(ClO)2+2H 2O 漂白粉成分:CaCl 2、Ca(ClO)2,有效成分:Ca(ClO)2 漂白原理:(在空气中)Ca(ClO)2+H 2O+CO 2===CaCO 3↓+2HClO 冷暗 光照 500℃ 点燃 点燃 △ △ △ △ △ △ △ △ 冰水 室温

卤族元素性质总结资料

元素周期律 卤族元素性质总结 I.元素周期律 1.周期表位置 VII A 族(第17纵列),在2、3、4、5、6、7周期上均有分布。元素分别为氟(F)-9,氯(Cl)-17,溴(Br)-35,碘(I)-53,砹(At*)-85,未命名元素(Uus*)-117。 2.由于均可与金属化合成盐(卤化物),所以被称为卤族元素。 II.物理性质 II.1物理性质通性(相似性) 液态的温度范围都比较小,单质均有颜色。卤素都是非极性分子,而水是极性分子,根据相似相溶原理 (极性分子易溶于极性分子,非极性分子易溶于非极性分子),在水中溶解度都比较小,而在有机溶剂中溶解度都比较大。气态卤素均有刺激性气味。 II-2.物理性质递变性 随着周期的递增,卤族元素单质的物理递变性有: 1.颜色由浅变深。 2.在常温下状态由气态、液态到固态。 3.熔沸点逐渐升高。 4.密度逐渐增大。 5.溶解性逐渐减小。 II.3.物理性质特性 1.溴是唯一的液态非金属单质。液溴极易产生有毒的溴蒸气,实验室通常将溴密闭保存与阴冷处,不能用胶塞,且试剂瓶中加水,以减弱溴的挥发。 2.碘具有金属光泽。易溶与酒精,碘酒是常见的消毒剂。 3. 氯气难溶于饱和氯化钠溶液,而碘易溶于碘化钾溶液(生成I 3)。 注意:氯气难溶于饱和氯化钠溶液,而碘易溶于碘化钾溶液(生成I 3) III.化学性质 III-1.原子化学性质 III-1.1.原子化学性质通性 1.最外层均有7个电子 2.单质均为双原子分子,形成非极性共价键,都很稳定(除了I ?)在高温时都很难分解。 3.在化学反应中易得电子 4. 与典型的金属形成离子化合物,其他卤化物则为共价化合物 图1 卤素双原子分子电子结构示意图

高中化学卤族元素知识点归纳

卤族元素 [卤族元素] 简称卤素.包括氟(F)、氯(C1)、溴(Br)、碘(I)和放射性元素砹(At).在自然界中卤素无游离态,都是以化合态的形式存在(1)位置:VIIA (2)原子结构:相同点:最外层电子数均为7 不同点:F I电子层数逐渐增多,原子半径逐渐增大。 (3)相似性: ①单质均为双原子非极性分子 ②主要化合价为 -1价,最高正价为+7价(F除外) ③都具有强氧化性 [卤素单质的物理性质] 说明 (1)实验室里,通常在盛溴的试剂瓶中加水(即“水封”),以减少溴的挥发. (2)固态物质不经液态而直接变成气态的现象,叫做升华.升华是一种物理变化.利用碘易升华的性质,可用来分离、提纯单质碘. (3)Br2、I2较难溶于水而易溶于如汽油、苯、四氯化碳、酒精等有机溶剂中.医疗上用的碘酒,就是碘(溶质)的酒精(溶剂)溶液.利用与水互不相溶的有机溶剂可将Br2、I2从溴水、碘水中提取出来(这个过程叫做萃取). [卤素单质的化学性质] (1)卤素的原子结构及元素性质的相似性、递变性.

(2)卤素单质与氢气的反应. H 2 + F 2 = 2HF (冷暗处爆炸) H 2 +Cl 2 = 2HCl (光照爆炸,点燃) H 2 +Br 2 2HBr H 2 +I 2 2HI 长期加热并不断分解 卤化氢:易溶于水,在空气中形成白雾。 ①HClO 2 注意:将F 2通入某物质的水溶液中,F 2先跟H 2O 反应.如将F 2通入NaCl 的水溶液中,同样发生上述反应,等等. ②X 2 + H 2O HX + HXO (X=Cl 、Br 、I ) Cl 2 、Br 2、I 2与H 2O 的反应逐渐减弱,都是可逆反应。 (4)与金属反应 卤族元素与变价元素一般生成高价态化合物,但 Fe + I 2 = FeI 2 (碘化亚铁) (5)与碱的反应: 2F 2 + 2NaOH =2NaF + OF 2 + 2H 2O X 2(Cl 2 、Br 2、I 2)+2NaOH NaX + NaXO + H 2O (6)卤素单质间的置换反应. 2NaBr + C12(新制、饱和) = 2NaCl + Br 2 2Br - + C12 = 2C1- + Br 2 加入CCl 4并振荡后,液体分层.上层为含有NaCl 的水层,无色;下层为溶有Br 2的CCl 4层,显橙色. 2NaI + C12(新制、饱和) =2NaCl + I 2 2I - + Cl 2 =2C1- + I 2 ①加入CCl 4并振荡后,液体分层.上层为含有NaI 的水层,无色;下层为溶有I 2的CCl 4层,显紫红色. ②将反应后的溶液加热蒸干灼烧,生成的I 2升华,故残留的固体为NaCl(C12足量时)或NaCl 和NaI 的混合物(C12不足量时). 2NaI + Br 2 =2NaBr + I 2 2I - + Br 2 =2Br - + I 2 ①加入CCl 4并振荡后,液体分层.上层为含有NaBr 的水层,无色,下层为溶有I 2的CCl 4层,显紫红色. ②将反应后的溶液加热蒸干灼烧,生成的I 2升华,故残留的固体为NaBr(Br 2足量时)或NaBr 和NaI(Br 2不足量时). F 2 + NaX(熔融) =2NaF + X 2 (X =C1、Br 、I) 注意 将F 2通入含Cl -、Br -或I -的水溶液中,不是发生卤素间的置换反应,而是F 2与H 2O 反应. (7)碘单质(I 2)的化学特性.I 2 + 淀粉溶液 → 蓝色溶液 说明 ①利用碘遇淀粉变蓝的特性,可用来检验I 2的存在. △ △ 冷

