阿司匹林的合成方法

阿司匹林的合成方法

阿司匹林的合成方法如下:

1. 准备苯酚和氯化亚铁(FeCl3)作为起始原料。

2. 在酸性条件下,加入氯化亚铁溶液和苯酚,其反应为以下反应:

C6H6O + 3FeCl3 →C6H3Cl3O + 3FeCl2 + HCl

3. 加入醋酸乙酯来中和反应溶液,得到物质乙酸苯酚(即氯化苯酚)。

4. 再次加入醋酸乙酯和氢氧化钠溶液,反应为以下反应:

C6H3Cl3O + NaOH →C6H3Cl3O2Na + H2O

5. 再次中和反应溶液,得到乙酸氯苯酚钠(即氯苯酚钠)。

6. 酸化反应溶液,加入稀酸,得到乙酸苯酚(即氯苯酚)。

7. 最后,加入乙酸酐和硫酸,进行酰化反应,得到阿司匹林。

8. 进一步结晶和纯化,最终得到单纯的阿司匹林。

请注意,以上是阿司匹林的传统合成方法,也称为凯夫勒合成法。现代合成方法

可能会有一些变化和改进。

阿司匹林的合成

阿司匹林的合成 阿司匹林是历史悠久的解热镇痛药,它诞生于1899年3月6日。早在1853年夏尔,弗雷德里克·热拉尔(Gerhardt)就用水杨酸与醋酐合成了乙酰水杨酸,但没能引起人们的重视;1898年德国化学家菲霍夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好;1899年由德莱塞介绍到临床,并取名为阿司匹林(Aspirin)。到目前为止,阿司匹林已应用百年,成为医药史上三大经典药物之一,至今它仍是世界上应用最广泛的解热、镇痛和抗炎药,也是作为比较和评价其他药物的标准制剂。在体内具有抗血栓的作用,它能抑制血小板的释放反应,抑制血小板的聚集,这与TXA2生成的减少有关。 临床上用于预防心脑血管疾病的发作。阿司匹林 英文名称: aspirin 其他名称: 乙酰水杨酸,醋柳酸。 适应症: 阿司匹林是使用最多、使用时间长的解热、镇痛和消炎药物,能抑制体温调节中枢的前列腺素合成酶,使前列腺素(pge1)合成、释放减少,从而恢复体温中枢的正常反应性,使外周血管扩张并排汗,使体温恢复正常。本品尚具抗炎、抗风湿作用,并促进人体内所合成的尿酸的排泄,对抗血小板的聚集。适用于解热,减轻中度疼痛如关节炎、神经痛、肌肉痛、头痛、偏头痛、痛经、牙痛、咽喉痛、感冒及流感症状。 阿司匹林于1898年上市,近年来发现它还具有抗血小板凝聚的作用,于是重新引起了人们极大的兴趣。将阿司匹林及其他水杨酸衍生物与聚乙烯醇、醋酸纤维素等含羟基聚合物进行熔融酯化,使其高分子化,所得产物的抗炎性和解热止痛性比游离的阿司匹林更为长效。 阿司匹林为白色针状或片状结晶。无气味。微带酸味。在干燥空气中稳定,在潮湿空气中逐渐水解成水杨酸和乙酸。遇沸水或溶于氢氧化碱溶液和碳酸碱溶液中全部分解。溶于乙醇、乙醚和氯仿,1g 溶于300ml25℃的水、100ml37℃的水、5ml 乙醇、10-15ml 乙醚、17ml 氯仿。相对密度1.40。熔点135℃(迅速加热)。最大吸收波长(0.1mol/L 硫酸中):229nm(E 1% 1cm(1%上标,1cm 下标)484)、(氯仿中):277nm(E 1% 1cm(1%上标,1cm 下标)68)。半数致死量(大鼠,经口)1.5g/kg 。纯乙酰水杨酸为白色针状或片状晶体,m.p .135~136℃,但由于它受热易分解,因此熔点难测准。 阿司匹林合成原理: 方法一: 乙酰水杨酸即阿司匹林,可通过水杨酸与乙酸酐反应制得。 COOH OH +(CH 3CO)2O H 2SO 4COOH OCOCH 3+CH 3COOH COOH HO n H 2SO 4C O O O C O O C O O **m +H 2O (n-1)主反应副反应 在生成乙酰水杨酸的同时,水杨酸分子之间也可以发生缩合反应,生成少量的聚合物。乙酰水杨酸能与碳酸钠反应生成水溶性盐,而副产物聚合物不溶于碳酸钠溶液,利用这种性质上的差异,可把聚合物从乙酰水杨酸中除去。 粗产品中还有杂质水杨酸,这是由于乙酰化反应不完全或由于在分离步骤中发生水解造成的。它可以在各步纯化过程和产物的重结晶过程中被除去。与大多数酚类化合物一样,水杨酸可与三氯化铁形成深色络合物,而乙酰水杨酸因酚

