YJK多塔结构计算

YJK多塔结构计算
YJK多塔结构计算

多塔结构计算

对于多塔结构,之前因为计算容量所限,常常只能把它拆分成一个个独立的单塔计算,不能进行合塔整体模型的计算,这种计算方式不能满足规范对多塔结构的设计要求。

一、规范关于多塔结构计算的相关规定

《高规》5.1.14 条:“对多塔楼结构,宜按整体模型和各塔楼分开的模型分别计算,并采用较不利的结果进行结构设计。当塔楼的裙房结构超过两跨时,分塔楼模型宜至少附带两跨的裙房结构。”

《广高规》11.6.3-4条:“大底盘多塔结构,宜按整体模型和各塔楼分开的模型分别计算,整体建模主要计算多塔楼对大底盘部分的影响,分塔楼计算主要验算各塔楼扭转位移比。”

二、多塔定义的必要性

对于合塔的整体模型,是否一定要进行多塔划分才能进行计算呢?

多塔结构的各个塔在结构上互相分开,即便不在前处理定义为多塔结构,结构有限元计算是完全按照实际各塔分离的模型计算的,仅从周期、位移、恒活内力等方面,是否定义多塔其结果是相同的。但是从规范要求的指标计算、风荷载计算等方面要求是需要定义多塔结构的。

多塔定义就把多塔结构的分开的部分明确划分出一个个塔,并顺序编号,在计算与设计时将区分各塔的属性特征进行。

多塔结构在整体计算时,必须首先进行多塔定义的操作。这是因为,对于多塔结构风荷载的自动计算、分塔考虑地震作用的偶然偏心等都必须在多塔定义后才能正确进行。另外,各种计算统计指标是需要按照分塔输出的。

当各塔楼是在同一层中布置的,即共用标准层建模方式建立的多塔结构时,多塔不划分与划分的差别主要有:

1、风荷载

不划分多塔时把全层范围当做迎风面计算风荷载计算。软件把两个塔中间的分离空间也当做了迎风面,造成风荷载计算偏大;但是当两个塔排列的方向和风荷载相同时,只能计算其中一个塔的迎风面,又造成计算的风力偏小。

划分多塔后各塔分别作为迎风面计算风荷载。另外,有伸缩缝结构需要作风荷载的遮挡计算,遮挡计算只有在多塔划分后才能进行。

2、强制刚性板假定下的处理不同

如果不做多塔划分,则同一层中的多个塔楼被按照同一个刚性板计算;如果进行了多塔划分,则对各个塔楼分别采用刚性楼板假定计算。

3、地震力偶然偏心的计算,划分后软件分别对各分塔做偶然偏心计算

4、层统计参数的分塔分层输出,定义多塔以后,分塔分层输出的层统计参数有:

(1)位移比和位移角;

(2)剪重比;

(3)刚重比;

(4)层刚度比;

(5)楼层抗剪承载力比;

(6)塔楼为框剪结构时,框架部分柱剪力、框架柱部分的倾覆弯矩所占比例(依据该输出结果按《抗震规范》6.1.3条第1款确定框架部分的抗震等级);

(7)当结构中存在短肢剪力墙时,每塔楼内柱及短肢墙所承受的倾覆弯矩百分比。

5、软件可自动实现按整体模型和各塔楼分开的模型分别计算

用户可将全部多塔连在一起整体建模,软件可自动实现按整体模型和各塔楼分开的模型分别计算,并采用较不利的结果进行结构设计。这步工作的前提是要完成多塔定义。

软件可对其中的每个塔按照规范的要求自动切分成单个塔,每个分塔各包含底部模型,切分底部模型的范围是裙房下45°范围。然后连续地分别进行各塔的单塔计算和全部多塔连在一起的整体计算,最终对各个单塔配筋设计时采用整体计算和各单塔计算的较大值。

对于自动拆分出来的单塔,用户可以在前处理的【计算简图】-【自动分塔示意】中查看拆分后的单塔模型。如果计算模型不合理,可以在【多塔定义】中通过【划分拆分范围】、【删除拆分范围】交互修改。

三、哪些计算内容应在合塔的整体模型中得出

(1)裙房和大底盘部分

裙房和大底盘部分的设计结果应在合塔的整体模型中得出,正如《广高规》11.6.3-4的说明:大底盘多塔结构,。。。整体建模主要计算多塔楼对大底盘部分的影响;

(2)基础设计应在合塔的整体模型下进行;

(3)对合塔模型必须进行多塔划分的计算内容,如上节所述。

四、哪些计算内容应在分塔的模型中得出

周期比应在各个单塔的计算模型中得出。

《高规》10.6.3-4:“大底盘多塔结构,可按本规程5.1.14条规定的整体和分塔楼计算模型分别验算整体结构和各塔楼结构扭转为主的第一周期与平动为主的第一周期的比值,并应符合本规程第3.4.5条的有关要求。”

《广东高规》11.6.3-4:“大底盘多塔结构,宜按整体模型和各塔楼分开模型分别计算,整体模型主要计算多塔楼对大底盘结构的影响,分塔楼计算主要验算各塔楼的扭转位移比,并应符合本规程第3.4.5条的有关要求。”

从目前合塔的整体模型中,很难计算出各个单塔各自的扭转为主的第一周期与平动为主的第一周期,因此各塔楼的周期比只能在各分塔计算中得出。

五、多塔整体和分塔二者取大的要求是针对塔楼部分的

《高规》5.1.14 :“对多塔楼结构,宜按整体模型和各塔楼分开的模型分别计算,并采用较不利的结果进行结构设计。”

《广东高规》取消了《高规》这里的“并采用较不利的结果进行结构设计”的提法,《广东高规》改为:“多塔楼结构宜按整体模型和各塔楼分开的模型分别计算。当塔楼周边的裙楼超过两跨时,分塔楼模型宜至少附带两跨的裙楼结构。裙楼屋面宜考虑与塔楼相互作用的影响并采取适当的加强措施。”

对于多塔结构的裙楼和大底盘部分,合塔整体模型的计算结果完全可以直接使用,没有必要再与分塔模型比较取大。因此,即便对于《高规》要求的“整体模型和各塔楼分开的模型分别计算,并采用较不利的结果进行结构设计”,也应针对裙楼以上的塔楼进行。

多塔包络取大参数设置如图3.5.1,用户在YJK中设置了对多塔结构的自动包络设计时,软件仅对地下室以上的塔楼部分进行包络设计,而对裙楼(不包含塔楼部分)和地下室部分不进行包络设计。

图3.5.1 多塔自动包络取大参数

有的用户使用YJK对多塔结构的自动包络设计后,在查看各个分塔结果时,常发现分塔的裙楼或裙楼以下部分有的杆件结果异常,导致这种异常的原因是自动分塔的模型存在缺陷,这种缺陷可由人工对自动划分的分塔模型编辑修正。

六、自动定义多塔的原理和参数控制

对于独立多塔和设缝多塔的上部结构,每层的各塔是一个平面多边形,在塔和塔之间完全分开。每个塔的多边形外围由梁或墙围成,而各塔之间没有墙或梁相连。利用这个特点,软件根据各层梁、墙的布置状况,可以自动搜索出由梁、墙组成的各个塔单元的最外围轮廓,这个轮廓线就是各个塔的边界线。为了能够将轮廓线上的杆件明确地包含到塔内,软件将轮廓线进行了适当的外扩,目前外扩了100mm。通过这种机制就实现了多塔的快速自动划分。