卤素及其重要化合物的性质

东方教育学科教师辅导讲义 讲义编号 学员编号:年级:课时数:学员姓名:辅导科目:学科教师: 课题卤素及其重要化合物的性质 授课时间:备课时间: 教学目标 重点、难点 教学内容 [知识点归纳] 一、氯气的性质及用途 1.物理性质:常温下,氯气是黄绿色、有刺激性、能溶于水、比空气重、易液化的有毒气体。 2.化学性质:氯气是化学性质很活泼的非金属单质。 (1)与金属反应(与变价金属反应,均是金属氧化成高价态) 如:①2Na+Cl 2 2NaCl(产生白烟) ②Cu+Cl2CuCl2(产生棕黄色的烟) ③2Fe+3Cl 22FeCl 3 (产生棕色的烟) 注:常温下干燥的氯气或液氯不与铁反应,所以液氯通常储存在钢瓶中。(2)与非金属反应 如:①H 2+Cl 2 2HCl(发出苍白色火焰,有白雾生成)——可用于工业制盐酸 H 2+Cl 2 2HCl(会发生爆炸)——不可用于工业制盐酸 ②2P+3Cl 22PCl 3 (氯气不足;产生白雾) 2P+5Cl 22PCl 5 (氯气充足;产生白烟) (3)与水反应:Cl 2+H 2 O HCl+HClO (4)与碱反应 ①Cl 2+2NaOH = NaCl+NaClO+H 2 O(用于除去多余的氯气) ②2Cl 2+2Ca(OH) 2 = Ca(ClO) 2 +CaCl 2 +2H 2 O(用于制漂粉精)

通电 ③Ca(ClO)2+CO 2+H 2O = CaCO 3↓+2HClO (漂粉精的漂白原理) (5)与某些还原性物质反应 如:①2FeCl 2+Cl 2 = 2FeCl 3 ②2KI +Cl 2 = 2KCl + I 2(使湿润的淀粉-KI 试纸变蓝色,用于氯气的检验) ③SO 2+Cl 2+2H 2O = 2HCl + H 2SO 4 (6)与某些有机物反应 如:①CH 4+Cl 2 CH 3Cl + HCl (取代反应) ②CH 2=CH 2+Cl 2 → CH 2ClCH 2Cl (加成反应) 3.氯水的成分及性质 氯气溶于水得黄绿色的溶液----氯水。在氯水中有少部分氯分子与水反应,大部分是以Cl 2分子状态存在于水中。 注意:(1)在新制的氯水中存在的微粒有:H 2O 、Cl 2、HClO 、H +、Cl -、ClO -、OH -;久置 氯水则几乎是盐酸溶液 (2)HClO 的基本性质 ① 一元弱酸,比H 2CO 3弱 ② 不稳定,2HClO === 2HCl + O 2↑ ③ 强氧化性 ④ 漂白、杀菌能力,使色布、品红溶液等褪色。 (3)几种漂白剂的比较 漂白剂 HClO Na 2O 2(H 2O 2) SO 2 活性炭 漂白原理 氧化漂白 氧化漂白 化合漂白 吸附漂白 品红溶液 褪色 褪色 褪色 褪色 紫色石蕊 先变红后褪色 褪色 只变红不褪色 褪色 稳定性 稳定 稳定 不稳定 —— 4.氯气的制法 (1)实验室制法 药品及原理:MnO 2 + 4HCl (浓) MnCl 2 + 2H 2O + Cl 2↑ 强调:MnO 2跟浓盐酸在共热的条件下才反应生成Cl 2,稀盐酸不与MnO 2反应。 仪器装置:发生装置---收集装置---吸收装置 实验步骤:检密—装药—固定—加热—收集 收集方法:向上排空气法 (或排饱和食盐水法) 净化装置:用饱和食盐水除去HCl ,用浓硫酸干燥 尾气处理:用碱液吸收 (2)氯气的工业制法:(氯碱工业) 2NaCl + 2H 2O 2NaOH + H 2↑ + Cl 2↑ 二、氯化氢的性质和实验室制法 1.物理性质: 无色、有刺激性气味的气体;极易溶于水,其水溶液为盐酸。 2.盐酸的化学性质: (挥发性强酸的通性) 3.氯化氢的实验室制法 (1)药品及反应原理: NaCl + H 2SO 4 === NaHSO 4 + HCl ↑ (不加热或微热) (2)装置: 与制氯气的装置相似 (3)收集方法: 向上排空气法 (4)检验方法: 用湿润的蓝色石蕊试纸是否变红或用玻璃棒蘸浓氨水靠近是否有白烟产生 加热