阿司匹林的合成

阿司匹林的合成

阿司匹林的制备 一、实验目的: 1、了解阿司匹林制备的反应原理和实验方法。 2、通过阿司匹林制备实验,初步熟悉有机化合物的分离、提纯等方法。 3、巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。 4、了解合成中的副产物以及相应的除杂方法。 5、了解阿司匹林合成中可使用的催化剂 二、实验原理: 阿司匹林的合成原理是在催化剂作用下,以醋酐为酰化剂,与水杨酸羟基酰化成酯。传统的合成阿司匹林的催化剂为浓硫酸,它存在如下缺点: 1)收率较低(65%~70%),腐蚀设备,有排酸污染; 2)操作条件要求严格。浓硫酸具有强氧化性,反应要严格控制其加入速度和搅拌 速度,否则会导致反应物碳化; 3)粗产品干燥时,由于硫酸分离不完全而导致部分产品氧化,引起产品成色不 好;4)产品不能加热干燥,否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。 因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸必要的,改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。 酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基,即完成乙酰水杨酸的合成。催化剂酸性越强,氢质子流动性越好,越易于催化酯基的生成,但在乙酰水杨酸的合成中,催化剂酸性太强,也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础,人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究,取得了可喜成果。酸性催化剂包

括路易斯酸、固体酸、有机酸、酸性无机盐、酸性膨润土等。 1、酸性膨润土的催化效果 膨润土是以蒙脱石为主要矿物成分的非金属矿产资源,具备二维通道和大孔分子筛的性质,用酸处理后所得的酸性膨润土催化酯化反应最大优点是收率高,催化剂经热过滤与产品分离后,再经干燥、净化、活化处理,可反复使用,成本低,不污染环境,是一种绿色催化剂,该方法消除了环境污染,产品质量但收率中等。 2、对甲苯磺酸的催化效果 对甲苯磺酸为固体有机酸,经济易得,污染少,收率高,操作方便,具有较好的工业化前景。对甲苯磺酸具有催化活性高,选择性好,操作方便,污染少等显著优点。 3、活性二氧化锡固体酸的催化效果 用微波辐射法制备的活性二氧化锡固体酸为催化剂,85℃下,反应45 min可使阿司匹林收率达到81.6%,产物中酯聚合物的含量较少,所得产品为纯白色,可在干燥箱中加热干燥而且乙酰水杨酸极少水解。活性二氧化锡性质稳定,操作安全,所得产品容易分离,回收的二氧化锡除去少量杂质可重复使用。 4、 NaHSO4催化 用硫酸氢钾催化合成乙酰水杨酸,具有催化剂在反应过程保持固态,反应完毕经热过滤即可与产品分离、不溶于反应体系、易回收等特点,克服了浓硫酸对设备的强腐蚀性、对环境的污染等缺点,符合绿色化学的发展方向,具有工业应用的前景。 碱性化合物 碱性化合物为催化剂基于碱性化合物能与水杨酸反应、能破坏水杨酸分子内氢键、活化水杨酸的羟基机理,许多碱性化合物可以作为催化剂合成阿司匹林。常见的催化剂包括强碱、弱碱和弱酸强碱盐。 1、吡啶催化效果

(完整版)阿司匹林的合成

阿司匹林的制备 一、实验目的: 1、了解阿司匹林制备的反应原理和实验方法。 2、通过阿司匹林制备实验,初步熟悉有机化合物的分离、提纯等方法。 3、巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。 4、了解合成中的副产物以及相应的除杂方法。 5、了解阿司匹林合成中可使用的催化剂 二、实验原理: 阿司匹林的合成原理是在催化剂作用下,以醋酐为酰化剂, 与水杨酸羟基酰化成酯。传统的合成阿司匹林的催化剂为浓硫酸,它存在如下缺点: 1)收率较低(65%~70%),腐蚀设备,有排酸污染; 2)操作条件要求严格。浓硫酸具有强氧化性, 反应要严格控制其加入速度和搅拌速度, 否则会导致反应物碳化; 3)粗产品干燥时,由于硫酸分离不完全而导致部分产品氧化, 引起产品成色不好;4)产品不能加热干燥, 否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。 因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸必要的,改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。 酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基, 即完成乙酰水杨酸的合成。催化剂酸性越强, 氢质子流动性越好, 越易于催化酯基的生成, 但在乙酰水杨酸的合成中, 催化剂酸性太强, 也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础, 人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究, 取得了可喜成果。酸性催化剂包括路易斯酸、固体酸、有机酸、 酸性无机盐、酸性膨润土等。

