n阶行列式的计算方法

n阶行列式的计算方法
n阶行列式的计算方法

目录

摘要 (1)

关键词 (1)

Abstract (1)

Key words (1)

引言 (1)

1定义法 (1)

2利用行列式的性质 (23)

化三角形行列式 (3)

4行列式按一行(列)展开 (4)

5 升阶法 (5)

6 递推法 (6)

7 范德蒙德行列式 (7)

8 拉普拉斯定理 (7)

9 析因法 (8)

小结 (10)

参考文献 (11)

n阶行列式的计算方法

学生姓名:孙中文学号:20120401217

数学与计算机科学系数学与应用数学专业

指导老师:王改霞职称:讲师

摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征.

关键词:行列式;定义;计算方法

Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method.

Keywords: Determinant ;Definition ;Calculation method

引言

行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法.

1定义法

n阶行列式计算的定义:

n D =

nn

n n n n a a a a a a a a a

212222111211

=∑-n

n n j j j nj j j j j j a a a 21212121)

()1(τ

在这里

n

j j j ...21表示对所有n 级排列求和.n j j j 21是,, 3,2,1n 的一个排列,当

n j j j 21是偶排列时,()()n j j j 211-((τ是正号;当n j j j 21是奇排列时,()()

n

j j j 211-((τ是负号.n nj j j a a a 2121是D 中取自不同行不同列的n 个元素的乘积. 例1计算行列式

004003002001000

这是一个四级行列式,在展开式中应该有4!=24项.但是由于出现很多的零,所以不等于零的项数就大大减少了.展开式中项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只需考虑41=j 的那些项;同理,只需考虑1,2,3432===j j j 这些列指标的项.这就是说,行列式中不为零

的项只有41322314a a a a 这一项,而()64321

=τ,这一项前面的符号应该是正的.所以 2443210

004

00300

2001000

=???= 2利用行列式的性质

总结行列式的性质,可分为以下四类

(1)使行列式的值不变的有两条性质:行列式的行与列互换;把一行的倍数加到另一行上.

(2)使行列式的值为零的有三条性质:两行对应的元素相同; 行列式中有一行为零;两行成比例;

(3)使行列式的值反号的有一条性质:把行列式中两行的位置互换. (4)其他性质:某行的公因子可以提取到行列式符号外; 这些性质和行列式的计算定义构成了行列式计算的基本构架 例2计算下面n 阶行列式的值

n

n n n n

n n b a b a b a b a b a b a b a b a b a D +++++++++=

212221

21211

1

解当n =1时111b a D +=. 当n =2时,()()12212

2122

11

12b b a a b a b a b a b a D --=++++=

.

当3≥n 时,01

111

212121211

1=------+++=

a a a a a a a a a a a a

b a b a b a D n n n n

n

3化三角形行列式

化三角形行列式关键在于如何把行列式转化为上(下)三角形行列式,在这里我们引入行阶梯型矩阵的定义,有了矩阵这一工具转换变得很简单.矩阵和行列式是相辅相成的但是又是两种不同的概念.

(1)三角行列式的值与其对角线上元素的乘积相等.

nn nn

n n nn

n

n a a a a a a a a a a a a a a a

221121

22211122211211

==

(2)同理,次三角行列式的值等于添加适当的正、负号的次对角线元素的乘积.

()

()

11,212

11

,121,211

1,22111,1111n n n n n nn

n n n n

n n

n n n

n a a a a a a a a a a a a a a a

-------==

例3计算下面n +1阶行列式的值

n

a a a a D

1

001

011

11210

1n =+,其中()n i a i ,,2,10 =≠

解∏∑∑

===+????

??-=-=

n

j n

i i j n

n

i i

n a a a a a a a a D 1102

1

10111

111

4 行列式按一行(列)展开

在使用这一计算方法时要引入余子式和代数余子式的概念.

