指数对数概念和运算公式

指数对数概念和运算公式
指数对数概念和运算公式

指数函数及对数函数重难点

根式的概念:

①定义:若一个数的n 次方等于),1(*

∈>N n n a 且,则这个数称a 的n 次方根.即,若

a x n =,则x 称a 的n 次方根)1*∈>N n n 且,

1)当n 为奇数时,n a 的次方根记作n a ;

2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作

)0(>±a a n .

②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==)

0()

0(||a a a a a a n

幂的有关概念:

①规定:1)∈???=n a a a a n

( N *

, 2))0(10

≠=a a ,

n 个 3)∈=-p a

a

p p

(1

Q ,4)m a a a n m n m

,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s

r s

r

,0(>=?+、∈s Q ),

2)r a a

a s

r s

r ,0()(>=?、∈s Q ),

3)∈>>?=?r b a b a b a r

r

r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用.

例 求值

(1)3

28

(2)2

125

- (3)()5

21- (4)()

43

8116-

例.用分数指数幂表示下列分式(其中各式字母均为正数)

(1)43a a ? (2)a a a (3)32

)(b a -

(4)43

)(b a + (5)32

2b a ab + (6)42

33

)(b a +

例.化简求值

(1)0

121

32322510002.08

27)()()()(-+--+----

(2)2

11

5

3125.05

25

.231

1.0)32(256)

027.0(??

????+-+-?????

?-- (3)=?÷

?--3133

73

32

9a a a a

(4)21

1511336622263a b a b a b ??????-÷- ??? ???????

=

(5

指数函数的定义:

①定义:函数)1,0(≠>=a a a y x

且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞,

3)当10<a 时函数为增函数.

提问:在下列的关系式中,哪些不是指数函数,为什么

(1)2

2

x y += (2)(2)x y =- (3)2x

y =-

(4)x y π= (5)2y x = (6)2

4y x =

(7)x y x = (8)(1)x

y a =- (a >1,且2a ≠)

例:比较下列各题中的个值的大小

(1) 与

( 2 )0.1

0.8

-与0.2

0.8

-

( 3 )

例:已知指数函数()x

f x a =(a >0且a ≠1)的图象过点(3,π),求

(0),(1),(3)f f f -的值.

思考:已知0.7

0.9

0.8

0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c .

例 如图为指数函数x

x

x

x

d y c y b y a y ====)4(,)3(,)2(,)1(,则

d c b a ,,,与1的大小关系为

(A )d c b a <<<<1 (B )c d a b <<<<1

(C )d c b a <<<<1 (D )c d b a <<<<1

1、函数21

21

x x y -=+是( )

A 、奇函数

B 、偶函数

C 、既奇又偶函数

D 、非奇非偶函数 2、函数1

21

x y =

-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞

3、已知01,1a b <<<-,则函数x

y a b =+的图像必定不经过( )

A 、第一象限

B 、第二象限

C 、第三象限

D 、第四象限

例.求函数x

x y +?

?

?

??=221的值域和单调区间

例 若不等式3ax

x

22

->(

3

1)x +1

对一切实数x 恒成立,则实数a 的取值范围为______. .f (x )=]()??

???+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为______. 考查分段函数值域.

【解析】 x ∈(-∞,1]时,x -1≤0,0<3x -1

≤1, ∴-2

x ∈(1,+∞)时,1-x <0,0<31-x <1,∴-2

x

e e e

e f ,则函数)(x f 的值域是_____________

例 点(2,1)与(1,2)在函数()2ax b f x +=的图象上,求()f x 的解析式

例.设函数11

()2

x x f x +--=,求使()f x ≥的x 取值范围.

例 已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(Ⅰ)求,a b 的值;

(Ⅱ)若对任意的t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;

对数的概念:

①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b

=,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数.

1)以10为底的对数称常用对数,N 10log 记作N lg ,

2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log 记作N ln ②基本性质:

1)真数N 为正数(负数和零无对数), 2)01log =a , 3)1log =a a , 4)对数恒等式:N a

N

a =log

例 将下列指数式化为对数式,对数式化为指数式.

(1)54

=645 (2)6

12

64-=

(3)1() 5.733

m

= (4)12

log 164=- (5)10log 0.012=- (6)log 10 2.303e =

例:求下列各式中x 的值 (1)642log 3

x =- (2)log 86x = (3)lg100x = (4)2

ln e x -= 分析:将对数式化为指数式,再利用指数幂的运算性质求出x .