阿司匹林的制备

一、实验目的和要求 1.了解阿司匹林的合成原理和操作方法。 2.掌握重结晶操作方法。 二、基本概念和实验原理 阿司匹林有退热止痛作用。纯品为白色针状或片状晶体,溶解于37℃水中,口服后在肠内开始分解为水杨酸。 阿司匹林学名为乙酰水杨酸,由水杨酸和乙酸酐在酸催化下酰基化反应制得。 在反应过程中会形成聚合物,利用阿司匹林和碳酸氢钠反应形成水溶性的钠盐,可与聚合物分离。 通过过滤将聚合物除去,加酸酸化得到阿司匹林,再重结晶纯化。 水杨酸含有酚基,能与稀三氯化铁溶液反应,产生深紫色的溶液。纯净的阿司匹林不会产生紫色。所以通过对未反应的水杨酸的点滴试验,很容易检测产物的纯度。 产品可通过熔点,红外,核磁共振和液相色谱等鉴定。 本实验以水杨酸和乙酸酐为原料,在磷酸催化下酰基化反应制得乙酰水杨酸,通过溶解,过滤,结晶,重结晶等纯化得到阿司匹林产品。 三、仪器和材料 仪器:恒温水浴槽,搅拌器,温度计,冷凝管,三口瓶,烧杯,量筒,天平,砂芯漏斗,过滤瓶。 材料:水杨酸,乙酸酐,浓磷酸,饱和碳酸氢钠溶液,18%盐酸溶液,无水乙醇。 四、实验内容 实验装置图如下: CO O H O H +CH 3C O O C O CH 3CO O H O C O CH 3+ CH 3COOH 浓硫酸或磷酸

实验步骤 1.开启水浴恒温槽的电源,使水浴温度控制在60℃。 2.在三口瓶中加入5g水杨酸,14ml(15g)乙酸酐,1.8ml浓磷酸,按图的实验装置安装好。 3.在60℃的水浴中,搅拌,反应15min,取出,冷却至室温,在瓶中加入70ml水,继续搅拌5min, 再放在冷水浴中静置5—10min,加入冰块,在冰水浴中静置10—20min,充分冷却,直至结晶完全,真空抽滤,用少量冰水洗涤二次。 4.将晶体放在250ml烧杯中,并加入70ml饱和碳酸氢钠溶液,搅拌到无二氧化碳放出为止。真空抽 滤除去聚合物固体。 5.将滤液放在250ml烧杯中,边搅拌边慢慢滴入18%盐酸溶液,直至PH值1.5.烧杯放入冰水浴中冷 却,直至结晶完全。真空抽滤,用少量冰水洗涤二次,得粗产品。 6.粗产品放入150ml烧杯中,加入20ml无水乙醇,搅拌,缓慢加热,直至晶体溶解,再加入40ml水, 在室温中静置,再放入冰水浴中冷却,直至结晶完全。真空抽滤,用少量无水乙醇-水(1:2,v/v)溶液洗涤,烘干,得产品。称量,计算产率。 五、实验数据记录与处理 对产品进行称重,为2.663g,根据方程式:

阿司匹林的制备流程

阿司匹林(Aspirin)又名乙酰水杨酸(Acetylsalicylic acid),化学名。(/乙酰氧基)苯甲酸,系白色结晶或结晶性粉末,熔点135—140℃,无臭或略带醋酸味,水中微溶,乙醇中易溶,氯仿或乙醚中溶解,遇湿气缓慢水解生成水杨酸,具弱酸性,最稳定ph值2.5。阿司匹林可由水杨酸(邻羟基苯甲酸)与乙酸酐经酰化制得。在生成阿斯匹林的同时,水杨酸分子之间发生缩合反应,生成少量的聚合物。副产物不溶于碳酸氢钠溶液,由此可提纯阿斯匹林。实验过程中,阿斯匹林产量少,并且不易结晶析出,常常须采用摩擦杯壁、加入晶种、浓缩溶液等办法才析出晶体,实验现象成功率低,同时需要较长的处理及静置时间。 阿司匹林的制备 实验室制备阿司匹林 本实验以浓硫酸为催化剂,使水杨酸与乙酸酐发生酰化反应,制取阿斯匹林。由于水杨酸中的羟基和羧基能形成分子内氢键,反应必须加热到150~160℃。不过,加入少量的浓硫酸或浓磷酸过氧酸等来破坏氢键,反应温度也可降到60~80℃,而且副产物也会有所减少。原理如下: 水杨酸在酸性条件下受热,还可发生缩合反应,生成少量聚合物: 酰化反应 在100 mL干燥的园底烧瓶中加入4 g水杨酸、10 mL乙酸酐和10滴浓硫酸,采用搅拌使水杨酸尽量溶解,然后在水浴上加热,水杨酸立即溶解。如不全溶解,则需补加浓硫酸和乙酰酐.保持锥形瓶内温度在70℃左右。安装回流装置水浴加热,控制温度在80~85℃,同时保持低速匀速搅拌, 20 min后停止加热.反应液稍微冷(50℃以下)却缓慢加入15 mL冰水用来水解过量的乙酸酐,冷却至室温,再将反应液倒入50mL冰水的锥形瓶,即有乙酰水杨酸析出,将锥形瓶置于冰水浴中冷却,使结晶完全析出。 产品的提纯 减压过滤:用滤液淋洗锥形瓶,直至所有晶体被收集到布氏漏斗,每次用少量冷水洗涤结晶3次,减压过滤,即得到粗产物。产品重结晶:将粗产物转移至烧杯,在搅拌下加入饱和碳酸氢钠溶液,直至无二氧化碳产生.减压过滤,用少量水冲洗漏斗,除去少量的白色聚合物,合并滤