在n 阶行列式中,把元素ij a 所在的第i 行与第j 列去掉,然后将剩下的()21+n 个元素按照之前的排列方法构成1-n 级的行列式

nn

j n j n n n

i j i j i i n i j i j i i n j j a a a a a a a a a a a a a a a a

1

,1

,1

,11,11

-,11,1,11,1-1-,1-1,1-11,11,111+-+++++-++-—

称为元素ij a 的余子式,记为ij M .当()ij j

i ij M A +-=1时,称ij A 为元素ij a 代数余子式. 只有这两个概念是不够的,还要了解下面这条行列式的值的定理:行列式的值等于它的某一行(列)的各元素与其对应的代数余子式乘积之和,即

()

,,2,122111111n i A a A a A a a a a a D in in i i i i nn

n n

=+++==

()

,,,2,12211n j A a A a A a nj nj nj j j j j =+++=

例4 计算下面行列式

5

320041-4-00132-025271021-35 解0

5

3200

41-4-00132-02

5271021-35()5

320

4

1-4-01

32-0

2

1-3521-52+=5

3241-4-1

32-52-?=

6

60

27-0

1

32-10-=()()

6

6

2

7-2-10-?=

()1080-12-42-20=?=

这里第一步是按第5列展开,然后再按第一列展开,这样就归结到一个三级行列式的计算. 5 升阶法

某些行列式直接计算比较麻烦,这时将原行列式增加一行(例),并确保在增加的基础上仍能保持原行列式的值不变,此时此行列式的计算便变得十分简便.这种计算行列式的方法叫做升阶法也叫加边法.

例5证明

????

?

?+=++++∑=n

i i n n

a a a a a a a a 12132111111

1

1

1111111

111

11111

证明将左边的行列式加一行一列,得1+n 级行列式

左边n

n a a a a ++++=

-11

1

1

1111011110

111

1011111

121

n

n a a a a 0

100010001000

1111111

21

----=-

????

??+=+=

∑∑==n

i i n

n

i i a a a a a a a 121211110

00000

11111

加边后的行列式的值不一定等于原行列式的值,不过两者之间存在一个关系.例如原行列式n D ,n D 行列式的值直接不容易求解,但很容易得到加边后的行列式1+n D 的值,两者之间存在C BD AD n n =++1的关系,我们可以根据这个关系求出行列式n D 的值.这个方法也是适用于升阶法的. 6 递推法

递推法计算行列式是将已知行列式按行(列)展开成较低阶的同类型行列式(注:同类型行列式是指阶数不同但结构相同的行列式),找出n D 与1-n D 或n D 与

1-n D 、2-n D (其中n D 、1-n D 、2-n D 的结构相同)的递推关系,然后利用这个关系得到行列式的值.

例6 计算β

ααββαβααββ

ααβ

β

α+++++=

1000

0000010001000

n D

解()β

αβααβ

β

ααβαββα+++-+=-10

00

10

00

0000

111

n r n D D 展开

()21---+=n n D D αββα

所以()()[]()12232211D D D D D D D D n n n n n n n αβαββαβα-==-=-=-------

n β=

()

21-n 1--++=+=n n n n n D D D αβαβαβ

()βαβ

αβααβαβααββ≠--=

+++++=++---1

11221n n n

n n n n

当βα=时,()n n n D α1+= 7范德蒙德行列式

范德蒙德行列式计算公式:()∏≤<≤----=n

i j j i

n n

n n n n a a

a a a a a a a a a 11

12112

222

121

111

例7计算

4

3

2

1

4

321432143cos 3cos 3cos 3cos 2cos 2cos 2cos 2cos cos cos cos cos 1111

a a a a a a a a a a a a D =

4

43333223113423222124

3

2

1

4cos 3cos 4cos 3cos 4cos 3cos 4cos 3cos 41

cos 21

cos 21cos 21

cos 2cos cos cos cos 1111

a a a a a a a a a a a a a a a a D --------=

81

3243r r r r ++=()∏≤≤≤-=414

33

32

31

342322

2124

32

1cos cos 8cos cos cos cos cos cos cos cos cos cos cos cos 1

1

1

1

i j j i a a a a a a a a a a a a a a

如果一个行列式的结构符合范德蒙德行列式的结构形式,那么此时我们便可使用此种方法.但在做题中往往会遇到一些行列式它的结构类似于范德蒙德行列式的结构,但并不符合范德蒙德行列式结构的.这通常是一个计算方法的误区.还有一些行列式看起来不符合,但经过一番变形之后便可看出是范德蒙德行列式.所以在做题过程中要注意观察. 8 拉普拉斯定理

拉普拉斯定理:设在行列式D 中任意取定了()11-≤≤n k k 个行.将行列式中这k 行元素所构成的所有k 级子式加上它们的代数余子式的乘积等于行列式D .