由于在一个塔平面内,可能包含着另外一个或多个与周围杆件不相连的闭合多边形区域,如回字形的平面。对于这种情况,在多塔自动生成时将忽略掉内部闭合多边形,并且将这些内部的封闭区域划分到包含它的区域中,整体作为一个塔。

多塔自动生成时,对于延伸出多塔平面的孤立的墙、梁,只要这些墙、梁与某个塔直接或间接相连,就将它们归入相应的塔内。

平面上常存在未与梁相连,又没有被任何封闭区域包围的孤立柱或孤立的墙,这样的孤立柱或孤立墙通常是结构中的越层构件。软件可根据与之相临的上下层的杆件信息,找出它们应归属的塔号。

无论是多塔自动生成还是人工定义,都需要注意:软件通过围区的方法定义每个塔的范围,构件属于某个塔是以其定位节点为准的,所有定位节点都必须属于某一个塔,即不能存在孤立的不属于任何塔的节点,并且每一个节点不能同时属于多个塔,否则,计算会出错。当结构平面构件布置复杂时,可以使用软件提供的【多塔定义】-【立面显示】功能对定义

的多塔进行检查,以确保多塔定义准确性。如果模型进行了修改,多塔生成必须重新执行,否则会导致多塔信息错误。

多塔自动定义是根据平面上分离的多边形的数量。实际工程中常见某个塔的上部楼层又分离出2个或多个多边形,如顶部设置了多个分离的水箱间、电梯间等。这样的情况不宜再按照多塔结构计算。为此,软件设置了“可确定最多塔数的参考层号”参数,如图3.5.2,

隐含取裙房或者地下室的上一层为自动确定最多塔数的参考层号,该层号可由用户修改。软件以该层自动划分的塔数作为该结构最终划分的塔数。如果该层以上的某层中又出现了某个塔分离成多个塔的情况,软件仍将这些分离部分当做一个塔来对待。

图3.5.2 可确定最多塔数的参考层号

上面所讲的多塔定义多针对多塔结构按共用标准层方式建模情形。对于按照广义层方式建模的多塔结构,软件会自动进行多塔的划分,但是计算要简单得多。软件中也支持同时存在广义层多塔和普通多塔混合建模的形式,但建模时仍需注意,在楼层组装中每个塔的各层应从低至高连续组装。

七、YJK在多塔自动划分中的常见问题

1、各分塔的结构体系、体型不同时的处理

对于已经分好塔的多塔模型,软件支持为每个分塔指定不同的计算参数,包括结构体系、风荷载计算的周期和体型系数、0.2V0调整系数等,如图3.5.3所示。

图3.5.3 分塔参数

另外,软件也可对细分的每个塔的楼层单独指定材料、抗震等级、钢筋类别等信息,该功能可打开【楼层属性】-【材料表】进行指定,也可以通过“构件混凝土等级”系列命令单独在三维模型上进行修改,如图3.5.4所示:

图3.5.4 材料表

2、存在不想单独分塔的突出结构时的处理

例如当多塔裙房顶部存在电梯机房等小的结构,不想独立分塔计算时,可通过【修改塔号】菜单,将其指定为想归入的附近塔楼的塔号,则软件会自动实现塔楼的合并,如图3.5.5所示;或者可以通过【围区增加】菜单,将其直接框入附近塔楼,也可实现同样的效果。

图3.5.5 修改塔号

3、多塔自动生成时提示“某层存在未正确分塔构件…”时的处理

对于平面中存在一些不在封闭的梁墙范围内的墙、柱、斜杆等独立构件,若属于越层的情况,软件会根据该构件在上下楼层中的情况进行一定程度的自动识别;但对于确实完全独立的竖向构件,则软件不会自动判断其塔号,此时在自动生成多塔的过程中,将出现如图3.5.6所示的提示:

图3.5.6 未正确划分多塔时的提示

对于此类情况,一般可先选择“否”,让程序继续划分多塔,并记住提示有问题的层号,等自动生成完成后,用【多塔平面】查看相应的楼层,找到标注塔号为0的节点,用【围区增加】菜单将其框选,即可归入附近的塔中,如图3.5.7所示。

图3.5.7 围区增加

4、多塔连接关系判断不正确时的处理

多塔生成后,建议使用【多塔立面】查看多塔的连接关系是否正确,也可以通过【三维显示】查看各塔的颜色区分是否正常。如图3.5.8所示情况,即表示多塔的连接关系判断可能存在问题,此时对于后续的楼层指标统计,包括风荷载和地震剪力、刚度比、受剪承载力比值等均会造成影响。

图3.5.8 多塔立面

对于多塔连接关系识别不正确,一般情况有:

(1)在楼层组装表中,某塔的各楼层之间标高不连续,即上一层的层底标高≠下层底标高+下层层高,如图3.5.9所示,某些底盘带错层的情况可能存在这种建模方式。底盘局部抬高或降低后,在组装上方塔楼时直接将塔底标高抬高或降低。此时虽然模型中构件可正常

连接,但组装表的标高并不连续。该情况宜将组装表设置为连续,上部塔楼的构件底部通过修改底标高的方式与下层衔接。

图3.5.9 楼层组装底标高不连续

(2)塔楼平面形状比较特殊,如凹字形、类似体育场馆的环形、外轮廓挑出的梁墙较多的情况,该类复杂情况下,若软件的自动生成无法适应,可用【数据清空】删除程序自动生成的数据,使用【多塔指定】完全手工指定生成,手工指定的轮廓线尽量不要超出塔楼外轮廓太多,以便程序正确识别。

5、多塔按整体和分塔包络设计时,分塔模型自动划分不合理的处理

当在自动分塔参数中勾选了选项时,软件会自动按45°扩散角生成各个分塔模型在裙房部分的“相关范围”。但当遇到平面复杂、构件斜交较多、塔楼斜置等复杂情况时,软件自动划分的裙房相关范围不一定合理,从而可能出现整体计算可以通过,但单塔楼计算不能通过的问题。如图3.5.10中,出现了分塔模型中2层局部结构悬挑的问题。

图3.5.10 自动分塔模型不合理

凡是该类情况,均可以用多塔菜单下的【划分拆分范围】解决。该功能相当于直接指定裙房的“相关范围”,只要指定对应的上塔塔号后,在裙房部分勾勒出相关范围的围区形状即可,如图3.5.11所示。

除了上述的应用外,对于连体结构,也可以使用该功能,实现有连体多塔的分塔整体包络设计功能。在连体及其上部所有楼层,均围出主塔部分范围(忽略连体部分),即可实现此效果。

图3.5.11 划分拆分范围

6、连体结构的分塔方法

对于连体结构,推荐的建模方式是将连体部位相关的两塔与连体建为同一楼层,相应的在多塔划分时连体及相关两塔为同一塔号,一般软件自动划分的效果如图3.5.12所示,连体部位塔号均为1号塔。

图3.5.12 多塔划分

当软件自动划分的塔号如图3.5.12存在不连续的情况时,可以通过【修改塔号】稍作修改即可。如将原先连体上方右侧塔楼改为2塔,再将原先3塔改为1塔即可。

实际上,无论塔号是否修改为上下一致,只要【立面显示】菜单中多塔的连接关系正常,没有脱开、交错等情况,则对于剪力、剪重比、受剪承载力比、刚度比等楼层指标的统计均能正确进行。但是对于连体模型需要考虑自动进行分塔和整体的包络设计时,则宜尽量确保塔号的一致,并且必须使用前一条目中的【划分拆分范围】功能,在连体及其上部所有楼层围出主塔部分范围,如图3.5.13所示。