练习:将下列指数式与对数式互化,有x 的求出x 的值 . (1)12

5

-=

(2)x = (3)1327

x =

(4)1()644

x

= (5)lg 0.0001x = (6)5

ln e x =

例 利用对数恒等式N a N log a =,求下列各式的值:

(1)5log 4log 3log 354)3

1()51()41(-+

(2)2

log 2

log 4

log 7

101.03

17

10

3

-+

(3)6

lg 3log 2log 100492575-+

(4)3

1log 27

log 12log 25

945

3

2+-

③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N

M

a a a

log log log -=; 3)∈=n M n M a n

a (log log R ).

④换底公式:),0,1,0,0,0(log log log >≠>≠>=

N m m a a a

N

N m m a

1)1log log =?a b b a , 2).log log b m

n

b a n

a m =

对数函数的运算规律

例.用log a x ,log a y ,log a z 表示下列各式:

(1)log a xy

z ; (2)23

log a x y z

解:(1)log a xy

z

log ()log a a xy z =-

log log log a a a x y z =+-;

例.求下列各式的值:

(1)()

752log 42?; (2)5lg 100 .

解:(1)原式=7

5

22log 4log 2+=227log 45log 2725119+=?+?=; (2)原式=2

1

22lg10lg105

55

=

= 例.计算:(1)lg14-21g

18lg 7lg 3

7

-+; (2)9lg 243lg ;

(3)

(4)lg2·lg50+(lg5)

2

(5)lg25+lg2·lg50+(lg2)2

(2)23

log a

x y

z

3log (log a a x y z =-23log log log a a a x y z =+

11

2log log log 23

a a a x y z =+-.

解:(1)18lg 7lg 3

7

lg

214lg -+-2lg(27)2(lg 7lg3)lg 7lg(32)=?--+-? lg 2lg72lg72lg3lg72lg3lg 20=+-++--=;

(2)253lg 23lg 53

lg 3lg 9lg 243lg 2

5===; 例.计算:(1) 0.21log 3

5-; (2)4492log 3log 2log 32?+.

解:(1)原式 =

0.251log 3log 3

55

5

1515

53

=

=

=; (2) 原式 = 2

3

45412log 452log 213log 21232=+=+?.

例.求值:(1);

(2) ;

(3) (3).

例.求值

(1) log 89·log 2732

(2)

(3)

(4)(log 2125+log 425+log 85)(log 1258+log 254+log 52)

对数函数性质典型例题

例.比较下列各组数中两个值的大小:

(1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; 解:(1)对数函数2log y x =在(0,)+∞上是增函数, 于是2log 3.4<2log 8.5;

(2)对数函数0.3log y x =在(0,)+∞上是减函数, 于是0.3log 1.8>0.3log 2.7;

2、比较大小 (1)2

12

log _________)1(log 2

2++a a (2)πa log ________)1(,log >a e a

3若02log )1(log 2

<<+a a a a ,则a 的取值范围是 ( )

(A ))1,0( (B ))21,0( (C ))1,2

1( (D )),1(+∞ 4 已知7.01.17.01.1,8.0log ,

8.0log ===c b a ,则c b a ,,的大小关系是( )

(A )c b a << (B )c a b << (C )b a c << (D )a c b << 例 比较下列各组数中的两个值大小: (1),

(2),

(3),(a >0且a ≠1)

例 如何确定图中各函数的底数a ,b ,c ,d 与1的大小关系

提示:作一直线y =1,该直线与四个函数图象交点的横坐标即为它们相应的底数.∴0<c <d <1<a <b

例 求下列函数的定义域.

(1) y= (2) y=ln(a x -k ·2x

)(a >0且a ≠1,k ∈R).

例.求函数)32(log 2

2

1--=x x y 的单调区间

解:设u y 2

1log =,322--=x x u ,由0>u 得0322

>--x x ,知定义域为

),3()1,(+∞?--∞又4)1(2--=x u ,则当)1,(--∞∈x 时,u 是减函数;当

),3(+∞∈x 时,u 是增函数,而u y 2

1log =在+R 上是减函数

)

33(2

1

2log --=∴x x y 的单调增区间为)1,(--∞,单调减区间为),3(+∞

例 函数2

0.50.5log log 2y x x =-+的单调减区间是________。

例 已知y =log 4(2x +3-x 2

). (1)求定义域;

(2)求f (x )的单调区间;

(3)求y 的最大值,并求取最大值时x 值.

考点 考查对数函数、二次函数的单调性、最值.

【解】 (1)由2x +3-x 2

>0,解得-1

∴f (x )定义域为{x |-1

(2)令u =2x +3-x 2

,则u >0,y =log 4u

由于u =2x +3-x 2=-(x -1)2

+4

再考虑定义域可知,其增区间是(-1,1),减区间是[1,)3 又y =log 4u 为(0,+∞)增函数,

故该函数单调递增区间为(-1,1],减区间为[1,3)

(3)∵u =2x +3-x 2=-(x -1)2

+4≤4 ∴y =log 4u ≤log 44=1

故当x =1时,u 取最大值4时,y 取最大值1.