(完整版)阿司匹林的制备

阿司匹林的合成 一、实验目的 1、通过阿司匹林的制备,了解合成实验的一般原理、操作及思维方式 2、了解酰化反应的要求及应用 3、进一步巩固重结晶的操作方法学会混合溶剂重结晶 4、了解相关数据库的查阅方法:如维普、万方等,并能根据相关资料分析实验结果。 二、实验原理 水杨酸是一种具有双官能团的化合物:一个是酚羟基、一个是羧基,羧基和羟基都可以 发生酯化,而且还可以形成分子内氢键,阻碍酰化和酯化反应的发生。 阿司匹林是由水杨酸(邻羟基苯甲酸)与醋酸酐进行酯化反应而得的。水杨酸可由水杨 酸甲酯即冬青油,由冬青树提取而得,水解制得。本实验就是用邻羟基苯甲酸与乙酸酐反应制备乙酰水杨酸。反应式为 三、合成原料 阿司匹林又称醋柳酸。化学名称:2-乙酰氧基苯甲酸,化学式C9H8O分子结构式为:CH3COOC6H4COOH、分子量180.16、白色针状或板状结晶或结晶性粉末、无臭、微带酸味。密度1.35g/cm3。在干燥空气中稳定、遇潮则缓慢水解成水杨酸和醋酸。微溶于水、溶于乙醇、乙醚、氯仿、也溶于碱溶液同时分解。化学性质:酸的通性、酯化反应、水解反应。 水杨酸化学名称:2-羟基苯甲酸分子式C7H6O3 结构式C6H4OHCOOH分子量138.12。水杨酸为白色结晶性粉末,无臭,味先微苦后转辛。熔点157-159℃,在光照下逐渐变色。相对密度1.44。沸点约211℃/2.67kPa。76℃升华。常压下急剧加热分解为苯酚和二氧化碳。1g水杨酸可分别溶于460ml水、15ml沸水、2.7ml

乙醇、3ml丙酮、3ml乙醚、42ml氯仿、135ml苯、52ml松节油、约60ml甘油和80ml石油醚中。加入磷酸钠、硼砂等能增加水杨酸在水中的溶解度。水杨酸水溶液的pH值为2.4。水杨酸与三氯化铁水溶液生成特殊的紫色。 乙酸酐分子式:(CH3CO)2O分子量:102有刺激气味,其蒸气为催泪毒气,溶于苯、乙醇、乙醚,常用作乙酰化剂以及用于药物阿司匹林染料、醋酸纤维制造。 四、实验步骤 称取50.0g水杨酸,加入50mL圆底烧瓶中再加入5mL乙酸酐摇匀后加入5滴浓硫酸装一球形冷凝管见上图。待水杨酸全部溶解后将圆底烧瓶放入80~85℃水浴中恒温15~20分钟其间不断振摇。反应结束后稍微冷却倒入盛有30mL冷水的烧杯中并用10mL水洗涤圆底烧瓶将洗涤液也倒入烧杯中很快析出白色晶体将烧杯置于冷水 浴中并不断搅拌促其结晶完全。抽滤并用少量水洗涤晶体抽干得粗品阿司匹林。 取极少量粗品阿司匹林,溶于几滴乙醇中加入0.1%FeCl3溶液1~2滴现察颜色变化。 将粗品阿司匹林放入50mL圆底烧瓶中加入4~5mL无水乙醇装上球形冷凝管通入冷凝 水置于60~70℃水浴中加热片刻若粗品还有少量未溶可补加少量乙醇直至其全都溶 解。用滴管向溶液中滴加水至微浑再加热溶解冷却至少半小时溶液析出白色晶体抽 滤红外灯烘干计算收率。 取少量重结晶后的阿司匹林溶解于几滴乙醇中并加入0.1%FeCl3 溶液1~2滴观察颜 色变化。