化学元素周期表的发现与发展

化学元素周期表的发现与发展 摘要:化学元素周期表是人类研究化学的一个里程碑,揭示了化学元素间的内在联系。在元素周期律的指导下,利用元素之间的一些规律性知识来分类学习物质的性质,就使化学学习和研究变得有规律可循。现在,化学家们已经能利用各种先进的仪器和分析技术对化学世界进行微观的探索,并正在探索利用纳米技术制造出具有特定功能的产品,使化学在材料、能源、环境和生命科学等研究上发挥越来越重要的作用。 关键字:本文就化学元素周期表的起源,归路,意义,以及发展历史等角度全面的了解 化学元素周期表。这个化学史上重要的成就,同时帮助我们更好的学习化学,理解化学元素的本质联系。 1.起源简介 化学元素周期表现代化学的元素周期律是1869年俄国化学家德米特里·伊万诺维奇·门捷列夫首创的(周期表中101位元素“钔”由此而来)。门捷列夫将元素按照相对原子质量由大到小依次排列,并将化学性质相近的元素放在一个纵列,制出了第一张元素周期表,揭示了化学元素间的内在联系,使其构成了一个完整的体系,成为化学发展史上的重要里程碑之一。1913年英国科学家莫色勒利用阴极射线撞击金属产生X射线,发现原子序数越大,X射线的频率就越高,因此他认为原子核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序数)排列,经过多年 元素周期表修订后才成为当代的周期表。常见的元素周期表为长式元素周期表。在长式元素周期表中,元素是以元素的原子序数排列,最小的排行最先。表中一横行称为一个周期,一纵列称为一个族,最后有两个系。除长式元素周期表外,常见的还有短式元素周期表,螺旋元素周期表,三角元素周期表等。 道尔顿提出科学原子论后,随着各种元素的相对原子质量的数据日益精确和原子价(化合价)概念的提出,就使元素相对原子质量与性质(包括化合价)之间的联系显露出来。德国化学家德贝莱纳就提出了“三元素组”观点。他把当时已知的54种元素中的15种,分成5组,每组的三种元素性质相似,而且中间元素的相对原子质量等于较轻和较重的两个元素相对原子质量之和的一半。例如钙、锶、钡,性质相似,锶的相对原子质量大约是钙和钡的相对原子

卤素元素的化学性质实验报告【精品】

一、教学目标 (一)掌握Cl2、Br2、I2的氧化性及Cl-、Br-、I-还原性。 (二)掌握卤素的歧化反应 (三)掌握次氯酸盐、氯酸盐强氧化性 (四)了解氯化氢HCl气体的实验室制备方法 (五)了解卤素的鉴定及混合物分离方法 二、教学的方法及教学手段 讲解法,学生实验法,巡回指导法 三、教学重点 1、区别Cl 2、Br2、I2的氧化性及Cl-、Br-、I-还原性。 2、卤素的歧化反应 3、次氯酸盐、氯酸盐强氧化性 四、教学难点 区别Cl2、Br2、I2的氧化性及Cl-、Br-、I-还原性;卤素的歧化反应;次氯酸盐、氯酸盐的强氧化性 五、实验原理 卤素系ⅦA族元素,包括氟、氯、溴、碘、砹,其价电子构型ns2np5,因此元素的氧化数通常是—1,但在一定条件下,也可以形成氧化数为+1、+3、+5、+7的化合物。卤素单质在化学性质上表现为强氧化性,其氧化性顺序为:F2 > Cl2 > Br2 > I2。所以,Br-能被Cl2氧化为Br2,在CCl4中呈棕黄色。I2能被Cl2、Br2氧化为I2,在CCl4中呈紫色。 卤素单质溶于水,在水中存在下列平衡: X2 + H2O===HX + HXO 这就是卤素单质的歧化反应。卤素的歧化反应易在碱性溶液中进行,且反应产物随着温度和碱液浓度的不同而变化。 卤素的含氧酸有多种形式:HXO、HXO2、HXO3、HXO4。随着卤素氧化数的升高,