这个定理可以看成是行列式按一行展开公式的推广, 拉普拉斯的四种特殊形式: (1)

mm

nn mm

mn

nn B A B C A ?=0(2)

mm nn mm

nm nn B A B C A ?=0

(3)

()mm nn mn

mn

mm

nn B A C B A ?-=10(4)

()mm nn mn

mm

nn nm B A B A C ?-=10

例8计算n 阶行列式:

α

βββββαββββαααααλ

b

b b D n =

解β

ααα

ββ

ββαα

ααα

α

λ

---=

00

000b D n

()()β

αβαβ

αβ

β

ββ

αααααλ

----+-=

0000000021n b n

()()()()

222

20

000021-?-?---?

-+-=

n n n b

n βαβαβ

αβαα

λ

()()[]()

2

12--?---+=n n ab n βαβλλα

9 析因法

利用多项式函数、多项式根的性质、定理等来计算行列式,这种方法就称为析因法.如果行列式D 中有一些元素是变数x (或某个参变数)的多项式,那么

可以将行列式D 当做一个多项式()x f ,然后对行列式施行某些变换,求出()x f 的互素的一次因式,使得()x f 与这些因式的乘积()x g 只相差一个常数因子C ,根据多项式相等的定义,比较()x f 与()x g 的某一项的系数,求出C 的值,便可求得()x Cg D =.

例9 用析因法求解如下:

解令()a

x a a a a

a a x a

a a a a

x x f ---=

显然()()()02,02=--=a n f a f (各列之和为0),故()a n x a x 2,2-+-是()x f 的一次因式.

又=dx x df )(a x a a a a a a a x a x a a a a a a x a

--+

--

0100001

11111

000

----=+++=--+

+n n n n nD D D D a

a a x a

a a a a x

同理可得

()()()()(),,33

322221,1 ----=-=n n D n n n dx x f d D n n dx x f d ()(),3122

2D n n dx

x f d n n -=-- ()()()111

1!221D n D n n n dx

x f d n n =--=--

因此()()()(),02222===''='-a f a f a f n 而()()a n a f n !21=-. 即a 2是()x f 的1-n 重根,又因()x f 是x 的n 次多项式,

从而()()()[]a n x a x c x f n 221-+-=-,其中c 是待定系数,由行列式()x f 可以看出

n x 的系数为1,故1=c .

()

()[]a n x a x D n n 221

-+-=-

析因法有时也叫线性因子分离法.

小结

以上是n 阶行列式的几种计算方法,在实际运用中不同的n 阶行列式有不一样的求法,因此在解题之前要先判断好行列式的类型,在采用相对应的解题思路.

另外虽然n 阶行列式的计算有一定的规律,但也不能生搬硬套,要学会灵活应用,某些题有多种解题方法我们要采用最简单的思路.只有在做题中多总结、归纳才能熟练掌握、运用这几种方法.

参考文献

[1]北京大学数学系几何与代数研究室代数小组编.高等代数(第三版).[M]. 高等教育出版社,2003.

[2]徐仲,陆全主编.高等代数导数·导学·(北大·第三版).[M].西北工业大学出版社,2006.

[3]苑文法,n阶行列式的计算.[N].湖北三峡学院学报,1999.

[4]李师正主编,高等代数解题方法与技巧.[M].高等教育出版社,2004.

[5]陈林,求n阶行列式的几种计算方法与技巧.[N].SCIENCE INFORMATIA,2007

[6]陈黎钦,关于求解行列式的n种特殊的方法.[J].福建商业高等专科学校学报,2007.

[7]史昱,关于行列式计算方法的讨论.[J].山东电力高等专科学校学报,2006.