阿司匹林合成路线

阿司匹林的合成路线介绍 阿司匹林是世界最重要的解热镇痛药之一。目前全世界阿司匹林原料药产量已达5万吨左右,年产片剂1千多亿片。多年来,阿司匹林一直是我国解热镇痛药的支柱产品之一,年产量达1万多吨,也是我国医药原料药出口的大宗产品,2005年的出口量为7522吨,出口金额达到2055万美元。 1 . 采用乙酸酐为酰化剂的工艺路线 催化剂类别 需用原料及配方实例 原料名称规格组分比(份) 酚甲酸98.5% 25 乙酸酐98.5% 27 制备工艺: 混料投入带配有冷凝器的烧瓶中,在油浴上控温于150~160℃,反应约3小时,于减压下蒸去过量之乙酸酐及反应中生成的乙酸,其蒸出物重约16份,余品重为31份。再用2倍重量的苯重结晶,可得18份纯品。若将余液浓度增高,还可收得10份纯品。 经过几十年的生产实践,阿司匹林的生产形成了一套十分成熟的工艺:以苯酚为原料,经过和二氧化碳的羧化反应,生成水杨酸,经升华后得到升华水杨酸,再采用醋酐-醋酸法。由于此生产工艺不复杂,收率、成本等也较为理想,几十年来,国内外生产企业基本按照这条工艺路线进行生产。故该工艺较为成熟。由于长期以来,国内外科研机构、生产厂商对其生产工艺进一步深入研究的工作做得不多,所以这方面的专利以及研究论文也较为少见。 工艺探索不断 在传统的阿司匹林生产中,由水杨酸和醋酐反应生成阿司匹林的过程需要加温,使反应在80℃~90℃温度下进行,反应时间2小时左右,耗能量较大。近年来,由于基本能源价格不断上涨,反应时间越长则能耗越大,成本越高。从近几年的研究趋势看,研究的重点主要集中在水杨酸和醋酐反应过程中,通过添加不同的催化剂,使得反应更易进行,时间更短,耗能更少,产品质量更好。 1.1 水杨酸与醋酸酐法加入氧化钙或氧化锌 美国专利局2001年8月公开了Handal-Vega等人的“阿司匹林工业生产合成方法”的发明专利,该专利提出了一个水杨酸和醋酐合成阿司匹林的新方法:在水杨酸和醋酐反应中按一定比例加入氧化钙或氧化锌,得到一种乙酰水杨酸和醋酸钙或醋酸锌以及最大为2%游离水杨酸的混合物。此反应十分快速,属于放热反应,也是一锅反应,且无污染物,不需要排放残渣酸,也不需要任何有机溶剂,产物不需要再结晶。因产物是固体,合成完成后可以马上和普通药物制剂辅料混合压片,成阿司匹林片。 1.2 用一水硫酸氢钠作催化剂 肖新荣等人在《精细化工中间体》杂志上发表文章认为,水杨酸乙酸酐反应合成阿司匹林中,用一水硫酸氢钠为催化剂,反应时间约40分钟,反应温度80~90C,收率约为86.7%。硫酸氢钠为一价廉易得,使用安全的物质,其催化合成阿司匹林效果较好,因其难溶于有机溶剂,易于分离回收重用。

阿司匹林合成路线

阿司匹林的合成路线介绍之宇文皓月创作 阿司匹林是世界最重要的解热镇痛药之一。目前全世界阿司 匹林原料药产量已达5万吨左右,年产片剂1千多亿片。多年 来,阿司匹林一直是我国解热镇痛药的支柱产品之一,年产量达 1万多吨,也是我国医药原料药出口的大宗产品,2005年的 出口量为7522吨,出口金额达到2055万美元。 1 . 采取乙酸酐为酰化剂的工艺路线 催化剂类别 需用原料及配方实例 原料名称规格组 分比(份) 酚甲酸98.5% 25 乙酸酐98.5% 27 制备工艺: 混料投入带配有冷凝器的烧瓶中,在油浴上控温于150~ 160℃,反应约3小时,于减压下蒸去过量之乙酸酐及反应中生 成的乙酸,其蒸出物重约16份,余品重为31份。再用2倍重量 的苯重结晶,可得18份纯品。若将余液浓度增高,还可收得10 份纯品。 经过几十年的生产实践,阿司匹林的生产形成了一套十

分成熟的工艺:以苯酚为原料,经过和二氧化碳的羧化反应,生成水杨酸,经升华后得到升华水杨酸,再采取醋酐-醋酸法。由于此生产工艺不复杂,收率、成本等也较为理想,几十年来,国内外生产企业基本依照这条工艺路线进行生产。故该工艺较为成熟。由于长期以来,国内外科研机构、生产厂商对其生产工艺进一步深入研究的工作做得未几,所以这方面的专利以及研究论文也较为少见。 工艺探索不竭 在传统的阿司匹林生产中,由水杨酸和醋酐反应生成阿司匹林的过程需要加温,使反应在80℃~90℃温度下进行,反应时间2小时左右,耗能量较大。近年来,由于基天性源价格不竭上涨,反应时间越长则能耗越大,成本越高。从近几年的研究趋势看,研究的重点主要集中在水杨酸和醋酐反应过程中,通过添加分歧的催化剂,使得反应更易进行,时间更短,耗能更少,产品质量更好。 1.1 水杨酸与醋酸酐法加入氧化钙或氧化锌 美国专利局2001年8月公开了Handal-Vega等人的“阿司匹林工业生产合成方法”的发明专利,该专利提出了一个水杨酸和醋酐合成阿司匹林的新方法:在水杨酸和醋酐反应中按一定比例加入氧化钙或氧化锌,得到一种乙酰水杨酸和醋酸钙或醋酸锌以及最大为2%游离水杨酸的混合物。此反应十分快速,属于放热反应,也是一锅反应,且无污染物,不需要排放残