图3.5.13 修改后的多塔划分

多塔大底盘结构设计

1、分类 (1)一般多塔:裙房上多栋塔楼;地上应有裙房(如地上无裙房,仅地下室连为一体,不是严格意义上的多塔,可参照多塔结构的计算分析方法);裙房应较大,将各塔楼连为一体。(2)带缝多塔 (3)复杂多塔:如带转换层,加强层,连体,错层等 2、设计要求 (1)多塔结构振型复杂,且高振型影响较大。因此各塔楼的楼层数、平面布局、竖向刚度及结构类型宜接近。 (2)塔楼对底盘宜对称布置,塔楼群体质心宜接近大底盘的质心,塔楼的综合质心与底盘质心的距离不宜大于底盘相应边长的20%,以减少塔楼偏置对底盘的扭转效应。 (3)抗震设计时,转换层宜设置在底盘楼层范围内,不宜设置在底盘以上的塔楼内,以避免高位转换形成的结构薄弱部位。 (4)为保证底盘与塔楼的整体工作,底盘屋面板应加厚,不宜小于150,板面负钢筋宜贯通并应加强配筋构造措施;底盘上下一层的楼板也应加强构造措施。 (5)抗震设计时,与主楼相连的裙房的抗震等级除符合自身设计要求外,不应低于主楼的抗震等级。 (6)抗震设计时,多塔楼之间的裙房连接体的屋面粱应予加强,各塔楼中与裙房连接部位的外围柱、剪力墙,从固定端至裙房屋面上一层的高度范围内应特别加强,即柱的最小配筋率宜适当提高,柱箍筋在裙房屋面上下层范围内全高加密,剪力墙宜按规范的有关规定设置约束边缘构件。 (7)多塔结构的基础设计,可通过计算确定是否需要沉降缝和后浇带,或采用变刚度调平技术,减少差异沉降。 3、计算分析 (1)多塔结构的突出特点: a当多栋塔楼相邻较近时,宜考虑风力相互干扰的群体效应 b塔楼高度、刚度相差较大,且塔楼布局不合理,各塔楼通过底盘的间接影响很大时,相互作用不能忽略。 (2)计算模型 a离散模型,切分大底盘,分层独立的单塔 b整体模型, SATWE中位移比(层间位移比)、层间刚度比、层间受剪承载力比、剪重比已能分塔输出。但周期比在整体模型中不能直接完成,宜采用离散模型分析。 (3)多塔大底盘结构的切分方法

CASTEP计算理论总结+实例分析

CASTEP 计算理论总结 XBAPRS CASTEP 特点是适合于计算周期性结构,对于非周期性结构一般要将特定的部分作为周期性结构,建 立单位晶胞后方可进行计算。CASTEP 计算步骤可以概括为三步:首先建立周期性的目标物质的晶体;其 次对建立的结构进行优化,这包括体系电子能量的最小化和几何结构稳定化。最后是计算要求的性质, 如电子密度分布(Electron density distribution),能带结构(Band structure)、状态密度分布(Density of states)、声子能谱(Phonon spectrum)、声子状态密度分布(DOS of phonon),轨道群分布(Orbital populations)以及光学性质(Optical properties)等。本文主要将就各个步骤中的计算原理进行阐述, 并结合作者对计算实践经验,在文章最后给出了几个计算事例,以备参考。 CASTEP 计算总体上是基于DFT ,但实现运算具体理论有: 离子实与价电子之间相互作用采用赝势来表示; 超晶胞的周期性边界条件; 平面波基组描述体系电子波函数; 广泛采用快速fast Fourier transform (FFT) 对体系哈密顿量进行数值化计算; 体系电子自恰能量最小化采用迭带计算的方式; 采用最普遍使用的交换-相关泛函实现DFT 的计算,泛函含概了精确形式和屏蔽形式。 一, CASTEP 中周期性结构计算优点 与MS 中其他计算包不同,非周期性结构在CASTEP 中不能进行计算。将晶面或非周期性结构置于一个有 限长度空间方盒中,按照周期性结构来处理,周期性空间方盒形状没有限制。之所以采用周期性结构原 因在于:依据Bloch 定理,周期性结构中每个电子波函数可以表示为一个波函数与晶体周期部分乘积的形 式。他们可以用以晶体倒易点阵矢量为波矢一系列分离平面波函数来展开。这样每个电子波函数就是平 面波和,但最主要的是可以极大简化Kohn-Sham 方程。这样动能是对角化的,与各种势函数可以表示为 相应Fourier 形式。 ```2[()()()]``,,k G V G G V G G V G G C C ion H xc i i k G GG i k G δε∑++-+-+-=++ 采用周期性结构的另一个优点是可以方便计算出原子位移引起的整体能量的变化,在CASTEP 中引入外力 或压强进行计算是很方便的,可以有效实施几何结构优化和分子动力学的模拟。平面波基组可以直接达 到有效的收敛。 计算采用超晶胞结构的一个缺点是对于某些有单点限缺陷结构建立模型时,体系中的单个缺陷将以 无限缺陷阵列形式出现,因此在建立人为缺陷时,它们之间的相互距离应该足够的远,避免缺陷之间相 互作用影响计算结果。在计算表面结构时,切片模型应当足够的薄,减小切片间的人为相互作用。 CASTEP 中采用的交换-相关泛函有局域密度近似(LDA )(LDA )、广义梯度近似(GGA )和非定域交换-相关 泛函。CASTEP 中提供的唯一定域泛函是CA-PZ ,Perdew and Zunger 将Ceperley and Alder 数值化结果进行 了参数拟和。交换-相关泛函的定域表示形式是目前较为准确的一种描述。 Name Description Reference PW91 Perdew-Wang generalized-gradient approximation, PW91 Perdew and Wang PBE Perdew-Burke-Ernzerhof functional, PBE Perdew et al. RPBE Revised Perdew-Burke-Ernzerhof functional, RPBE Hammer et al.

大底盘多塔结构地下室设计要点

大底盘多塔楼高层建筑、地下商场、地下车库建筑以及大跨空间、多层地下结构的出现,在目前住宅小区建设以及大型公建项目中都占有非常重要的地位,其面积可达总竣工建筑面积的10%。大底盘高层建筑由于上部结构塔楼相对大底盘地下结构刚度大,荷载不均匀,基底反力不均匀,基础底板的均匀变形,设计不当会引起基础开裂。除此,之外,大底盘高层建筑地下室结构还有一些关键设计需要重点关注。 一、大底盘高层建筑地下室结构类型及设计要点说明 根据地下室层数及地下室与主楼连接方式通常可分为5种结构类型,我们以地下车库结构为例说明,即与主楼断开单层地下车库、与主楼断开双层地下车库、与主楼相连单层地下车库、与主楼相连双层地下车库、地上一层、地下一层大平台式车库五种。 (1)与主楼断开单层车库 一种是车库与主楼完全脱开,仅以通道相连。另一种是车库和主楼各为单体,结构计算相对简单。设计时应注意车库埋深大于主楼基础埋深时,应尽量使主楼外墙与车库外墙净距增加。如无条件时,车库与主楼间应设有效支护,并交代先施工车库后施工主楼,车库基坑开挖时不应使主楼基底土受到扰动。【7度设防】车库一般为丙类建筑,抗震等级为四级[1]。 7度Ⅰ、Ⅱ类场地丙类建筑不需进行地震作用计算。中柱最小总配筋率应增加 0.2%。 (2)与主楼断开双层车库 一种是车库与主楼完全脱开,仅以通道相连。另一种车库和主楼各位单体,结构计算相对简单。车库自重远不足以抗浮,车库底板配筋基本由水浮力控制。设计时应注意在设计前摸清主楼边界与车库边界关系。确定主楼基础埋深时,应考虑主楼与车库边界距离,保证施工的可行性。注明基础施工顺序: 先车库后主楼。