例 求函数)106(log 23++=x x y 的最小值.

变式.求函数)78lg()(2

-+-=x x x f 的定义域及值域.

例 已知函数y =f (2x

)定义域为[1,2],则y =f (log 2x )的定义域为( )

A.[1,2]

B.[4,16]

C.[0,1]

D.(-∞,0] 考查函数定义域的理解.

【解析】 由1≤x ≤2?2≤2x

≤4, ∴y =f (x )定义域为[2,4] 由2≤log 2x ≤4,得4≤x ≤16 【答案】 B

例 作出下列函数的图像,并指出其单调区间.

(1)y=lg(-x), (2)y=log 2|x +1|

(3)y =|log (x 1)|(4)y log (1x)12

2-,=-.

例 已知函数f (t ) =log 2t ,]8,2[∈t .

(1)求f (t )的值域G ;

(2)若对于G 内的所有实数x ,不等式-x 2+2mx -m 2

+2m ≤1恒成立,求实数m 的取

值范围.

例 已知函数f (x )=1

421lg 2+-?++a a a

x x , 其中a 为常数,若当x ∈(-∞, 1]时, f (x )有

意义,求实数a 的取值范围.

分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”.

解:1

4212+-?++a a a x x >0, 且a 2

-a +1=(a -21)2+43>0,

∴ 1+2x

+4x

·a >0, a >)21

41(

x x +-, 当x ∈(-∞, 1]时, y =x 41与y =x 2

1

都是减函数,

∴ y =)2141(x x +-在(-∞, 1]上是增函数,)2

1

41(x x +-max =-43,

∴ a >-43, 故a 的取值范围是(-4

3

, +∞).

例 已知a>0 且a ≠1 ,f (log a x ) =

1

2-a a (x -x 1

)

(1)求f(x);

(2)判断f(x)的奇偶性与单调性;

(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2

) < 0 ,求m 的集合M .

解:(1)令t=log a x(t ∈R),则

).(),(1

)(),(1)(,2

2R x a a a a x f a a a a t f a x x x t

t t ∈--=∴--=

=-- ,

101,.)(,10,)(,

01

,1.)(,),()(1)()2(22<<><<-=>->∴∈-=--=

---a a x f a a a x u a a a x f R x x f a a a a x f x x x x 或无论综上为增函数类似可判断时当为增函数时当为奇函数且 f(x)在R 上都是增函数.

)

1,1().1()1(,)(,0)1()1()3(22-∈-<-∴<-+-x m f m f R x f m f m f 又上是增函数是奇函数且在 .211111111122<

?

??-<-<-<-<-<-∴m m m m m

例 已知函数x

x x x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性.

例、已知函数)0(,1

1

lg

)(>∈--=k R k x kx x f 且. (Ⅰ)求函数)(x f 的定义域;(Ⅱ)若函数)(x f 在[10,+∞)上单调递增,求k 的取值范围.

1.函数)13lg(13)(2++-=

x x

x x f 的定义域是

( )

A .),3

1(+∞-

B . )1,3

1

(-

C .

]1

(,13

-

D . )3

1,(--∞

2..已知函数f (x )=lg (2x

-b )(b 为常数),若x ∈[1,+∞]时,f (x )≥0恒成立,则

( ) A .b ≤1 B .b <1 C .b ≥1 D .b =1

3.函数 y =322-+x x 的单调递减区间为

( )

A .(-∞,-3)

B .(-∞,-1)

C .[1,+∞]

D .[-3,-1]

4.设f (x )是定义在A 上的减函数,且f (x )>0,则下列函数:y =3-2f

(x ),y =1+)

(2x f ,y =f 2

(x ),y =1-)(x f ,其中增函数的个数为

( ) A .1

B .2

C .3

D .4

5、.若集合M={y|y=2—x

}, P={y|y=1x -}, M ∩P= ( ) A .{y|y>1}

B .{y|y ≥1}

C .{y|y>0 }

D .{y|y ≥0}

6、设 1.5

0.90.4812314,8,2y y y -??=== ?

??

,则 ( )

A 、312y y y >>

B 、213y y y >>

C 、132y y y >>

D 、123y y y >> 7、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a <<

8、已知函数??