阿司匹林的合成

阿 阿司匹林的简介



中文名称:阿斯匹林 ( 解热镇痛药 ) 阿司匹林 ( 退热药 ) 中文俗名:醋柳酸、巴米尔、力爽、塞宁、东青等 英文名称: Aspirin 拉丁名称: Aspirin 化学普通命名法:乙酰水杨酸, acetylsalicylic acid 化学系统命名法: 2-( 乙酰氧基 ) 苯甲酸 IUPAC 命名法:2-ethanoylhydroxybenzoic acid 分子结构式为: C9H8O4 分子相对质量: 180.16 用途: 1. 解热镇痛药,用于发热、疼痛及类风湿关节炎等。
2 .是应用最早,最广和最普通解热镇痛药抗风湿药。具有解热、镇 痛、抗炎、抗风温和抗血小板聚集等多方面的药理作用,发挥药效迅速, 药效肯定,超剂量易于诊断和处理,很少发生过敏反应。常用于感冒发热 , 头痛、神经痛关节痛、肌肉痛、风湿热、急性内湿性关节炎、类风湿性关 节炎及牙痛等。是《国家基本药物目录》列入的品种乙酰水杨酸也是其他 药物的中间体。 3 .乙酰水杨酸是制备杀鼠剂中间体 4- 羟基香豆素的原料。 4 .杨酸与乙酸。微溶于水,溶于乙醇、乙醚、氯仿,也溶于氢氧化碱 溶液或碳酸溶液,同时分解。常用的解热镇痛药。用于解热、镇痛、抗风 湿,促进痛风患者尿酸的排泄,抗血小板聚集及胆道蛔虫治疗。 5 .用于制造室外及有强光照射的结构件、器械部件,如汽车车身、农 机部件、电表和电灯罩、道路标记等。 发展史:在 1853 年夏尔,弗雷德里克·热拉尔 (Gerhardt) 就用水杨酸与 醋酸合成了乙酰水杨酸,但没能引起人们的重视; 1898 年德国化学家菲霍 夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好; 1899 年由德 莱赛介绍到临床,并取名为阿司匹林 (Aspirin) 阿司匹林于 1898 年上市, 近年来发现它还具有抗血小板凝聚的作用,于 是重新引起了人们极大的兴 趣。将阿司匹林及其他水杨酸衍生物与聚乙烯醇、醋酸纤维素等含羟基聚 合物进行熔融酯化,使其高分子化,所得产物的抗炎性和解热止痛性比游 离的阿司匹林更为长效。以后又陆续制成了以乙酰水杨酸为主药的多种复方制 剂,更是受到欢迎。如大家熟悉的复方阿司匹林、复方扑尔敏、扑尔感冒片、小 儿退热片等药,都是阿司匹林“家族”中的成员。
阿司匹林的合成
通常阿司匹林用乙酸酐作酰化剂将水杨酸酰化而得,而选用的催化剂 不同,对其合成产品的后处理、质量、产率、成本有着重要的影响。其反
应是如下:
1.浓硫酸催化合成
实验原理:在浓硫酸催化下由水杨酸与醋酸酐进行酯化反应得到。水杨酸
可由水杨酸甲酯(即冬青油)水解制成。反应式如下:
主要试剂:水杨酸( CP ),醋酸酐( CP ), 硫酸( AR ), 饱和碳