(3)与主楼相连单层车库 车库与多栋主楼相连形成大底盘。设计时应注意嵌固部位设在主楼地下室顶板时,应注意主楼顶板与车库顶板高差不能太大(最好≤ 0.8m)。嵌固部位设在基底时,上部结构应按多塔模型复核构件配筋。车库柱配筋应考虑 0.2Q0剪力调整。主楼顶板与车库顶板间应设加腋,便于传递地震力。主楼相关范围内抗震等级应同主楼抗震等级。 (4)与主楼相连双层车库 双层车库与多栋主楼相连形成大底盘。 (5)地上一层、地下一层大平台式车库 主要特点: 车库分地下一层,地上一层。地上车库周边一般设置沿街商铺。小区景观设在地上车库顶板上。主楼范围在地下、地上一层、大平台均有入口大堂。主楼范围在大平台处底部架空。设计时为避免地面二层以上形成多塔结构,大平台层应合理分缝,避开景观水池、避开小区变用户变、防止塔楼偏置。主楼剪力墙布置应充分考虑架空层及大堂的效果。±0.0处楼板无覆土且不设缝形成超长结构,应采取防裂措施。 二、大底盘多塔结构地下室设计要点 1、嵌固部位的位置与地下室抗震等级的关联 主楼± 0.0结构板作为嵌固部位时,主楼地下一层相关范围的抗震等级应按上部结构采用,地下一层以下抗震构造措施的抗震等级可逐层降低一级,但不应低于四级;地下室中超出上部主楼相关范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。具体条文参见《高层建筑混凝土结构技术规程》第

Mn3Al块体合金下的电子结构计算论文.

Mn3Al块体合金下的电子结构计算论文2019-02-15 摘要:自旋电子学器件在航天、军事等高科技领域,甚至在智能家电、通讯等民用领域都有广泛的利用,因此它也引起了科学家们越来越多的关注。我们将对D03型Mn3Al块体合金的电子结构和磁性利用理论模拟计算方法进行研究。根据理论计算发现Mn3Al合金不仅具有100%的自旋极化率而且还有半金属特性的电子结构。关于合金磁性计算研究表明它是完全反铁磁性材料。Mn3Al 合金是一种半金属完全反铁磁材料,所以研究Mn3Al合金对自旋电子学器件的设计具有重要意义。 关键词:Mn3Al合金;密度泛函理论;电子结构;磁性 自旋电子学器件具有不同于传统半导体器件的优势使它成为21世纪重要的研究方向之一。传统的电子学器件通常是利用电子的电荷特性,而自旋电子学器件是通过电子的自旋和电荷来进行运输的。相对于传统电子学器件来说,自旋电子学器件不仅具有更低的耗能、非易失性、更强大的数据储存能力,而且还具有更快速的信息处理能力和集成度高的.优质特点。除此之外,它在磁记录读出磁头、磁传感器、磁性随机存储器等领域有着广泛的应用前景。尽管自旋电子学器件能够更好地满足科学发展和人类的需要,但是它在实际材料的需求上有着较高的要求。 自旋电子学器件的制作的关键就在于如何能够将不同特征的电子有效的注入到半导体材料中,以此来达到实现自主运输的目的。正如我们所知的,现在很多的材料做成的自旋电子学器件都只能在低温的环境下运行,这带来了很多的不便。所以研究能在高居里温度下运行的自旋电子学器件的材料就显得尤为重要了。研究表明自旋电子学器件的性能和自旋极化率有着密切的联系,如果材料具有高的自旋极化率,也就是说在费米能级附近分别具有自旋向上和自旋向下的电子数目越不平衡,那么自旋电子学器件的性能就越好。近年来,由于半金属材料的优点,使得它成为了大家研究的热点之一。1983年,deGroot及他的团队采用第一性原理计算方法在理论上首次发现half-Heusler合金NiMnSb具有半金属性,越来越多的Heusler合金被研究证实其半金属性并被归为半金属铁磁体。Heusler合金具有独特的磁学性质、形状记忆效应、半金属性、拓扑绝缘等性能,而这些优点就使得这种合金在自旋电子器件的研究中具有重要意义。虽然Mn3Al块体合金具有多种结构,其中最重要的一种结构是 D03型。利用密度泛函理论计算的方法,本文研究了D03型Mn3Al块体合金的电子结构及磁性。 1研究方法 本文采用的第一性原理计算,此次研究所有的计算工作都是在高性能计算机上运行ViennaAb-initoSimulationPackage(VASP)程序完成。计算过程中,我们采用广义梯度近似(GGA)方法,选取缀加投影波(PAW)来描述离子

CdO电子结构的第一性原理计算

收稿日期:2008205205; 修订日期:2008206230 作者简介:宋永东(19582  ),陕西户县人,副教授.主要从事电子技术与半导体理论的科研和教学工作. CdO 电子结构的第一性原理计算 宋永东1,黄 同2,吕淑媛3 (1.延安大学物理与电子信息学院,陕西延安716000;2.延安大学西安创新学院,陕西西安710100;3.西安邮电 学院电信系,陕西西安710021) 摘要:基于密度泛函理论(Density Functional Theory )框架下的第一性原理平面波超软赝势方法,计算了岩盐、氯化铯以及纤锌矿构型CdO 的体相结构、电子结构和能量等属性。利用精确计算的能带结构和态密度,从理论上分析了CdO 材料基态属性及其化学和电学特性,理论结果与实验结果相符合,这为CdO 光电材料的设计与大规模应用提供了理论依据。同时,计算结果也为精确监测和控制这一类氧化物材料的生长过程提供了可能性。关键词:CdO ;电子结构;第一性原理;相变 中图分类号:TN201 文献标识码:A 文章编号:100028365(2008)0821106204 Firs t 2Pri ncip le Calc ula ti o n of Ele c t r o nic S t r uc t ur e of CdO SONG Yong 2dong 1,HUANG Tong 2,L V Shu 2yu an 3 (1.College of Physics &Electronic Information ,Yan πan U niversity ,Yan πan 716000,China ;2.Xi πan G reation Collgeg of Yan πan U niversity ,Xi πan 710100,China ;3.Department of T elecommunication ,Xi πan Institute of Post and T elecommunication ,Xi πan 710072,China) Abs t rac t :The phase structure ,electronic structure and energy of CdO in rocksalt ,ce sium chloride and wurtzite are calculated utilizing first 2principle ultra 2soft p seudo 2potential approach of the plane wave based upon the Density Functional Theory (DFT ).The ground state ,electronic and chemical propertie s are analyzed in terms of the precise calculated band structure and density of state ,the theoretical re sults agree well with the experimental value ,and can provide theorical asis for the de sign and application of optoelectronics materials of CdO.Meanwhile ,the calculated re sults can provide the po ssibility for more precise monitoring and control during the growth of CdO materials. Ke y w ords :CdO ;Electronic structure ;First 2principle s ;Phase transformation 透明导电薄膜(TCOS )由于其低的电阻率、高的透光率而成为具有优异光电特性的电子材料之一,现已在太阳能电池[1]、液晶显示器[2]、气体传感器[3]、紫外半导体激光器等领域得到应用。氧化镉(CdO )作为一类宽禁带化合物半导体材料,由于在导电和可见光透过方面具有优异的性能,现已在新型透明导电薄膜方面受到人们的重视,被认为是一种有潜力的光电材料[4~7],可用于太阳能电池、电致变色器件、液晶显示器、热反射镜、平板显示装置、抗静电涂层及光电子装置等领域。与其它透明导电薄膜材料相比,CdO 薄膜具有很多优点,如生长温度低,可在室温下获得结晶取向好的高迁移率薄膜;在未掺杂情况下,由于薄膜中存在大量的间隙Cd 原子和氧空位作为浅施主,因此CdO 薄膜有很高的载流子浓度,使得CdO 在未掺杂 的情况下就有很高的电子浓度和电学性能;同时CdO 薄膜的禁带宽度(E g =2.26eV ,对应的吸收波长在550nm )在太阳可见光辐射区,可以作为Si 、Cd Te 、CuL nSe 2(CIS )等太阳能电池的窗口材料,对应不同的 制备方法,禁带宽度有一定的变化。近年来,基于密度泛函理论的第一性原理计算已用来研究这类材料的光学性质。本文计算了各种构型CdO 电子结构,并与相关文献进行了比较。1 理论模型和计算方法1.1 理论模型 氧化镉是n 型半导体化合物,室温下其稳定的结晶态为立方NaCl 型结构,空间群为Fm 23m ,晶胞参数a =4.674!。另外,CdO 还存在闪锌矿、氯化铯以及纤锌矿型3种亚稳态结构。第一性原理计算表明,大约在89GPa 压力下,立方NaCl 结构的CdO 晶体转变为CsCI 结构,晶胞体积减少约6%,其各种构型的晶体结构如图1所示。