其热稳定性增大,酸性增强,氧化性减弱。如氯酸盐在中性溶液中没有明显的强氧化性,但在酸性介质中表现出强氧化性,其次序为:BrO3- > ClO3- > IO3-。次氯酸及其盐具有强氧化性。 HCl的还原性较弱,制备Cl2,必须使用氧化性强的KMnO4、MnO2来氧化Cl-。若使用MnO2,则需要加热才能使反应进行,且可控制反应的速度。 六、仪器与药品 试管及试管夹、量筒(1mL)、酒精灯、滴瓶(125mL)、试剂瓶(500mL)、烧杯(250mL) KBr、KCl、KI、CCl4、H2SO4(浓)、NaOH、NaClO、MnSO4、HCl(浓)、KClO3、AgNO3、溴水、品红、酒精、浓氨水、碘伏水、pH试纸、KI-淀粉试纸、醋酸铅试纸、蓝色石蕊试纸。 七、实验内容 (一)卤素单质的氧化性 ①取几滴KBr溶液于试管中,再加入少量CCl4,滴加氯水,振荡,仔细观察CCl4层颜色的变化; ②取几滴KI溶液于试管中,再加入少量CCl4,滴加氯水,振荡,仔细观察CCl4层颜色的变化; ③取几滴KI溶液于试管中,再加入少量CCl4,滴加溴水,振荡,仔细观察CCl4层颜色的变化; 结论: 1、反应现象: 2、反应方程式包括: 3、卤素单质的氧化性顺序:__________________________________ 。 (二)Cl-、Br-、I-的还原性 ①往干燥试管中加入绿豆粒大小的KCl晶体,再加入0.5mL浓硫酸(浓硫酸不要沾到瓶口处),微热。观察试管中颜色变化,并用湿润的pH试纸检验试管放出的气体。 ②往干燥试管中加入绿豆粒大小的KBr晶体,再加入0.5mL浓硫酸(浓硫酸不要 沾到瓶口处),微热。观察试管中颜色变化,并用KI-淀粉试纸检验试管口。

卤素单质总结

卤素 1.氯气 [氯气的物理性质] (1)常温下,氯气为黄绿色气体.加压或降温后液化为液氯,进一步加压或降温则变成固态氯.(2)常温下,氯气可溶于水(1体积水溶解2体积氯气).(3)氯气有毒并具有强烈的刺激性,吸入少量会引起胸部疼痛和咳嗽,吸入大量则会中毒死亡.因此,实验室闻氯气气味的正确方法为:用手在瓶口轻轻扇动,仅使少量的氯气飘进鼻孔. [氯气的化学性质] 氯原子在化学反应中很容易获得1个电子.所以,氯气的化学性质非常活泼,是一种强氧化剂. (1)与金属反应:Cu + C12CuCl2 实验现象:铜在氯气中剧烈燃烧,集气瓶中充满了棕黄色的烟.一段时间后,集气瓶内壁附着有棕黄色的固体粉末.向集气瓶内加入少量蒸馏水,棕黄色固体粉末溶解并形成绿色溶液,继续加水,溶液变成蓝色. 2Na + Cl22NaCl 实验现象:有白烟产生. 说明①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物.其中,变价金属如(Cu、Fe)与氯气反应时呈现高价态(分别生成CuCl2、FeCl3). ②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯. ③“烟”是固体小颗粒分散到空气中形成的物质.如铜在氯气中燃烧,产生的棕黄色的烟为CuCl2晶体小颗粒;钠在氯气中燃烧,产生的白烟为NaCl晶体小颗粒;等等. (2)与氢气反应H2 + Cl22HCl 注意①在不同的条件下,H2与C12均可发生反应,但反应条件不同,反应的现象也不同.点燃时,纯净的H2能在C12中安静地燃烧,发出苍白色的火焰,反应产生的气体在空气中形成白雾并有小液滴出现;在强光照射下,H2与C12的混合气体发生爆炸. ②物质的燃烧不一定要有氧气参加.任何发光、发热的剧烈的化学反应,都属于燃烧.如金属铜、氢气在氯气中燃烧等. ③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的物质.要注意“雾”与“烟”的区别. ④H2与Cl2反应生成的HCl气体具有刺激性气味,极易溶于水.HCl的水溶液叫氢氯酸,俗称盐酸. (3)与水反应. 化学方程式:C12 + H2O =HCl + HClO 离子方程式:Cl2 + H2O =H++ Cl-+ HClO 说明①C12与H2O的反应是一个C12的自身氧化还原反应.其中,Cl2既是氧化剂又是还原剂,H2O只作反应物. ②在常温下,1体积水能溶解约2体积的氯气,故新制氯水显黄绿色.同时,溶解于水中的部分C12与H2O反应生成HCl和HClO,因此,新制氯水是一种含有三种分子(C12、HClO、H2O)和四种离子(H+、Cl-、ClO-和水电离产生的少量OH-)的混合物.所以,新制氯水具有下列性质:酸性(H+),漂白作用(含HClO),Cl-的性质,C12的性质. ③新制氯水中含有较多的C12、HClO,久置氯水由于C12不断跟H2O反应和HClO不断分解,使溶液中的C12、HClO逐渐减少、HCl逐渐增多,溶液的pH逐渐减小,最后溶液变成了稀盐酸,溶液的pH<7. ④C12本身没有漂白作用,真正起漂白作用的是C12与H2O反应生成的HClO.所以干燥的