[8]田文平,行列式计算的常用方法.[J].工科数学,1994.

[9]牛静,抽象行列式的几种计算方法.[N].科技咨询导报,2006.

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

(完整版)行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100200 1000000n D n n =-L L M M M M L L 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=L . 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=L 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==L 故行列式D n 可表示为1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=-----L L L L L L L L L ,由行列式的性质A A '=,1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=-L L L L L L L L L 12131122321323312300(1)00 n n n n n n n a a a a a a a a a a a a -=------L L L L L L L L L (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

(完整版)三阶行列式的计算

三阶行列式 称左式的左边为三阶行列式,右边的式子为三阶行列式的展开式。 目录 1 基本概念 2 计算方法 1 基本概念 2 计算方法 1 基本概念 对于三元线性方程组,如上图利用加减消元法,为了容易记住其求解公式,但要记住这个求解公式是很困难的,因此引入三阶行列式的概念。 记称上式的左边为三阶行列式,右边的式子为三阶行列式的展开式。 2 计算方法 标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的三个对角线上的数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。 例如 a1 a2 a3 b1 b2 b3 c1 c2 c3 结果为a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1(注意对角线就容易记住了)这里一共是六项相加减,整理下可以这么记: a1(b2·c3-b3·c2) + a2(b3·c1-b1·c3) + a3(b1·c2-b2·c1) 此时可以记住为: a1*a1的代数余子式+a2*a2的代数余子式+a3*+a3的代数余子式 某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。 行列式的每一项要求:不同行不同列的数字相乘 如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在b2 b3 中找) c2 c3 而a1(b2·c3-b3·c2)+a2(b1·c3-b3·c1)+a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它每行的每一个数乘以它的代数余子式之和某个数的代数余子式是指删去那个数所在的行和列后剩下的行列式。

计算N阶行列式若干方法

网上搜集的计算行列式方法总结, 还算可以. 计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100200 10 000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足

,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即 0,1,2, ,ii a i n == 故行列式D n 可表示为 1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a =

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

浅谈行列式的计算方法x

浅 一、 特殊行列式法 1.定义法 当行列式中含零元较多时,定义法可行. 例1 计算n 级行列式 α β βαβαβα000000 0000 00 =D . 解:按定义,易见121,2,,,n j j j n === 或 1212,3,,,1n n j j j n j -==== . 得 11(1)n n n D αβ-+=+- 2.三角形行列式法 利用行列式性质,把行列式化成三角形行列式. nn a a a a a a 000n 222n 11211=nn n n a a a a a a 212212110 0112233nn a a a a = 例2 计算n 级行列式1231 131 211 2 3 1 n n x n D x n x +=++ 解: 将n D 的第(2,3,,)i i n = 行减去第一行化为三角形行列式,则 1230 1000 0200 1 (1)(2)(1) n n x D x x n x x x n -=--+=---+

3.爪形行列式法 例3 计算行列式 0121 1 220 0000n n n a b b b c a D c a c a = ()0,1,2,,i a i n ≠= 解: 将D 的第i +1列乘以(i i a c - )都加到第1列()n i ,2,1=,得 10 12 120000000 00n i i n i i n bc a b b b a a D a a - =∑= =011()n n i i i i i i b c a a a ==-∑∏ 4. 范德蒙行列式法 1 2 3 2 2221 2 3 11111 2 3 1111n n n n n n n a a a a D a a a a a a a a ----= 1()i j j i n a a ≤<≤= -∏ 例4 计算n 级行列式 2 2221233 333 1 2 3 12 3 11 1 1 n n n n n n n x x x x D x x x x x x x x = 解:利用D 构造一个1n +阶范德蒙行列式 12222 212121111()n n n n n n n x x x x g x x x x x x x x x = 多项式()g x 中x 的系数为3(1)n D +-,而()g x 又是一个范德蒙行列式,即 1 ()() n i i g x x x ==-∏∏≤<≤-n i j j i x x 1)(

最新几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 1112121 22 212 n n n n nn a a a a a a a a a 等于所有取自不同行不同列的个n 元素的乘积12 12n j j nj a a a (1)的代数和,这里12 n j j j 是 1,2, ,n 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j 是偶排列时,(1)带正号,当 12n j j j 是奇排列时,(1)带有负号.这一定义可写成 () () 121212 1112121 22 21212 1n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里 12 n j j j ∑ 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7 交换两行(列)的位置,行列式的值变号.