材料结构与性能模拟计算理论与方法简介

材料结构与性能模拟计算理论与方法简介 [使用电脑对材料模拟计算的优缺点] 优点:(一)不受实验条件的限制、(二)简化研究的原因 缺点:必须使用足够精确的物理定律 因此,目前电脑模拟的材料设计走向两个趋势: (一)采取微观尺度(因为物质由原子组成)、 (二)使用量子力学(才能正确描述电子行为以及由其所决定的机械、传输、光学、磁学等性质) 也就是说,原子之间的作用力以及材料所表现的物性,我们都希望能(不借助实验结果)透过第一原理方法来达到。 [密度泛函理论简介] 自从20世纪60年代密度泛函理论(DFT,Density Functional Theory)建立并在局域密度近似(LDA)下导出著名的Kohn-Sham(KS)方程以来,DFT一直是凝聚态物理领域计算电子结构及其特性最有力的工具。近几年来DFT同分子动力学方法相结合,在材料设计、合成、模拟计算和评价诸多方面有明显的进展,成为计算材料科学的重要基础和核心技术。特别在量子化学计算领域,根据INSPEC数据库的记录显示,1987年以前主要用Hartree-Fock(HF)方法,1990~1994年选择DFT方法的论文数已同HF方法并驾齐驱,而1995年以来,用DFT的工作继续以指数律增加,现在已经大大超过用HF方法研究的工作。W. Kohn因提出DFT获得1998年诺贝尔化学奖,表明DFT在计算量子化学领域的核心作用和应用的广泛性。 DFT适应于大量不同类型的应用,因为电子基态能量与原子核位置之间的关系可以用来确定分子或晶体的结构,而当原子不处在它的平衡位置时,DFT可以给出作用在原子核位置上的力。因此,DFT可以解决原子分子物理中的许多问题,如电离势的计算,振动谱研究,化学反应问题,生物分子的结构,催化活性位置的特性等等。在凝聚态物理中,如材料电子结构和几何结构,固体和液态金属中的相变等。现在,这些方法都可以发展成为用量子力学方法计算力的精确的分子动力学方法。DFT的另一个优点是,它提供了第一性原理或从头算的计算框架。在这个框架下可以发展各式各样的能带计算方法,如LDA,GGA,meta-GGA,hybrid等方法。

1977年诺贝尔物理学奖——电子结构理论

1977年诺贝尔物理学奖——电子结构理论1977年诺贝尔物理学奖授予美国新泽西州缪勒山(Murray Hill)贝尔实验室 的P.W.安德森(Philip W.Anderson,1923—)、英国剑桥大学的莫特(Nevill Mott,1905—1996)和美国哈佛大学的范弗莱克(John Van Vleck,1899—1980),以表彰他们对磁性和无序系统的电子结构所作的基础理论研究。 P.W.安德森1923年12月13日出生于美国依利诺斯州的印第安纳波利斯(Indianapolis)。父亲是依利诺斯大学的植物学教授,在他父母的亲友中有许多物理学家,他们激发了P.W.安德森对物理的爱好。中学毕业后,进入哈佛大学,主修数学。可是不久第二次世界大战爆发。P.W.安德森在此期间应召入伍,被分配去学习电子物理,不久派遣到海军研究实验室建造天线。这项工作使他对西方电器公司和贝尔实验室有所了解。战争结束后,P.W.安德森返回哈佛大学,就下决心向物理学家学习,做一名物理学家。在这些物理学家中,以电子结构理论著称的磁学专家范弗莱克是他最敬佩的物理学家之一。他和范弗莱克曾经一起在军事部门工作过,范弗莱克是哈佛大学的著名教授,正是范弗莱克的指引,P.W.安德森后来决心把自己的研究方向定位在固体的电子结构和现代磁学,在范弗莱克的指导下研究了微波和红外光谱的压力增宽。他为了用分子间相互作用解释这些谱线在高密度下增宽的现象,借助于洛伦兹等人的理论发展了一种更普遍的方法,运用于从微波到红外和可见光的光谱学。他还根据已知的分子作用计算出了初步的定量结果。 后来,P.W.安德森的注意力聚焦于绝缘的磁性材料,诸如铁淦氧体和反磁性的氧化物,也就是要研究是什么因素导致原子磁矩和自旋以及人们观测到的那些特殊排列。他在克拉默斯(H.A.Kramers)的“超交换”这一旧概念的基础上,探讨了相互作用的机制。他对相互作用所作的假设可解释自旋花样和居里-奈尔点。 在这项工作之后,P.W.安德森研究了所谓的近藤(Kondo)效应,这个效应涉及磁杂质对极低能自由电子的畸形散射,并对低温状态的情况给出了初步定性解答。这是重正化技术对固体和统计力学问题最早的应用之一。 50年代初,科学家开始研究不同领域的磁共振谱学中的谱线形状和宽度问题。布隆姆贝根、珀塞尔和庞德(Pound)对核共振、范弗莱克对电子共振提出了许多有用的概念,但从观测到的谱线进一步理解原子运动和相互作用,尚需有定量的数学表述。从这一观点看,铁磁共振是一个空白。P.W.安德森对此提供了一种数学上的方法,来处理“交换变窄”和“运动变窄”等问题,并把这些问题与原子运动和交换联系在一起。他还对相互作用和机制进行了许多研究。在铁磁共振方面,他和苏尔(H.Suhl)等人合作,首先提出了杂质增宽和自旋波激发等概念,使这个领域得以澄清。当解释超导电性的BCS理论在1957年刚刚提出时,基本原理问题还存在。P.W.安德森是最早解释这些问题并将巴丁、库珀和施里弗的方法普遍化中的一位。