卤素元素的化学性质实验报告

卤素元素的化学性质实验报告 一、教学目标 (一)掌握Cl2、Br2、I2的氧化性及Cl-、Br-、I-还原性。 (二)掌握卤素的歧化反应 (三)掌握次氯酸盐、氯酸盐强氧化性 (四)了解氯化氢HCl气体的实验室制备方法 (五)了解卤素的鉴定及混合物分离方法 二、教学的方法及教学手段 讲解法,学生实验法,巡回指导法 三、教学重点 1、区别Cl 2、Br2、I2的氧化性及Cl-、Br-、I-还原性。 2、卤素的歧化反应 3、次氯酸盐、氯酸盐强氧化性 四、教学难点 区别Cl2、Br2、I2的氧化性及Cl-、Br-、I-还原性;卤素的歧化反应;次氯酸盐、氯酸盐的强氧化性 五、实验原理 卤素系ⅦA族元素,包括氟、氯、溴、碘、砹,其价电子构型ns2np5,因此元素的氧化数通常是—1,但在一定条件下,也可以形成氧化数为+1、+3、+5、+7的化合物。卤素单质在化学性质上表现为强氧化性,其氧化性顺序为:F2 Cl2 Br2 I2。所以,Br-能被Cl2氧化为Br2,在CCl4中呈棕黄色。I2能被Cl2、Br2氧化为I2,在CCl4中呈紫色。

卤素单质溶于水,在水中存在下列平衡: X2 + H2O === HX + HXO 这就是卤素单质的歧化反应。卤素的歧化反应易在碱性溶液中进行,且反应产物随着温度和碱液浓度的不同而变化。 卤素的含氧酸有多种形式:HXO、HXO2、HXO3、HXO4。随着卤素氧化数的升高, 其热稳定性增大,酸性增强,氧化性减弱。如氯酸盐在中性溶液中没有明显的强氧化性,但在酸性介质中表现出强氧化性,其次序为:BrO3- ClO3- IO3-。次氯酸及其盐具有强氧化性。 HCl的还原性较弱,制备Cl2,必须使用氧化性强的KMnO4、MnO2来氧化Cl-。若使用MnO2,则需要加热才能使反应进行,且可控制反应的速度。 六、仪器与药品 试管及试管夹、量筒(1mL)、酒精灯、滴瓶(125mL)、试剂瓶(500mL)、烧杯(250mL) KBr、KCl、KI、CCl4、H2SO4(浓)、NaOH、NaClO、MnSO4、HCl(浓)、KClO3、AgNO3、溴水、品红、酒精、浓氨水、碘伏水、pH试纸、KI-淀粉试纸、醋酸铅试纸、蓝色石蕊试纸。 七、实验内容 (一)卤素单质的氧化性 ①取几滴KBr溶液于试管中,再加入少量CCl4,滴加氯水,振荡,仔细观察CCl4层颜色的变化;

元素发现史——卤素

个性鲜明的卤族元素 一、氟,一段悲壮的发现史 在化学元素史上,参加人数最多、危险最大、工作最难的研究课题,莫过于氟元素的发现。氟的发现被认为是19世纪最困难的事情之一。1529年,德国化学家阿里科尔证实了萤石的存在,人们从此开始认识氟的漫漫征程。 1768年马格拉夫研究萤石,发现它与石膏 和重晶石不同,判断它不是一种硫酸盐。1771年化 学家舍勒用曲颈甑加热萤石和硫酸的混合物,发现 玻璃瓶内壁腐剂。1810年法国物理学、化学家安培, 萤石 根据氢氟酸的性质的研究指出,其中可能含有一种与氯相似的元素。 化学家戴维的研究,也得出同样的看法。1813年戴维用电解氟化物的方法制取单质氟,用金和铂做容器,都被腐蚀了。后来改用萤石做容器,腐蚀问题虽解决了,但也得不到氟,而他则因患病而停止了实验。 接着乔治·诺克斯(Knox,G.)和托马斯·诺克斯(Knox,R.T.)两弟兄先用干燥的氯气处理干燥的氟化汞,然后把一片金箔放在玻璃接受瓶顶部。实验证明金变成了氟化金,可见反应产生了氟而未得到氟。在实验中,弟兄二人都严重中毒。继诺克斯弟兄之后,鲁耶特(Louyet,P.)对氟作了长期的研究,最后因中毒太深而献出了生命。 法国化学家尼克雷(Nickles,J.)也遭到了同样的命运。法国的弗雷米(Fremy,E.1814-1894)是一位研究氟的化学家,曾电解无水的氟化钙、氟化钾和氟化银,虽然阴极能析出金属,阳级上也产生了少量的气体,但始终未能收集到。同时英国化学家哥尔(Gore,D.G.1826-1908)也用电解法分解氟化氢,但在实