?<+≥-=10

)]

5([103

)(n n f f n n n f ,其中*

∈N n ,则)8(f 的值为( )

)(A 2 )(B 4 )(C 6 )(D 7

9、 函数x

xa y x

=(01)a <<的图象的大致形状是

( )

10.当a >0且a ≠1,x >0,y >0,n ∈N*,下列各式不恒等...的是 ( )

A .log a n

x =n

1log a x

B .log a x =nlog a n x

C .x

a x

log =x

D .log a x n

+log a y n

=n (log a x +log a y )

11

3

log 9

log 28的值是( ) A .

32 B .1 C .2

3

D .2 12 函数f(x )=ln x -

2

x

零点所在的大致区间是 A (1,2) B (2,3) C (e ,+∞) D ()11,3,4e ?? ???

13.若关于x 的不等式m x x ≥-42

对任意]1,0[∈x 恒成立,则实数m 的取值范围是 A . 03≥-≤m m 或 B .03≤≤-m

C .3-≥m

D .3-≤m

14.函数212

log (231)y x x =-+的递减区间为

A.(1,+∞)

B.(-∞

43] C.(21,+∞) D.(-∞,2

1] 15.如果()f x 是定义在R 上的偶函数,它在),0[+∞上是减函数,那么下述式子中正确的是

A .)1()43(2

+-≤-a a f f

B .)1()4

3

(2

+-≥-a a f f C .)1()4

3(2

+-=-a a f f

D .以上关系均不确定

16.函数()f x 、(2)f x +均为偶函数,且当x ∈[0,2]时,()f x 是减函数,设

),2

1

(log 8f a =(7.5)b f =,(5)c f =-,则a 、b 、c 的大小是

A .a b c >>

B .a c b >>

C .b a c >>

D .c a b >>

17、如果方程2

lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( )

A 、lg5lg7

B 、lg35

C 、35

D 、

35

1 18、已知732log [log (log )]0x =,那么1

2

x -等于( )

A 、

1

3 B D 19.三个数0.76

0.76,0.7,log 6的大小顺序是 ( ) (A )60.70.70.7log 66<<(B )60.7

0.70.76log 6<<

(C )0.7

60.7log 660.7<<(D )60.70.7log 60.76<<

20、函数1

21

x y =

-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞

高中数学《对数的概念与运算性质》精品公开课教案设计

《对数与对数运算》(第一课时) 一、教学内容解析 《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容. 16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数. 与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质. 基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化. 二、教学目标设置 1.感受引入对数的必要性,理解对数的概念; 2.能够说出对数与指数的关系,能根据定义进行互化和求值; 3.感受数学符号的抽象美、简洁美. 本课时落实以上三个教学目标: 通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念. 通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值. 恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性. 三、学生学情分析

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n (ΛN * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5 )= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为

第4讲 对数概念及其运算 [讲义]

432211log (4443)x x x x x =++++例.当时,求的值. 912162()q p q R log p log q log p q p +∈==+=例.设,且有,则. 23()(2)(1)2()2f x x lga x lgb f f x x x R a b =+++-=-≥∈+=例.已知,且,又对一切都成立,则. 124()(2)()(01)()2(18)x f x f x f x x f x f log +=-∈=例.已知奇函数满足,且当,时,,则的值为 . 21234541515()lgx lgx lgx lgx lgx lgx lgx lgx x

111211(2)[()(]4 lg log --+.化简: . 7.已知函数()( )1(4)21(4)x x f x f x x ???≥? ?=????+,1y >,且2log 2log 30x y y x -+=,求224T x y =-的最小值。

《对数与对数运算》教学设计

2.2.1 对数与对数运算(一) 教学目标 (一) 教学知识点 1. 对数的概念; 2.对数式与指数式的互化. (二) 能力训练要求 1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培养学生数学应用意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用. 教学重点 对数的定义. 教学难点 对数概念的理解. 教学过程 一、复习引入: 假设 20XX 年我国国民生产总值为 a 亿元,如果每年平均增长 8%,那么经过多少年国民生产总值是 20XX 年的 2 倍? 1 8% = 2 x=? 也是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢? 二、新授内容: aa 0,a 1 的b 次幂等于 N ,就是a b N ,那么数 b 叫做以 a 为底 N 的对 ⑴ 负数与零没有对数(∵在指数式中 ⑵ log a 1 0 , log a a 1 ; ∵对任意 a 0且 a 1, 都有 a 0 1 ∴log a 1 0 同样易知: log a a 1 ⑶对数恒等式 如果把 a b N 中的 b 写成 log a N , 则有 a logaN N . 定义:一般地,如果 数,记作 log a N b , a 叫做对数的底数, N 叫做真数. a b log a Nb 例如: 42 16 log 4 16 2 2 102 100 log 10 100 2 ; 探究: 1。 1 42 2 log 42 12 ; 是不是所有的实数都有对数? 10 2 0.01 log 10 0.01 2. log a N b 中的 N 可以取哪些值? 2. 根据对数的定义以及对数与指数的关系, log a 1 ? log a a ?