阿司匹林的合成路线

阿司匹林的合成 阿司匹林的合成路线现状小结 阿司匹林即乙酰水杨酸。是一种常用的退热镇痛药和抗风湿类药。近年来的研究表明它在防治心血管疾病方面也有较好的疗效。乙酰水杨酸的合成通常采用水杨酸和乙酸酐为反应原料,用浓硫酸或浓磷酸作催化剂来加速反应,这种方法反应速度相对较慢,产率60%左右,且易产生副反应,对生成设备有较强的腐蚀性⋯。以下是对阿司匹林传统合成路线的改进。 1.酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基,即完成乙酰水杨酸的合成。催化剂酸性越强,氢质子流动性越好,越易于催化酯基的生成,但在乙酰水杨酸的合成中,催化剂酸性太强,也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础,人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究,取得了可喜成果。酸性催化剂包括路易斯酸、固酸、有机酸、酸性无机盐、酸性膨润土等。 (1)以A1C13,BiCl等Lewis酸为催化剂: 在85℃合成了阿司匹林,收率分别为72.6%和68.3%。该方法消除了环境污染,产品质量较好,但收率中等。 (2)用微波辐射法制备的活性二氧化锡固体酸为催化剂: 85℃下,反应45 min可使阿司匹林收率达到81.6%,产物中酯聚合物的含量较少,所得产品为纯白色,可在干燥箱中加热干燥,而且乙酰水杨酸极少水解。活性二氧化锡性质稳定,操作安全,所得产品容易分离,回收的二氧化锡除去少量杂质可重复使用。 (3)用对甲苯磺酸作催化剂: 收率为94.4%,对甲苯磺酸为固体有机酸,经济易得,污染少,收率高,操作方便,具有较好的工业化前景。 (4)用酸性无机盐NaH3PO4,NaHSO4为催化剂: 在75℃下,反应30 min阿司匹林收率分别为76%和87%。酸性无机盐较温和,用量少,不腐蚀设备,反应过程以固相存在,反应完毕经热过滤即可与产品分离,符合绿色化学要求,值得借鉴。 (5)以酸性活化膨润土为催化剂: 在85~90℃下,反应0.5~1 h阿司匹林收率达90.4%。膨润土具备二维通道和大孔分子筛的性质,用酸处理后所得的酸性膨润土催化酯化反应最大优点是收率高,催化剂经热过滤与产品分离后,再经干燥、净化、活化处理,可反复使用,成本低,不污染环境,是一种绿色催化剂。但酸性膨润土需要一个制备过程。 2.碱性化合物为催化剂 基于碱性化合物能与水杨酸反应、能破坏水杨酸分子内氢键、活化水杨酸的羟基机理,许多碱性化合物可以作为催化剂合成阿司匹林。常见的催化剂包括强碱、弱碱和弱酸强碱盐。 (1)以氢氧化钾为催化剂合成阿司匹林: 收率为90%,他认为碱性化合物作为催化剂优于酸性化合物。酸性化合物为催化剂反应温度均在75℃以上,较高的温度和酸性环境会导致聚合物乙酰水杨酸酐的生成,乙酰水杨酸酐可以导致人体过敏。以氢氧化钾为催化剂,反应温度为60"---65℃,产品中过敏性物质含量减少且产品收率高。 (2)以无水碳酸钠和吡啶弱碱性物质为催化剂:

阿司匹林的合成

实验一阿司匹林(乙酰水杨酸)的合成 一:阿司匹林的简介 阿司匹林(Aspirin)化学名称叫乙酰水杨酸。也叫乙酰基柳酸、醋柳酸。纯品为白色针状或板状结晶,或为白色结晶性粉末,无臭微带酸味,密度1.35,熔点135~138℃,在干燥空气中稳定,遇潮会缓慢水解生成水杨酸和乙酸,微溶于水,在醇、乙醚和氯仿中溶解,在氢氧化钠和碳酸钠溶液中溶解并分解。阿司匹林目前主要由水杨酸和醋酸酐经酰化反应制得,在世界医疗史上是一种老资格的药品。 植物含有水杨酸类物质是在长期的进化和自然选择过程中形成的,这类化学物质对植物而言是天然驱虫剂,用来抵御寻食的动物,以保存自身物种的存在和繁衍。1835年卡尔·娄卫希(Karl Lowig)从绣线菊中提取出了纯的水杨酸;1838年意大利人拉菲尔·皮瑞阿(Raffaele Piria)在实验室里将从柳树皮中提取的水杨苷转化成水杨酸。当时纯的水杨酸已经开始作止痛药使用,它的降热止痛抗炎疗效比水杨苷要好得多。然而从天然植物中分离提取水杨酸耗时耗力成本亦高。此外作为治病药物水杨酸的副作用很强,对胃刺激性大,会导致胃痛甚至出血,当时认为是水杨酸的酸性所致。1853年法国化学家热拉尔最早用水杨酸和乙酸酐反应制得乙酰水杨酸,这就是后来大名鼎鼎的阿司匹林。以后又有化学家在乙酰水杨酸的合成和分离提纯上有所改进,遗憾的是没有进行专利登记,也没有提出它在医疗上的使用前景。但是热拉尔发明的方法却一直沿用到了今天。 二、合成原理及方法 目前主要用水杨酸和乙酸酐或乙酰氯在硫酸催化下经酰化制备阿司匹林,硫酸催化法虽然是经典方法,工艺成熟,但是产品收率不高,一般在65%~67%,副反应多,产品品质不好,设备腐蚀严重,同时产生大量废液污染环境,合成方法如下:

阿司匹林的合成

阿司匹林的合成 阿司匹林,一种历史悠久且用途广泛的药物,被广泛用于解热、镇痛、抗炎和抗血小板聚集等方面。其化学名称为乙酰水杨酸,由水杨酸和乙酰基反应制得。以下是阿司匹林的合成过程。 一、原材料 要合成阿司匹林,我们需要以下原材料: 1.水杨酸:这是合成阿司匹林的主要原料,可以从柳树皮或化学合成得到。 2.醋酸酐:这是一种有机酸酐,作为乙酰基的供体。 3.硫酸:用于催化反应。 4.乙醇:溶剂,帮助反应进行。 5.结晶纯化水:用于最后的产物纯化。 二、合成步骤 1.在硫酸的催化下,水杨酸与醋酸酐反应生成醋酸水杨酸。这个反应是可逆 的,为了使反应进行完全,需要控制一定的温度和时间。 2.用乙醇溶解生成的醋酸水杨酸,然后加入适量的纯化水,使生成的阿司匹林 以晶体形式析出。 3.对生成的阿司匹林粗产品进行重结晶,以去除其中的未反应原料和副产物。 这个过程可能需要多次进行,直到得到纯度满足要求的阿司匹林。 4.最后,将得到的阿司匹林进行干燥和包装,以备后续使用。 三、合成中的注意事项 在合成过程中,需要注意以下几点: 1.硫酸是一种强腐蚀性物质,使用时需要特别小心。 2.醋酸酐具有强烈的刺激性气味,应在通风良好的环境下操作。 3.阿司匹林在潮湿环境下容易水解,因此合成和储存过程中要保持环境干燥。 4.阿司匹林具有酸性,对皮肤和眼睛有刺激作用,操作时应注意个人防护。