2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()1 2323111100 1 0001 n n n a a D a a a a a =≠. 解 将第一列减去第二列的 21a 倍,第三列的3 1a 倍第n 列的 1 n a 倍,得 1 223 111110 000 000 n n n a a a a D a a ?? -- - ?? ? = 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b c =时可以化为上面列举的爪形来计算,当b c ≠时则用拆行(列)法[9]来计算. 例2 计算行列式

n阶行列式的计算方法

n阶行列式的计算方法 姓名: 学号: 学院: 专业: 指导老师: 完成时间:

n阶行列式的计算方法 【摘要】 本文主要针对行列式的特点,应用行列式的性质,提供了几种计算行列式的常用方法。例如:利用行列式定义直接计算法,根据行列式性质化为三角形列式法,按一行(列)展开以及利用已知公式法,数学归纳法与递推法,加边法,利用多项式性质法,拉普拉斯定理的应用。但这几种方法之间不是相互独立,而是相互联系的.一个行列式可能有几种解法,或者在同一个行列式的计算中将同时用到几种方法以简便计算。这就要求我们在掌握了行列式的解法之后,灵活运用,找到一种最简便的方法,使复杂问题简单化。 【关键词】 n阶行列式行列式的性质数学归纳法递推法加边法

Some methods of an n-order determinant calculation 【Abstract】In this paper, considering the characteristics of determinant, it provides several commonly used methods to calculate the determinant by applying the properties of the determinant . For example :The direct method of calculation by using the determinant definition . The method of changing the determinant into a triangular determinant According to the properties of the determinant. The method of expanding the determinant by line (column) .using the known formula , the mathematical induction, recursive Method , adding the edge method, using the properties of polynomial , the application of Laplace theorem. These methods are not independent of each other ,but interrelated. There is probably that a determinant has several solutions, or in the calculation of the same determinant there will be used several methods to calculate simply. This requires us to grasp several solution of the determinant,and to find the easiest ways after, so simplify complex issues . 【Key words】n-order determinant the property of the determinant the mathematical induction adding the edge method

行列式的计算技巧与方法总结(同名4612)

行列式的几种常见计算技巧和方法 2.1 定义法 适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性. 例1 计算行列式0 004003002001000. 解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑 1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故 004003002001000=() () 241413223144321=-a a a a τ. 2.2 利用行列式的性质 即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法 上、下三角形行列式的形式及其值分别如下:

nn n n n a a a a a a a a a a a a a K ΛM O M M M K K K 2211nn 333223221131211000000=,nn nn n n n a a a a a a a a a a a a a K Λ M O M M M K K K 22113 2133323122211100 0000=. 例2 计算行列式n n n n b a a a a a b a a a a ++= +K M O M M M K K 21 211211n 1 11 D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形. 解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得 121n 11210000D 000n n n a a a b b b b b += =K K M M M O M K . 2.2.2 连加法 这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.

行列式的计算方法(课堂讲解版)

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例 计算行列式 0 0100 200 100 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n n n a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2) 2 n n --, 故(1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质T A A =,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