YJK多塔结构计算

多塔结构计算 对于多塔结构,之前因为计算容量所限,常常只能把它拆分成一个个独立的单塔计算,不能进行合塔整体模型的计算,这种计算方式不能满足规范对多塔结构的设计要求。 一、规范关于多塔结构计算的相关规定 《高规》5.1.14 条:“对多塔楼结构,宜按整体模型和各塔楼分开的模型分别计算,并采用较不利的结果进行结构设计。当塔楼的裙房结构超过两跨时,分塔楼模型宜至少附带两跨的裙房结构。” 《广高规》11.6.3-4条:“大底盘多塔结构,宜按整体模型和各塔楼分开的模型分别计算,整体建模主要计算多塔楼对大底盘部分的影响,分塔楼计算主要验算各塔楼扭转位移比。” 二、多塔定义的必要性 对于合塔的整体模型,是否一定要进行多塔划分才能进行计算呢? 多塔结构的各个塔在结构上互相分开,即便不在前处理定义为多塔结构,结构有限元计算是完全按照实际各塔分离的模型计算的,仅从周期、位移、恒活内力等方面,是否定义多塔其结果是相同的。但是从规范要求的指标计算、风荷载计算等方面要求是需要定义多塔结构的。 多塔定义就把多塔结构的分开的部分明确划分出一个个塔,并顺序编号,在计算与设计时将区分各塔的属性特征进行。 多塔结构在整体计算时,必须首先进行多塔定义的操作。这是因为,对于多塔结构风荷载的自动计算、分塔考虑地震作用的偶然偏心等都必须在多塔定义后才能正确进行。另外,各种计算统计指标是需要按照分塔输出的。 当各塔楼是在同一层中布置的,即共用标准层建模方式建立的多塔结构时,多塔不划分与划分的差别主要有: 1、风荷载 不划分多塔时把全层范围当做迎风面计算风荷载计算。软件把两个塔中间的分离空间也当做了迎风面,造成风荷载计算偏大;但是当两个塔排列的方向和风荷载相同时,只能计算其中一个塔的迎风面,又造成计算的风力偏小。 划分多塔后各塔分别作为迎风面计算风荷载。另外,有伸缩缝结构需要作风荷载的遮挡计算,遮挡计算只有在多塔划分后才能进行。 2、强制刚性板假定下的处理不同 如果不做多塔划分,则同一层中的多个塔楼被按照同一个刚性板计算;如果进行了多塔划分,则对各个塔楼分别采用刚性楼板假定计算。 3、地震力偶然偏心的计算,划分后软件分别对各分塔做偶然偏心计算 4、层统计参数的分塔分层输出,定义多塔以后,分塔分层输出的层统计参数有: (1)位移比和位移角; (2)剪重比; (3)刚重比; (4)层刚度比; (5)楼层抗剪承载力比; (6)塔楼为框剪结构时,框架部分柱剪力、框架柱部分的倾覆弯矩所占比例(依据该输出结果按《抗震规范》6.1.3条第1款确定框架部分的抗震等级);

电感理论与计算

一、电感器的定义 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L

我国多塔大底盘建筑的结构设计

试析我国多塔大底盘建筑的结构设计摘要:高层建筑是随着经济的发展和建筑用地要求应运而生的,考虑到实用性和安全角度,多塔大底盘建筑结构成为了主要的建筑方向,简单来说是大底盘框支剪力墙结构。满足了最大限度的合理用地要求,但在防震、安全系数角度存有缺陷。本文就结构设计中的因素进行探讨。 关键词:高层建筑;多塔结构;结构设计 abstract: high-rise building is with the development of economy and construction land demand emerge as the times require, considering the practicality and safety point of view, with big chassis structure has become the major direction of the building, it is the large chassis frame supported shear wall structure. this paper discussed the factors in the structure design. key words: high-rise building; multi-tower structure; structure design中图分类号:tu318文献标识码: a 文章编号:2095-2104(2012)03-0020-02 经济的发展是我国近年来最显著的时代特征,随之而来就是房地产行业的大热,建筑用地面积的缩小,要求通过楼层高度提升实现更大的经济效益。高层建筑设计要求建筑师在考虑性能和外观的之上,更加注意安全性能。多塔楼大底盘的建筑结构又称为多塔结构,在现今的住宅区中频繁涌现,并且出现了塔楼层数升高、地盘面积增大的趋势。出现的原因在于:作为住宅配套的社区设置,地

CeCuGa3电子结构的第一性原理计算研究

CeCuGa3电子结构的第一性原理计算研究 【摘要】我们采用基于密度泛函理论的第一性原理方法计算研究了CeCuGa3材料的电子结构。我们计算确定了其基态磁结构,解释了其形成的原因。 【关键词】稀土金属Ce化合物磁结构费米面电子结构 1 引言 稀土金属Ce化合物由于具有重费米子行为,不同类型的磁有序等独特的物理性质而引起了科学研究的极大兴趣。其中晶体结构为BaAl4的CeCuxGa4-x化合物最为代表。最早报道CeCuGa3在3.5K温度下,其基态为铁磁态[1]。另外Mentink 等人报道直到温度低到0.4K,CeCuGa3基态为顺磁态[2]。而Martin等人通过对多晶CeCuGa3样品的研究,发现材料显示近藤晶格行为并且基态为反铁磁态[3]。最近,Joshi等人再次通过实验对单晶CeCuGa3样品进行了晶体结构和磁学性质的研究,发现材料为4K以下的铁磁态[4]。面对以上对于样品CeCuGa3相互矛盾的磁基态的报道,本文就采用基于密度泛函理论的vasp软件包对该材料的电子结构和磁学性质进行了计算并讨论了其磁基态性质。 2 模型构建和计算方法 CeCuGa3晶体属于四方晶系结构,实验报道空间群为I4/mmm,No.139,如图1所示。 晶格常数a=b=4.273,c=10.44,α=β=γ=90°。本文计算采用基于密度泛函理论(density functional theory,DFT)的V ASP(Vienna ab-initio simulation package)软件包进行计算。计算步骤可以概括为三步:(1)对晶胞模型内部原子位置进行结构优化;(2)对材料进行磁构型计算,确定材料磁性基态。(3)用广义梯度近似法(generalized gradient approximation,GGA)对优化后的理论模型进行单电子能量计算,对单电子能量计算结果进行总态密度(total density of states,TDOS)和分波态密度(partial density of states,PDOS)分析。计算中平面波截断能取250eV,布里渊区积分采用5×5×5的Monkorst-Pack方案,内部原子作用力弛豫到低于0.01eV/,体系总能量收敛于1×10-4eV/atom。 3 结果与讨论 3.1 体系优化 在理论模型计算中,我们采用了文献[4]中的晶格常数即a=b= 4.273,c=10.44,α=β=γ=90°,然后进行原子内部坐标的弛豫。在表1中我们列出了不等价原子坐标的弛豫结果。