对数运算法则公式及其练习题

b n m b a m a n log log =对数运算法则公式 1、b a b a =log 2、n m n m a a a log log )(log +=? 3、n m n m a a a log log )(log -= 4、b n b a n a log log ?= 5、b n b a a n log 1log = 6、a b b c c a log log log =(换底公式) 7、1log log =?a b b a

1、求值: 1、log 89log 2732 2、lg 243 lg9 3、44912log 3log 2log 32?- 4、9 1log 81log 251log 532?? 5、4839(log 3log 3)(log 2log 2)++ 6、2345log 3log 4log 5log 2 7、0.21log 35 - 8、log 427·log 94+log 44 64; 9、(log 2125+log 425+log 85)(log 52+log 254+log 1258) 10、log 932·log 6427+log 92·log 427.

1.82log 9log 3 的值是 2.34 3的值是 3.2323223log 2log 3(log 2log 3)log 3log 2 +--的值是 4.若02log 2log m n >>时,则m 与n 的关系是 A .1m n >> B .1n m >> C .10m n >>> D .10n m >>> 5.233351log 5log 15log 5log 3 ?--的值是 A .0 B .1 C .5log 3 D .3log 5 6.若3log 124 x =,则x =_____________. 7.有下列五个等式,其中a>0且a ≠1,x>0 , y>0 ①log ()log log a a a x y x y +=+, ②log ()log log a a a x y x y +=?, ③1log log log 2 a a a x x y y =-, ④log log log ()a a a x y x y ?=?, ⑤22log ()2(log log )a a a x y x y -=- 将其中正确等式的代号写在横线上______________. 8.化简下列各式: (1)14lg 23lg5lg 5+- (2)3lg lg 70lg 37+- (3) 2lg 2lg5lg 201+?-

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

高中数学复习:对数的概念及运算练习及答案

高中数学复习:对数的概念及运算练习及答案 题组1 对数的概念 1.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A.a >5或a <2 B.2 且1a ≠ B.102 a << C.0a >且1a ≠ D.12 a < 3.使对数()log 21a a -+有意义的a 的取值范围为( ) A.()1,11,2??+∞ ??? B.10,2? ? ??? C.()()0,11,+∞ D.1, 2??-∞ ??? 对数式与指数式的互化 4.下列指数式与对数式互化不正确的一组是( ) A.0 1e =与ln10= B.13 1 8 2 - = 与811log 23=- C.3log 92=与1 293= D.7log 71=与177= 5.若1 log 2 m n =,则下列各式正确的是( ) A.12 n m = B.2m n = C.2n m = D.2n m = 6.将指数式bc a N =转化为对数式,其中正确的是( ) A.log c a b N = B.log ab c N = C.log c a b N = D.log b a c N = 7.若log x z =,则( ) A.7 z y x = B.7z y x = C.7z y x = D.7x y z = 8.若实数a ,b 满足3412a b ==,则11 a b +=( ) A. 12 B. 15 C.16 D.1 9.将下列指数式改为对数式: (1)2 1 3 9 -= ,对数式为_____________;

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

对数的概念与运算性质

《对数与对数运算》(第一课时) (人教A版普通高中课程标准实验教科书数学必修1第二章第二节) 一、教学内容解析 《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容. 16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数. 与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质. 基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化. 二、教学目标设置 1.感受引入对数的必要性,理解对数的概念; 2.能够说出对数与指数的关系,能根据定义进行互化和求值; 3.感受数学符号的抽象美、简洁美. 本课时落实以上三个教学目标: 通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念. 通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值. 恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性.

对数的基本概念及运算

第十讲 对数的基本概念及运算 一:问题思考 问题1:一尺之棰,日取其半,万世不竭。 (1)取5次,还有多长? (2)取多少次,还有0.125尺? (1)为同学们熟悉的指数函数的模型,易得 (2)可设取x 次,则有 二:新知引入 1. 对数的概念:一般地,如果,那么数叫做以为底的对 数,记作: ,其中叫做对数的底数, 叫做真数。 注意:①是否是所有的实数都有对数呢? 负数和零没有对数 ②底数的限制:a>0且a ≠1。 思考:为什么对数的定义中要求底数a>0且a ≠1? 对数的书写格式 2、对数式与指数式的互化 N x N a a x log =?= 幂底数 ← a → 对数底数 指数(指数函数的自变量) ← b → 对数 幂(指数函数的函数值) ← N → 真数