验的时候发生爆炸,显然产生的少量氟与氢发生了反应。他以碳、金、钯、铂作电极,在电解时碳被粉碎,金、钯、铂被腐蚀。这么多化学家的努力,虽然都没有制得单质氟,但他们的经验和教训都是极为宝贵的,为后来制取氟创造了有利条件。莫瓦桑出生于巴黎的一个铁路职员家庭。因家境贫穷,中学未毕业就当了药剂师的助手。他怀着强烈的求知欲,常去旁听一些著名科学家的讲演。1872年他在法国自然博物馆馆长和工艺学院教授弗雷米的实验室学习化学,1874年到巴黎药学院的实验室工作,1877年获得理学士学位。1879年通过药剂师考试,任高等药学院实验室主任。1886年成为药物学院的毒物学教授。1891年当选为法国科学院院士。1907年2月20日在巴黎逝世。他在化学上的创造发明很多,现在主要介绍他在氟方面的研究。 1872年莫瓦桑当上弗雷米教授的学生,开始在真正的化学实验室工作了。弗雷米教授是当时研究氟化物的化学家,莫瓦桑在他的门下不仅学到了化学物质一般的变化规律,而且还学到了有关氟的化学知识和研究过程。他知道早在60年代安培和戴维就已证明,盐酸和氢酸是两种不同的化合物。后一种化合物中含有氟,由于这种元素反应能力特别强,甚至和玻璃也能发生反应,以致人们无法分离出游离的氟。弗雷米反复做了多种实验,都没有找到一种与氟不起作用的东西。虽然他知道制单质氟这个课题难着了许多化学家,可是莫瓦桑对氟的研究却非常感兴趣,不但没有被困难所吓倒,反而下定决心要攻克这个难关。由于工作的变化,这项研究没有及时进行,所以在10年以后,才集中精力开展研究。 莫瓦桑先花了好几个星期的时间查阅科学文献,研究了几乎全部有关氟及其化合物的著作。他认为已知的方法都不能把氟单独分离出来只有戴维设想的方法还没有试验过。戴维认为:磷和氢的亲合力极强,如果能制氟化磷,再使氟化

卤素知识归纳

氯 一、氯的化学性质 ①Cl2与金属反应 ②Cl2与水反应 ③Cl2与碱反应 Cl2+2NaOH=NaCl+NaClO+H2O(尾气吸收) 2Cl2+2Ca(OH)2=CaCl2+Ca(ClO)2+2H2O(制漂白粉) Ca(ClO2)+CO2+H2O=CaCO3↓+2HClO(日常漂白原理) 3Cl2+8NH3=6NH4Cl+N2 ④Cl2与还原性化合物作用 Cl2+NaBr=2NaCl+Br2 Cl2+2NaI=2NaCl+I2 Cl2+2FeCl2=2FeCl3 3Cl2+6FeBr2=2FeCl3+4FeBr3 (少量Cl2) 3Cl2+2FeBr2=2FeCl3+2Br2(足量Cl2) Cl2+SO2+2H2O=H2SO4+2HCl Cl2+H2S=2HCl+S↓ ⑤Cl2制备 了解:16HCl(浓)+2KMnO4=2KCl+2MnCl2+5Cl2↑+8H2O 14HCl(浓)+K2Cr2O7=2KCl+2CrCl3+3Cl2↑+7H2O 4HCl(浓)+Ca(ClO)2=CaCl2+Cl2↑+2H2O ⑥氟、碘的有关方程式 2F2+2H2O=4HF+O2 Si+4HF=SiF4+2H2 4HF+SiO2=SiF4↑+2H2O

CaSiO3+6HF=CaF2↓+SiF4↑+3H2O Fe+I2FeI2 碘与淀粉溶液变蓝色。 二.氯水的成分和性质 (1)成分: 形成淡绿色液体,溶解于水中的氯气能够部分与水反应生成盐酸和次氯酸. Cl2+H2O=HCl+HClO 新制的氯水中主要含有Cl2、HClO、H2O、H+、Cl—、ClO—(HClO为弱酸,部分电离出少量H+、ClO—),以及水电离出来的少量OH—等。 久置的氯水由于次氯酸见光分解:2HClO=2HCl+O2↑,而变成很稀的盐酸,其中主要含有H+、Cl—、H2O、O2(少量). (2)性质: ①新制的氯水可以代替氯气.如: A.能使碘化钾淀粉试纸变蓝。 B.氯水和某些非金属阴离子的反应,向KI、Na2S、NaBr的溶液中加氯水。 C.氯水和某些还原性阳离子的反应,向FeCl2溶液中加氯水. D.氯水和某些还原性氢化物的反应,向氯水中通H2S、HBr、HI等. E.氯水和不饱和有机物的加成反应,向氯水中通入乙烯、乙炔等. 三.溴水褪色的种种反应 (1)能使溴水褪色的无机物 H2S:Br2+H2S=2HBr+S↓(褪色且浑浊) SO2:Br2+SO2+2H2O=H2SO4+2HBr Na2SO3:Br2+Na2SO3+H2O=Na2SO4+2HBr NaOH等强碱:Br2+2NaOH=NaBr+NaBrO+H2O Br2+H2O=HBr+HBrO