YJK对多塔结构自动进行整体和各分塔分别计算并取大值的过程

YJK对多塔结构自动进行整体和各分塔分别计算并取大值的过程 《高规》5.1.14条规定:“对多塔楼结构,宜按整体模型和各塔楼分开的模型分别计算,并采用较不利的结果进行结构设计。” 我们将各塔楼离散开、分别计算称之为“分塔模型”计算。将各个塔楼连同底盘建模成一个整体模型计算称之为“整体模型”计算。这两种计算方式都要采用,缺一不可,因为分塔模型与整体模型有着不同的计算目标或内容,且它们之间互相补充。 对于各个塔的周期比、位移比、剪重比、层间刚度比、层抗剪承载力比等采用分塔模型计算的结果; 对于处于底盘的地下室、裙房部分应采用整体模型的计算结果; 对于各个塔楼的构件配筋设计,应采用整体模型和分塔模型两者中较大的结果进行设计。 一、程序自动进行整体计算和分塔计算 用户可将全部多塔连在一起整体建模,程序可自动实现按整体模型和各塔楼分开的模型分别计算,并采用较不利的结果进行结构设计。程序可对其中的每个塔按照规范的要求自动切分成单个塔,然后连续地分别进行各塔的单塔计算和全部多塔连在一起的整体计算,最终对各个单塔配筋设计时采用整体计算和个单塔计算的较大值。 具体操作步骤如下: 1、在计算参数中作如下选择 选择自动划分多塔,划分多塔即定义多塔,这是分塔计算的前提。 选择自动划分多塔后应继续填写参数“自动划分多塔的起算层号”。程序隐含取裙房或者地下室的上一层为自动划分多塔的起算层号,该层号可由用户修改。程序以该层自动划分的塔数作为该结构最终划分的塔数。如果该层以上的某层中又出现了某个塔分离成多个塔的情况,程序仍将这些分离部分当做一个塔来对待。 选择“各分塔与整体分别计算,配筋取各分塔与整体计算结果较大值”。这样程序将进行各个塔的离散化处理,程序可对其中的每个塔按照规范的要求自动切分成单个塔,每个分塔各包含底部模型,切分底部模型的范围是塔下45度范围。 图4.7.2 分塔与整体分别计算选项 如果不选择该项,则程序只进行整体模型的计算,不作各塔的拆分,也不做各分塔的分别计算。 2、在计算简图菜单下查看各个分拆的塔模型 如果在计算参数中选择了“各分塔与整体分别计算,配筋取各分塔与整体计算结果较大值”,则在生成计算数据后,可在计算简图菜单下点取“自动分塔示意”,查看各个自动分拆后的单塔模型。 选择菜单中的某个塔号,软件在多塔的三维线框模型中将加亮该塔,其余部分用暗线

某大底盘裙房地下室多塔结构设计体会

某大底盘裙房地下室多塔结构设计体会 邬险峰 (中国煤炭科工集团重庆设计研究院重庆400016) 【摘要】带裙房及地下室大底盘多塔结构设计中,主要注意计算模型的选择和计算程序参数定义和多塔定义,并且对计算输出结果需要认真分析和比较。本文 以某多塔大底盘结构设计为实例,通过整体计算及分塔计算结果的数据比较,提 出了大底盘多塔结构设计方法及注意事项。 【关键词】多塔结构大底盘裙房地下室 中图分类号:TU318文献标识码:A文章编号: 大底盘裙房及地下室主要用于商业用房和地下停车库,多塔高层主要用于住宅或办公用房。该建筑形式已越被来越多的建筑方案设计者采用。但其结构形式应属于复杂高层,在设计上应引起一定的重视。本文将以某大底盘多塔结构住宅小区对结构设计中的应注意问题作以分析和探讨。 本工程位于重庆市北碚区,抗震设防烈度为6度,设计基本地震加速度为0.05g,场地类别为II类,由大底盘地下室、局部裙房及7栋单体小高层组成,整体结构计算模型中共有13层结构层,地下室及裙房为框架结构,上部住宅结构形剪力墙结构,整体属于复杂高层结构体系,在SATWE总信息结构体系中必须选择复杂高层结构,对多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%(有效质量系数)②。 一、地下室及裙房的结构设计 大底盘地下室作为上部多塔的结合部,将上部结构与地下室作为一个整体考虑,地下室顶部覆土1.8米,地下室层高4.8米,在计算中采用了弹簧刚度法。因地下室上一层的侧向刚度有剧烈变化,上部结构突然收进,属于竖向不规则结构,塔楼与地下室结合部位为结构薄弱部位,应加强抗震构造措施。且对地下室顶板的厚度及配筋均应加厚加强(本工程顶板厚度取值160mm),板钢筋双层双向拉通,对车库坡道入口等大开洞边楼板应进行弹性板定义计算。

结构工程师如何正确处理经验与理论计算

结构工程师如何处理经验与理论计算 ——《结构设计笔记》周献详 本文由娄广龙整理 据说毛泽东曾跟赵朴初开玩笑说:“佛经里有些语言很奇怪,佛说第一波罗蜜,即非第一波罗蜜,是名第一波罗蜜。佛说赵朴初,即非赵朴初,是名赵朴初。看来你们佛教还真有些辩证法的味道。”“佛说”、“即非”、“是名”就是《全刚经》的主题,整部《金刚经》反复讲述的就是这一主题,在《金刚经》的最后,佛说了一首偈子:“一切有为法,如梦幻泡影,如露亦如电,应作如是观。”结构计算结果、规范给出的限值不至于是“如梦幻泡影,如露亦电”,然而,根据目前的技术水平,虽然计算手段已经很先进,可以精确到小数点后几十位,但结构计算结果只是名义上的结果,与实际情况在绝大多数情况下不一致,结构计算结果的名义效应是客观存在的。“如果事物的表现形式和事物的本质直接合而为一,一切科学就成为多余的了。”(《马克思恩格斯全集》,第38卷,第13页)。本章分析理论与实际之间的差异性,其目的不仅仅在于阐述差异性本身,而在于讨论对这类差异所持的态度。作者主张对这类差异应持以下态度: (1)我们要尊重计算结果,并学会千方百计地利用现有的理 论成果进行合理的计算。因为现今的计算理论是人类长期的工程建设经验、理论分析成果和试验结论的综合反映,是人类智慧的结晶。黑格尔说过:“当一种哲学被推翻的时候,其中的原则并没有失去,失去的只是这种原则的绝对性和至上性”。我们所反对的只是将理论

计算结果和规范条文视为一条不可逾越鸿沟的这种绝对性和至上性,而在大多数情况下,按照理论计算结果和规范条文的要求进行设计,至少在目前仍然是一种正确而明智的选择。 (2)我们要学会分析计算结果的可靠性和准确性,尤其要充分理解计算结果只是相对真理性。不要以为计算结果即是真理,不能有丝毫的放松和变通余地,如果是这样的话,结构的安全性隐患就是一个普遍的问题了,因为结构实际情况与计算假定之间或多或少总存在这样那样的差别。结构体系能够历经风、雨、地震等各种自然的作用,以及人为使用荷载的各种变化的考验,至少说明结构体系是具有一定抵抗意外作用能力的,绝不至于像宋玉东家之子那样“增之一分则太长,减之一分则太短;著粉则太白,施朱则太赤”(宋玉,《登徒子好色赋》)娇惯和精细。 (3)我们要重视概念设计。亚里士多德说:“一切皆混,唯有理性独净不混。”([古希腊]亚里士多德,《形而上学》,商务印书馆,1991年版,第21员)既然理论计算目前还不完善,那么建立在人们理性基础上的概念分析和判断就不可或缺,尤其是在一体化计算程序非常普及的今天更应强调概念设计的重要性。概念设计不是凭空产生的,容柏生在一次讲座中指出,概念设计的主要依据和来源有:①深刻理解各种结构的工作原理和力学性质;②熟悉各类结构的设计原则;③掌握各种计算机程序的适用范围、力学模型、处理原则和开关使用等; ④丰富的工程经验,包括积累的直接经验和间接吸收的间接经验。通过概念设计可以做到:①保证正确的设计方向,即方向要对头;②符