特殊行列式与行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

n阶行列式的计算方法

n 阶行列式的计算方法 1.利用对角线法则 “对角线法则”: (1)二、三阶行列式适用“对角线法则”;(2)二阶行列式每项含 2 项,三阶行列式每项含 3 项,每项均为不同行、不同列的元素 的乘积;(3)平行于主对角线的项为正号,平行于副对角线的项为负号。 例 1 计算二阶行列式 D = 1 3 。 2 4 解: D = 1 3 = 1? 4 ? 3 ? 2 = ?2 2 4 例 2 计算三阶行列式 D = 1 2 0 4 ? 3 8 。 0 ?1 2 解: D = 1 2 0 4 ? 3 8 = 1? (?3) ? 2 + 2 ? 8 ? 0 + 0 ? 4 ? (?1) ? 0 ? (?3) ? 0 ? 2 ? 4 ? 2 ?1? 8 ? (?1) 0 ?1 2 = ?14 2.利用 n 阶行列式的定义 a 11 a 12 ? a 1 n n 阶行列式 D = a 21 a 22 ? a 2 n =∑ (?1) τ a 1 p 1 a 2 p 2 ? a np n ? ? ? ( p 1 p 2 ? p n ) a n 1 a n 2 ?a nn 其中 τ = τ( p 1 p 2 ? p n ) , 求和式中共有 n ! 项。 显然有 a 11 a 12 ? a 1 n 上三角形行列式 D = a 22 ?a 2 n = a 11 a 22 ? a nn ? ? a nn a 11 下三角形行列式 D = a 21 a 22 ? = a 11 a 22 ? a nn ? ? a n 1 a n 2 ?a nn

行列式计算的若干种方法讲解

中南民族大学 毕业论文(设计) 学院: 数学与统计学学院 专业: 统计学年级:2008 题目: 行列式计算的若干方法 学生姓名: 曹金金学号:08067005

指导教师姓名: 汪宝彬职称:讲师 2012年4月30日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果.除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品.本人完全意识到本声明的法律后果由本人承担. 作者签名: 年月日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 1 引言 (2) 2.1排列 (2) 2.2行列式的定义 (2) 2.2.1 二阶、三阶行列式 (2) 2.2.2 n阶行列式的定义 (3) 2.2.3 几种特殊的行列式的定义 (3) 2.3 行列式的基本性质 (5) 3几种常见的行列式的计算方法 (6) 3.1利用行列式定义直接计算 (6) 3.2 利用行列式的性质计算 (6) 3.3 三角化法 (7) 3.4 降阶法 (8) 3.5利用范德蒙德行列式求解 (10) 3.6 数学归纳法 (11) 3.7 拆项法 (12) 3.8析因子法 (13) 3.9 加边法(升阶法) (13) 3.10递推公式法 (14) 3.11超范德蒙行列式法 (15) 3.12利用分块计算行列式 (16) 4 结论 (16) 致谢 (17) 参考文献 (17)

行列式计算的若干方法 摘要:在线性代数中,行列式的求解是非常重要的. 本文首先介绍行列式的定义与性质;然后通 过实例给出了计算行列式的几种方法.从文中可以看出,选择合适的计算方法可有效的计算行列式. 关键词:行列式;性质;计算方法 Some Methods of Determinant Calculation Abstract: Determinant plays an important role in the linear algebra. In this paper we first introduce the definition and properties of determinant. Then several methods of the calculation are given by some examples. It can be seen from the paper that choose the appropriate calculation method can efficiently compute the determinant. Key words: determinant; property; the calculation methods

四阶行列式的计算

四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

行列式的几种求法

行列式的求法有多种,以下简单进行总结。 一、逆序定义法 行列式的逆序法定义如下: 1212121112121222(,,......,)12,,......,1 2(1)......n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a τ= -∑ 这里,12,,......,n j j j 为1,2,...,n 的任一排列,12(,,......,)n j j j τ为该排列的逆序数,求和是对所有的排列求的,因此,该和式一共有!n 项,每项都是n 个数相乘,并得计算逆序数,计算量巨大。因此,一般而言,逆序法定义具有理论上研究的意义,而比较少用于求行列式。但是,如果行列式的项中有大量的0,那么用逆序法计算可能会很简单。以下举例如下: 例1:求 11 22 nn a a a 。 解答: 12121211 22 (,,......,)12,,......,(1)......n n n j j j j j nj j j j nn a a a a a a τ= -∑ 只当11j =,22j =,……,n j n =,其项才可能非零。因此, 11 22 (1,2,......,)01,12,2,1,12,2,1,12,2,(1)......(1)............n n n n n n n nn a a a a a a a a a a a a τ=-=-= 例2、求 1 2 n d d d 。 解答: 1212121 2 (,,......,)12,,......,(1)......n n n j j j j j nj j j j n d d a a a d τ= -∑ 只当1j n =,21j n =-,……,1n j =,其项才可能非零。因此,