3、对数的形式 ①常用对数:以10为底的对数 ,简记为: lgN ②自然对数:以无理数e=2.71828…为底的对数的对数 简记为: lnN . (在科学技术中,常常使用以e 为底的对数) ③一般对数:(含有常用对数和自然对数) 注意:对数的书写 课堂练习 1 将下列指数式写成对数式: (1) (2) (3) (4) 2 将下列对数式写成指数式: (1) (2) (3) 3 求下列各式的值: (1) (2) 2. 对数运算 (1) 基本性质 ①0和负数没有对数,即N>0 ②1的对数是0,即01log =a ③底数的对数等于1,即1log =a a ④对数恒等式:N a N a =log (2) 运算法则 如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=; 3 ) ∈=n M n M a n a (log log R )。(例题 p111,例 4 ,计

对数公式总结

1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am?an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1

对数函数基础运算法则及例题-答案

对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为 ),(+∞-∞. 对数的四则运算法则: 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+; (2) log log log a a a M M N N =-; (3)log log ()n a a M n M n R =∈. (4)N n N a n a log 1 log = 对数函数的图像及性质

例1.已知x =4 9时,不等式 (x 2 – x – 2)> (–x 2 +2x + 3)成立, 求使此不等式成立的x 的取值范围. 解:∵x =49使原不等式成立. ∴[249)49(2--]> )34 9 2)49(1[2+?+? 即16 13>16 39. 而16 13<16 39. 所以y = 为减函数,故0<a <1. ∴原不等式可化为??? ????++-<-->++->--3220 320222 2 2x x x x x x x x , 解得??? ???? <<-<<->-<2513121x x x x 或. 故使不等式成立的x 的取值范围是)2 5, 2( 例2.求证:函数f (x ) =x x -1log 2 在(0, 1)上是增函数. 解:设0<x 1<x 2<1, 则f (x 2) – f (x 1) = 212 221log log 11x x x x ---2 1221 (1) log (1)x x x x -=-= .11log 2 1 122 x x x x --? ∵0<x 1<x 2<1,∴1 2x x >1,2111x x -->1. 则2 1 122 11log x x x x --? >0, ∴f (x 2)>f (x 1). 故函数f (x )在(0, 1)上是增函数 例3.已知f (x ) = (a – ) (a >1).

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

对数的概念与对数运算性质

对数的概念与对数运算性质 2.2.1对数的概念与对数运算性质 一、内容与解析 (一)内容:对数的概念与对数的基本性质 (二)解析:我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用. 教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 二、教学目标及解析

(一)教学目标 1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度. 2.通过与指数式的比较,引出对数的定义与性质. 3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;在学习过程中培养学生探究的意识;增加学生的成功感,增强学习的积极性. (二)解析 1、理解对数的概念就是指:一是实际的需要;二是人为规定的一种新的表示数的符号; 2、熟练进行对数式与指数式的互化就是指:一是弄清楚对数与指数,对数式与指数式的含义;二是理解对数式与指数式的互化的实质;三是要把这种互化提升为一种方法,为我们以后解题奠定基础。 3、会求一些特殊的对数式的值就是指能够熟练利用:和对数恒等式。 三、问题诊断分析 对数概念的理解中学生存在问题,所以要结合具体的实例,指出为了解决实际问题,引入对数的概念,体现了数学来源于实际的生活,并服务于实际的生活。 四、教学支持条件分析

对数公式的推导(全)

对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = l o g a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =- <证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1)log b b a N N a b b >≠= 换底公式 特例:1log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1 log log n a a n M M =

对数+常用公式方便搜到的人

对数 来自维基百科 各种底数的对数: 红色函数底数是e, 绿色函数底数是10,而紫色函数底数是1.7。在数轴上每个刻度是一个单位。所有底数的对数函数都通过点(1,0),因为任何数的0次幂都是1,而底数β的函数通过点(β, 1),因为任何数的1次幂都是自身1。曲线接近y轴但永不触及它,因为x=0的奇异性。 在数学中,数?x(对于底数?β)的对数是βy?的指数?y,使得?x=βy。底数?β?的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是e、?10或2。数x(对于底数β)的对数通常写为

。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。例如,因为 , 我们可以得出 , 用日常语言说,对81以3为基的对数是4。 对数函数 函数log αx依赖于α和x二者,但是术语对数函数在标准用法中用来称呼形如log αx的函数,在其中底数α是固定的而只有一个参数x。所 以对每个基的值(不得是负数、0或1)只有唯一的对数函数。从这个角度看,底数α的对数函数是指数函数y= αx的反函数。词语“对数”经常用来称呼对数函数自身和这个函数的1个特定值。 对数函数图像和指数函数图像关于直线y=x对称,互为逆函数。 对数函数的性质有:

1.都过(1,0)点; 2.定义域为|R|≠0,值域为R; 3.α>1,在(0,+∞)上是增函数;1>α>0时,在(0,+∞)上是减函数。常用公式 ?和差 ?基变换

?指系 ?还原 ?互换 ?倒数

链式 有理和无理指数 如果n是有理数,βn表示等于β的n个因子的乘积: 。 但是,如果β是不等于1的正实数,这个定义可以扩展到在一个域中的任何实数n(参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数β,有一个对数函数和一个指数函数,它们互为反函数。

10.对数的概念与运算

十、对数的概念与运算 一、选择题 1. 对于且,下列说法中正确的是 A. 若,则 B. 若,则 C. 若,则 D. 若,则 2. A. B. C. D. 3. 计算:的值是 A. B. C. D. 4. B. C. 5. 实数的值为 A. B. C. D. 6. 对数与互为相反数,则有 A. B. C. D. 7. 如果,那么 A. B. C. D. 8. 已知函数,那么的值为 A. B. D. 9. 下列算式中正确的是 A. B. C. D. 10. 已知,那么等于 11. 设,则用表示的形式是 A. B. C. D. 12. A. B. C. D. 13. 式子的值为 A. C. D. 14. C. D. 15. 计算:的值为

A. B. C. 16. 计算 A. B. 17. 若,则等于 B. C. D. 18. 设,且,则 A. B. C. D. 19. 若,则等于 A. C. D. 20. 已知,,则的值为 A. B. C. D. 二、填空题 21. 计算:. 22. 化简:. 23. . 24. 计算:. 25. . 26. . 27. 计算: (); (). 28. . 29. 的值是. 30. . 31. 已知,,则. 32. 若,则.

对数的概念与运算答案 第一部分 1. B 【解析】当,A项错误;若,则,即C 项错误;若,则D项错误. 2. C 3. C 【解析】. 4. A 5. A 6. C 【解析】. 7. C 8. D 9. C 10. C 【解析】由对数性质及, 得,,, 所以 11. A【解析】因为,所以. 12. B 【解析】由对数恒等式,得 . 13. A 14. D 【解析】利用对数运算法则求解. 方法一:. 方法二:. 15. C 【解析】 16. B 【解析】. 17. D 18. A 【解析】,,又, . 19. D 【解析】由换底公式,得,,. 20. A 【解析】, 第二部分 21.

对数计算公式.

性质 ①loga(1)=0; ②loga(a)=1; ③负数与零无对数. 2对数恒等式 a^logaN=N (a>0 ,a≠1) 3运算法则 ①loga(MN)=l ogaM+l ogaN; ②loga(M/N)=l ogaM-logaN; ③对logaM中M的n次方有=nlogaM; 如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数 的底。定义:若a^n=b(a>0且a≠1) 则n=log(a)(b)

基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=l og(a)(M)+l og(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nl og(a)(M) 5、log(a^n)M=1/nl og(a)(M) 推导: 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 M/N=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N)

人教版高中数学-对数的概念与运算性质

课题:2.2.1对数与对数运算 一、教学内容解析 本节课是人教A版《普通高中课程标准实验教科书 数学1(必修)》中第二章第二节内容,属于单元教学课。之前学生已经学习了指数的相关内容,对于数的研究思路也有了一定的了解,对数是在指数基础上定义的一种新数,所以这节课既是对指数的概念、运算性质、指数函数的深化与理解,又为学习对数函数打下基础。同时也为今后复数的学习提供了研究思路与方法。 对数与对数运算主要内容包括:对数的概念、对数的运算性质、换底公式,如何将三块内容融合到一节课中,意味要抓住这一节的核心知识,舍弃细枝末节,要从整体上去研究这节课。具体体现为借助已有经验,从“研究一个代数对象”的“基本套路”出发,发现和提出对数的研究内容,构建研究路径,得出结论,并用于解决问题。让学生完整经历“现实背景——定义——性质——运算性质”过程,学生在整体框架下自主探究,合作学习。 基于上述分析,将本节课的教学重点确定为:对数的概念、性质与运算性质。 二、教学目标设置 1.经历对数概念的形成过程,掌握对数的概念; 2.从研究一个数的“基本套路”出发,能够将指数中相关的性质和运算性质转化为对数的性质和运算性质; 3.知道用换底公式能将一般对数转化为自然对数或常用对数; 4.感受转化与化归、数形结合、类比、从特殊到一般的数学思想,提升学生的数学抽象,数学运算素养。 三、学生学情分析 知识结构上学生已经学习了指数与指数幂运算,指数函数,经历过研究一种新数的基本套路,这为学生研究“对数与对数运算”提供了理论基础与探究方向。 能力水平上,学生已经具备一定的抽象概括能力以及类比,转化和分析问题的能力,可是如何使学生将已有的知识成功迁移到新知识的学习上,自主探究获得对数的运算性质,从而提高发现问题,探索问题和解决问题的能力,实现学习方式的