四、阿司匹林的特性与用途 阿司匹林具有以下特性: 1.解热镇痛:阿司匹林可以刺激皮肤和黏膜的血管收缩,从而降低体温和疼痛 感。 2.抗炎:阿司匹林可以抑制前列腺素等炎症物质的合成,从而起到抗炎作用。 3.抗血小板聚集:阿司匹林可以抑制血小板中血栓烷素的合成,从而抑制血小 板聚集,预防血栓形成。 基于这些特性,阿司匹林被广泛应用于以下用途: 1.解热镇痛:常用于感冒、流感或其他疾病引起的发热和疼痛。 2.抗炎:常用于类风湿关节炎、强直性脊柱炎等炎症性疾病。 3.抗血小板聚集:常用于预防和治疗心肌梗死、脑血栓等心血管疾病。 4.其他用途:阿司匹林还可用于做涂料、电镀、橡胶硫化促进剂、农药及牲畜 疾病的治疗等。 五、阿司匹林的安全性 虽然阿司匹林是一种广泛应用的药物,但并非适用于所有人。以下人群在使用前应先咨询医生: 1.孕妇或哺乳期妇女:阿司匹林可能会对胎儿或新生儿造成伤害。 2.对阿司匹林或其他解热镇痛药过敏的人。 3.有胃溃疡、出血或其他严重疾病的患者。 4.有哮喘或其他慢性呼吸道疾病的患者。 5.年龄在18岁以下的儿童和青少年:儿童和青少年的肝肾功能可能尚未发育 完全,使用阿司匹林可能会造成肝肾损伤。 6.有严重肝肾功能不全的患者:这类患者使用阿司匹林可能会加重病情。 7.需要手术的患者:使用阿司匹林可能会增加手术风险。 8.有其他严重疾病的患者:使用阿司匹林可能会影响其他药物的效果或增加其 他疾病的风险。

阿司匹林的合成实验报告

阿司匹林的合成实验报告 实验目的,通过化学实验,掌握酚酞法合成阿司匹林的原理和方法,了解酚酞 法合成阿司匹林的化学反应过程,掌握实验操作技能。 实验仪器与试剂,冰醋酸、无水乙酸、浓硫酸、水杨酸、碳酸钠、酚酞指示剂、滤纸、蒸馏水、试管、烧杯、漏斗、酒精灯等。 实验原理,酚酞法合成阿司匹林是利用水杨酸与乙酸酐在酸性条件下反应生成 阿司匹林和醋酸。水杨酸与乙酸酐在浓硫酸的催化下发生酰化反应,生成乙酰水杨酸,再经水解生成阿司匹林和乙酸。酚酞指示剂用于指示反应的终点。 实验步骤: 1. 将水杨酸和乙酸酐按摩尔比1:1.1混合,放入烧杯中。 2. 在通风橱中,加入几滴浓硫酸,并用酒精灯加热。 3. 加热至反应开始,观察反应物的变化。 4. 反应结束后,用蒸馏水冷却,加入碳酸钠溶液中和。 5. 将产物过滤,用蒸馏水洗涤,晾干。 实验结果,得到白色晶体固体,为阿司匹林。 实验分析,通过实验,我们成功合成了阿司匹林。在实验过程中,我们观察到 了水杨酸和乙酸酐在浓硫酸的催化下发生了化学反应,生成了阿司匹林和乙酸。在实验中,酚酞指示剂的颜色变化帮助我们准确地掌握了反应的终点,保证了实验的准确性和可靠性。 实验结论,通过本次实验,我们深入了解了酚酞法合成阿司匹林的原理和方法,掌握了实验操作技能。实验结果表明,我们成功地合成了阿司匹林,实验取得了预期的效果。

实验注意事项: 1. 实验中要戴上实验手套和护目镜,注意安全操作。 2. 实验过程中要注意控制加热温度,避免发生意外。 3. 实验结束后,要及时清理实验器材和废弃物,保持实验环境整洁。 通过本次实验,我们不仅掌握了酚酞法合成阿司匹林的原理和方法,还提高了化学实验操作技能,对化学反应过程有了更深入的了解,为今后的实验和研究工作奠定了坚实的基础。

相关主题