化学元素发现史

化学元素发现史 前5000年 原子序82 铅:Pb 铅古人发现。 前4000年 原子序29 铜:Cu 铜古人发现。 前3100年 原子序51 锑:Sb 锑古人发现。 前2600 原子序79 金:Au 金古人发现。 前2000年 原子序26 铁:Fe 铁古人发现。 前1500年 原子序80 汞:Hg 汞古希腊人发现。 三千年前 原子序30 锌:Zn 锌中国古人发现。 前7世纪 原子序50 锡:Sn 锡古人发现。 前600年 原子序47 银:Ag 银古人发现。 317 原子序33 砷:As 砷公元317年,中国葛洪从雄黄、松脂、硝石合炼制得,后由法国拉瓦锡确认为一种新元素。1450

1669 原子序15 磷:P 磷1669年,德国人波兰特通过蒸发尿液发现。 1735 原子序27 钴:Co 钴1735年,布兰特发现。 1735 原子序78 铂:Pt 铂1735年,西班牙安东尼奥.乌洛阿在平托河金矿中发现,1748年有英国化学家W.沃森确认为一种新元素。 1751 原子序28 镍:Ni 镍中国古人发现并使用。1751年,瑞典矿物学家克朗斯塔特首先认为它是一种元素。 1766 原子序1 氢:H 氢1766年,英国贵族亨利.卡文迪西(1731-1810)发现。氢[hydrogen],金属氢[Hydrogenium]。气体元素符号。无色无臭无味。是元素中最轻的。工业上用途很广。 1770 原子序16 硫:S 硫古人发现(法国拉瓦锡确定它为一种元素)。 1771 原子序8 氧:O 氧1771年,英国普利斯特里和瑞典舍勒发现;中国古代科学家马和发现(有争议)。 1772 原子序7 氮:N 氮1772年,瑞典化学家卡尔.威廉.舍勒和法国化学家拉瓦节和蘇格兰化学家丹尼尔.卢瑟福(1749-1819) 同时发现氮气。 1774 原子序17 氯:Cl 氯1774年,瑞典化学家舍勒发现氯气,1810年英国戴维指出它是一种元素。 1774 原子序25 锰:Mn 锰1774年,瑞典舍勒从软锰矿中发现。 1778

氯元素的发现史

氯元素的发现史 瑞典化学家舍勒于1774年用浓盐酸与二氧化锰反应制得了氯气。但它究竟是游离态的单质气体还是化合态的气体,仍然不清楚。后来法国化学权威贝托雷继续研究氯气。他首先将氯气通入一个冷的空玻璃瓶里,让氯气里的含酸蒸气受冷凝结,再将除去酸蒸气的氯气依次通入三个盛满水的瓶子使氯气溶于水。他发现溶有氯气的水溶液,在有光照的地方可以分解成盐酸和氧气。我们现在知道,氯和水反应生成的次氯酸在光照下分解 Cl 2 + H 2 O = HCl + HClO 2HClO = 2HCl + O 2 贝托雷以此判断出氯气是盐酸和氧结合成的: 氯=盐酸+氧基 氯气是盐酸和氧结合得很松散的化合物,因此露置在阳光下就分解了。其实在当时人 们已经用过许多强烈的药剂或其它手段来处理氯气,都未能使它分解为盐酸和氧。贝托雷的判断显然跟其它一些研究是矛盾的。他得出这个错误判断的表面原因,似乎在于他忽视了水和氯气的反应。但更深层的原因,是他深受拉瓦锡“所有的酸中都含有氧基”结论的影响。拉瓦锡在提出燃烧的氧化理论的同时,提出了“氧是成酸元素”的论点,认为一切酸中均含有氧。按照这一理论,盐酸应是一种氧化物的水化物,如硫酸、磷酸 一般(我们姑且把它写成 HClO m )。而氯气是盐酸经二氧化锰氧化得来的,应该含有更 多的氧(即应该写成 HClO m+n ),当时将氯气称作“氧化盐酸”。结果氯气不仅不是一种单质,反而比盐酸具有更复杂的结构、更大的分子量。贝托雷的实验很和“逻辑”地证明了拉瓦锡的论点。1809年法国化学家盖.吕萨克和泰纳,用分解法研究盐酸的组成。当时金属钾已被戴维用电解法制得,并证明钾是一种元素。于是他们就用金属钾和铁等与盐酸气(HCl)反应,看它是不是能够放出氯气。实验得出结果后,他们说:“我们考察金属钾对于盐酸气的反应。在寻常温度时,这个反应很慢;但钾熔融时立刻在盐酸气中发光燃烧,结果得到氯化钾和氢。在这个实验中收集的氢气之量,恰与钾和水接触时发生的相等。我们在暗红热时,用盐酸气通过擦净的铁屑,许多氢气放出,而不觉有盐酸混合在内,同时得到氯化铁;残渣铁屑并没有氧化。当中等温度时,用盐酸气通过既熔而又研成细粉的一氧化铅,又收集到氢,不过已与氧化合变成水的状态了。” 这些实验证明,不是氯气分解成盐酸和氧,而是盐酸分解成氯和氢。 在同一年盖.吕萨克和泰纳用合成法证明了盐酸的组成。他们把同量的氢气和氯气混合在一起,静置数日,或稍微加热,或露置日光中,都能化合成盐酸气。 这个实验证明了盐酸气是氢气和氯气的化合物,而且是这两种气体化合而成的唯一物质,其变化应该表示为: 氯+氢=盐酸气(HCl)