对数概念及运算教案

普通高中课程标准试验教科书 (北师大版) 数学 必修一 §3.4.1对数及其运算 教案 江西省崇义中学钟隆敏 2011-10-10

一、教学任务分析 教材分析1.地位与作用:本节在学习指数与指数函数及性质的基础上,通过历史背景、实例等引入对数的概念,探讨对数的运算性质.本节学习的内容蕴含转化化归数学思想,类比与对比等基本数学方法,为以后进一步学习对数函数打下了基础.所以,本节内容起着承上启下的作用. 2.学情分析:学生在初中已学习了指数运算,在上一节学习了指数的扩展与指数函数及性质,已掌握了指数的相关知识,对学习本节课已具备条件. 教学目标1.经历由指数得到对数的过程,理解对数的概念.培养学生观察、对比、分析、概括的合情推理能力. 2.能利用科学计算器进行数值分析,探讨出对数的运算性质.培养学生运用数学语言表述问题的能力和解决问题的能力,培养学生敢于质疑,勇于开拓的创新精神. 3.熟练地进行对数式与指数式的互换,掌握对数的运算性质.激发学生学习数学的兴趣和积极性,陶冶学生的情操. 教学重点对数的定义,对数的运算性质. 教学难点对数的概念.对数的运算性质证明. 教学方法自学、引导、探究、交流、展示、讲解、练习等(突出以学生为主体).教学教具尺规、多媒体课件、计算器. 二、教学流程安排 活动1 引入(历史背景、实例) 活动2 对数的概念 活动3 例题及练习 活动4 对数的运算性质 活动5 例题及练习 活动6 课堂练习 活动7 课堂小结 活动8 课外作业

三、教学过程 环节教学内容师生互动设计意图 引入1.对数产生的历史背景. 2.实例:2011年9月29号我国成功发射了天 宫一号目标飞行器,假设天宫一号内在太阳能 转化电能系统中某种物质每年总会耗损,每经 过一年就会耗损原来的1%,如果该物质变为原 来的30%时,将无法正常转化,则该系统大约 有多少年转化能力? 3.学生思考问题,并列出解析式,求解所遇 到的困惑?导出对数的概念. 1.教师讲解. 2.教师课件展示 提出问题.总结、 归纳. 3.学生阅读、思 考. 1.了解对数产生的历 史、对数的用途及影响, 导出数学问题.培养学 习兴趣,激发学习热情. 2.让学生感受实际生活 中的对数问题,结合热 点问题,进行爱国教育. 对数的概念1.对数的概念(注意:条件、记法、读法). 2.两种特殊的对数:①常用对数②自然对数. 3.指数与对数的关系. 互化b a N =?log a N b = 4.对数性质:log1 a =,log a a=, = N a a log_, 1.教师讲解. 2.学生阅读、思 考、探究导学案探 究1-4. 3.教师课件展示, 点评,总结、归纳. 1.经历由指数得到对数 的学习过程,加深对数 概念的理解. 2.培养学生观察、对比、 分析、概括的合情推理 能力. . 例题及练习例1下列指数式化为对数式,对数式化为指数 式. (1)45625 =(2)3 1 3 27 -=; (3)a e x =;(4)243 3 log5 =(5)lg0.11 =- 例2求下列各式中的值: (1) 5 log25;(2) 1 2 log32; (3)3log10 3;(4)ln1;(5) 2.5 log 2.5 1.学生训练, 思考,得出结论. 2.教师课件展示, 点评. 1.巩固对数的概念,熟 练进行指数式与对数式 的互化. 2.培养学生运用知识的 能力. 对数的运算性质1.完成导学案表格. 2.小结对数的运算性质. 3.运算性质的证明. 4.强调: (1)运算性质中字母的范围 (2)运算性质的逆用 (3)运算性质不能记错 1.学生计算,观 察,猜想,归纳运 算性质,学生分组 讨论,解决问题, 得出结论. 2.师生共同完成 证明. 3.教师小结(条 件、结构特点、证 明). 1.让学生探索、研究、 体会、感受对数的概念 的形成和发展的过程. 2.学生计算,观察,进 行猜想,得出规律,再 进行证明,体会化归的 思想. 3.培养学生运用数学语 言表述问题的能力和解 决问题的能力,培养学 生敢于质疑,勇于开拓 的创新精神.

相关文档
最新文档