“多塔结构”与“分缝结构”的区别

(2)多塔结构的定义:对与大底盘多塔结构、巨型框架结构,如果把裙房部分按塔的形式切开计算,则裙房部分误差较大,且各塔的相互影响无法考虑。因此,程序采用了分块平面内无限刚的假定以减少自由度,且同时考虑塔与塔的相互影响。对于多塔结构,各刚性楼板的信息程序自动定义。但其包含区域需由用户定义。 (3)分缝结构:在一个大的建筑体部里,因设伸缩缝、沉降缝、抗震缝,分成了若干小的建筑体部,叫分缝结构。分缝结构与多塔结构区别是四边中有的边不是迎风面。 (4)对分缝结构各块要分开计算。 (5)多塔结构新规范条文注意事项:第一扭转周期与第一平动周期的比值限值、最大位移平动位移的比值限值,对多塔结构特别注意,目前程序是不对的,不能直接采用,必须将多塔结构分搭计算,方可判断两者的比值。 多塔结构的计算 (一)带变形缝结构的计算 ⑴带变形缝结构的特点: ①通过变形缝将结构分成几块独立的结构。 ②若忽略基础变形的影响,各单元之间完全独立。 ③缝隙面不是迎风面。 ⑵计算方法: ①整体计算的注意事项: a)在SATWE软件中将结构定义为多塔结构; b)所给振型数要足够多,以保证有效质量系数>90%; c)定义为多塔后,对于老版本软件,程序将对每一个缝隙面都计算迎风面,因此风荷载计算偏大;新版本软件增加了一项新的功能。即可以人为定义遮挡面。从而有效地解决了这一问题。 d)周期比计算有待商讨。 ②分开计算的注意事项: a)旧版软件除风荷载计算有些偏大外,其余结果都没问题,新版软件定义遮挡面后,风荷载计算也没有问题了。 b)一般而言,对于基础连在一起的带变形缝结构,由于基础对上部结构整体的协调能力

有限,所以建议采用分开计算。 (二)大底盘多塔结构的计算 ⑴大底盘多塔结构的特点: ①各塔楼拥有独立的迎风面。 ②各塔楼之间的变形没有直接影响,但都通过大底盘间接影响其他塔楼。 ③塔楼与刚性板之间没有—一对应关系,一个塔楼可能只有一块刚性板,也可能有几块刚性板。 ④大底盘顶板应有足够的刚度以协调各塔楼之间的内力、变形和位移。 ⑵计算方法: ①在SATWE软件中将结构定义为多塔结构;②位移比、大底盘以上的各塔楼的刚度比均正确;③周期比、转换部位的刚度比计算有待商讨。 ⑶大底盘多塔结构刚度比的计算方法:大底盘多塔结构在大底盘与各主体之间的刚度比如何计算规范并没有说明,但也没有说不要求。SATWE软件仅仅输出1号塔的主体与大底盘相比较的结果,其它塔与大底盘相比的结果则用“*”号表示。 ①大底盘多塔结构刚度比的整体计算:根据龚思礼先生主编的《建筑抗震设计手册》提供的方法:要求在计算大底盘多塔结构的地下室楼层剪切刚度比时,大底盘地下室的整体刚度与所有塔楼的总体刚度比不应小于2,每栋塔楼范围内的地下室剪切刚度与相邻上部塔楼的剪切刚度比不宜小于. ②大底盘多塔结构刚度比的分开计算: a)根据《上海规程》第条中条文说明中建议的方法:如遇到较大面积地下室而上部塔楼面积较小的情况,在计算地下室相对刚度时,只能考虑塔楼及其周围的抗侧力构件的贡献,塔楼周围的范围可以在两个水平方向分别取地下室层高的2倍左右。 b)在各塔楼周边引 45度线,45度线范围内的竖向构件作为与上部结构共同作用的构件。

电子结构计算方法概述

第二章电子结构计算方法概述 物体所表现的宏观特性都由物体内部的微观结构决定,块状材料在力学、热学、电学、磁学和光学等方面的许多基本性质,如振动谱、电导率、热导率、磁有序、光学介电函数、超导等都由电子结构决定1。因此,定量、精确地计算材料的电子结构在解释实验现象、预测材料性能、指导材料设计等方面都具有非常重要的意义和作用,也是一个富有挑战性的课题。 2.1 第一性原理计算方法概述 2.1.1 基本概念 与其它理论计算方法类似,电子结构的计算方法大体上也可划分为两类:半经验(或经验)计算方法与第一性原理(First-Principles)计算方法(也有“从头算(ab initio)”这个叫法)。前者是指在总结归纳某些实验现象与结果的基础上建立起相应的理论模型、计算公式与参数,然后推广应用到研究其它现象和性质的理论方法;后者则指 、电子电量e、普朗仅需采用5个基本物理常数,即电子的静止质量m 克(Plank)常数h、光速c和玻尔兹曼(Boltzmann)常数k B,而不需要其它任何或经验或拟合的可调参数,就可以应用量子力学原理(Schr?dinger方程)计算出体系的总能量、电子结构等的理论方法2。在计算过程中,它只需知道构成体系的各个元素与所需要模拟的环境(如几何结构),因此有着半经验方法不可比拟的优势。

量子力学是20世纪最伟大的发现之一,它构成了整个现代物理学(甚至现代化学)的基石,其矩阵力学形式最先由海森堡(W. K. Heisenberg)于1925年创立。但量子力学最流行的表述形式却是薛定谔(Schr?dinger)于次年建立的与矩阵力学形式等价的波动力学形式,它的核心是粒子的波函数及其运动方程——薛定谔方程。对一个给定的系统,我们可能得到的所有信息都包含在系统的波函数当中。因此,第一性原理计算方法的基本思路就是将多个原子构成的体系理解为由电子和原子核组成的多粒子系统,然后求解这个多粒子系统的薛定谔方程组,获得描述体系状态的波函数Φ以及对应的本征能量——有了这两项结果,从理论上讲就可以推导出系统的所有性质2。 原则上,任何材料的结构和性能都能依照上述基本思路、通过第一性原理计算得到;但实际上,除个别极简单的情况(如氢分子)外,物体中电子和核的数目通常达到1024 /cm3的数量级,再加上如此多的粒子之间难以描述的相互作用,使得需要求解的薛定谔方程不但数目众多,而且形式复杂,即使利用最发达的计算机也无法求解。这正如量子力学的奠基者之一——狄拉克(Dirac)在1929年所说:“量子力学的普遍理论业已完成……作为大部分物理学和全部化学之基础的物理定律业已完全知晓,而困难仅在于将这些定律确切应用时将导致方程式过于复杂而难于求解。”3因此Kohn认为,当系统的电子数目大于103时,薛定谔方程式的直接求解将是个不科学的课题,人们必须针对材料的特点作合理的简化和近似3。

相关文档
最新文档