卤族元素知识点详细总结

卤族元素性质 复习重点 1。卤素单质在物理性质和化学性质上的主要差异及递变规律; 2。卤族元素的化合物性质的递变性; 3。卤化银的性质、用途及碘与人体健康的关系。 4。重点考查卤素性质的变化规律。 1。氯气 [氯气的物理性质] (1)常温下,氯气为黄绿色气体。加压或降温后液化为液氯,进一步加压或降温则变成固态氯。 (2)常温下,氯气可溶于水(1体积水溶解2体积氯气)。 (3)氯气有毒并具有强烈的刺激性,吸入少量会引起胸部疼痛和咳嗽,吸入大量则会中毒死亡。因此,实验室闻氯气气味的正确方法为:用手在瓶口轻轻扇动,仅使少量的氯气飘进鼻孔。 [氯气的化学性质] 氯原子在化学反应中很容易获得1个电子。所以,氯气的化学性质非常活泼,是一种强氧化剂。 (1)与金属反应:Cu + C12CuCl2 实验现象:铜在氯气中剧烈燃烧,集气瓶中充满了棕黄色的烟。一段时间后,集气瓶内壁附着有棕黄色的固体粉末。向集气瓶内加入少量蒸馏水,棕黄色固体粉末溶解并形成绿色溶液,继续加水,溶液变成蓝色。 2Na + Cl22NaCl 实验现象:有白烟产生。 说明:①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物。其中,变价金属如(Cu、Fe)与氯气反应时呈现高价态(分别生成CuCl2、FeCl3)。 ②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯。 ③“烟”是固体小颗粒分散到空气中形成的物质。如铜在氯气中燃烧,产生的棕黄色的烟为CuCl2晶体小颗粒;钠在氯气中燃烧,产生的白烟为NaCl晶体小颗粒;等等。 (2)与氢气反应。H2 + Cl22HCl 注意:①在不同的条件下,H2与C12均可发生反应,但反应条件不同,反应的现象也不同。点燃时,纯净的H2能在C12中安静地燃烧,发出苍白色的火焰,反应产生的气体在空气中形成白雾并有小液滴出现;在强光照射下,H2与C12的混合气体发生爆炸。 ②物质的燃烧不一定要有氧气参加。任何发光、发热的剧烈的化学反应,都属于燃烧。如金属铜、氢气在氯气中燃烧等。 ③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的物质。要注意“雾”与“烟”的区别。

高一化学卤素测试题含答案

卤素 【知识梳理】 一、卤族元素的原子结构与自然界的存在 氯元素位于周期表__周期__族,在自然界中的主要存在形态:。溴、碘? 二、活泼的氯气 1、氯气的物理性质:色有气味的体,毒,溶于水。实验室中应怎样闻气体:。 2、氯气的化学性质(强氧化性) ① 与金属单质的反应:与钠、铁、铜等反应 ② 与氢气的反应: ④与水的反应: 与水反应的离子方程式: 思考:1、氯水的成分?(氯水参加反应时,能表现多种性质)2、氯水的保存方法? ⑤次氯酸的性质: a、一元弱酸(比弱) b、强氧化性(、) c、不稳定(见光或受热分解):化学方程式:。 ⑥与碱的反应 Cl2 + _NaOH -- 。(常用于除去多余氯气) 离子方程式:。漂白液主要成分是。 漂白粉的制法:。 其主要成分:,有效成分:。 漂白原理:Ca(ClO)2 +CO2 +H2O = 。 思考:漂粉精为何要密封保存在阴暗处? 三、卤素离子的检验 1、:被检液中滴入少量酸化,再滴入溶液,若产生,则可断定溶液中含有卤离子。不可用盐酸酸化,酸化目的是防止(、、、)影响。 溴离子、碘离子的检验 四、卤族元素 (一)卤素的原子结构 共同点:原子的最外层均为个电子,都易 1个电子而表现性;不同点:核电荷数逐渐;电子层数逐渐;原子半径依次,得电子能力逐渐;单质氧化性逐渐。 (二)单质的物理性质 随卤素核电荷数增加,其原子结构的递变而使卤素单质的物理性质呈规律性变化. 归纳:从F2 →I2 1、颜色逐渐,状态从→ → ,密度从→,熔沸点由→ 2、单质的溶解性——除氟外(与水剧烈反应)在水中溶解度都较,且由→,都易溶于有机溶剂, (三)卤素单质的化学性质(相似性及递变性) 由于最外层均为个电子,极易电子,因此卤素都是剂,在自然界均只以态存在.但随着电子层数递增,原子半径渐,核对外层电子的引力渐,得电子能力渐,其氧化性逐渐,主要表现:

相关文档
最新文档