行列式的计算技巧与方法总结(修改版)

行列式的若干计算技巧与方法 内容摘要 1. 行列式的性质 2.行列式计算的几种常见技巧和方法 定义法 利用行列式的性质 降阶法 升阶法(加边法) 数学归纳法 递推法 3. 行列式计算的几种特殊技巧和方法 拆行(列)法 构造法 特征值法 4. 几类特殊行列式的计算技巧和方法 三角形行列式 “爪”字型行列式 “么”字型行列式 “两线”型行列式 “三对角”型行列式 范德蒙德行列式 5. 行列式的计算方法的综合运用 降阶法和递推法 逐行相加减和套用范德蒙德行列式

构造法和套用范德蒙德行列式

行列式的性质 性质1 行列互换,行列式不变.即 nn a a a a a a a a a a a a a a a a a a n 2n 1n2 2212n12111nn n2n12n 2221 1n 1211 . 性质2 一个数乘行列式的一行(或列),等于用这个数乘此行列式.即 nn n2 n1in i2i1n 11211 k k k a a a a a a a a a k nn a a a a a a a a a n2n1in i2i1n 11211. 性质3 如果行列式的某一行(或列)是两组数的和,那么该行列式就等于两个行列式的和,且这两个行列式除去该行(或列)以外的各行(或列)全与原来行列式的对应的行(或列)一样.即 111211112111121112212121 2 1212.n n n n n n n n n nn n n nn n n nn a a a a a a a a a b c b c b c b b b c c c a a a a a a a a a K K K M M M M M M M M M M M M K K K M M M M M M M M M M M M K K K 性质4 如果行列式中有两行(或列)对应元素相同或成比例,那么行列式为零.即 k a a a ka ka ka a a a a a a nn n n in i i in i i n 21 2121112 11nn n n in i i in i i n a a a a a a a a a a a a 212121112 11=0. 性质5 把一行的倍数加到另一行,行列式不变.即

几种特殊类型行列式及其计算

1行列式的定义及性质 1.1定义[3] n级行列式 a 11 a12 (1) a 21 I-a22… a a 2n a a n1 a n2…a nn n元素的乘积的屜…a% (1)的代数和,这里jj…j n是1,2/ ,n的一个排列,每一项(1)都按下列规则带有符号:当jj…j n是偶排列时,⑴带正号,当j l j2…j n 是奇排列时,(1)带有负号.这一定义可写成 an a12 a1n a 21 a22 (2) I-a=无(-1F 山压)?…a nj j1 j2…j n a n1 a n2 a nn 这里V 表示对所有n级排列求和. j1 j2 ■ j n 1.2性质[4] 性质1.2.1行列互换,行列式的值不变. 性质1.2.2某行(列)的公因子可以提到行列式的符号外. 性质1.2.3如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4两行(列)对应元素相同,行列式的值为零. 性质1.2.5两行(列)对应元素成比例,行列式的值为零. 性质1.2.6某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变. 性质1.2.7交换两行(列)的位置,行列式的值变号. 等于所有取自不同行不同列的个

2行列式的分类及其计算方法 2.1箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均 为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算?即利用对 角元素或次对角元素将一条边消为零. 例1计算n 阶行列式 a 1 1 ■ ■ .L 1 1 a 2 0 0 D n = 1 0 a 3… 0 (&2&3…a n 式0) 1 0 … a n 2.2两三角型行列式 这类行列式的特征是对角线上方的元素都是 c,对角线下方的元素都是b 的行列式,初看, 这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当 b 二 c 时可以化为上面列举的爪形来计算,当 b = c 时则用拆行例)法 [9] 来计算. 例2计算行列式 将第一列减去第二列的 丄倍,第三列的丄倍…第n 列的 a 2 a 3 倍,得 1 a i - a 2 1 1 a 2 0 a 3 0 0 a n n =''a i i =2 n *1 ' ■- i=2 丄 a i 丿

几种特殊类型行列式及其计算

1 行列式的定义及性质 1.1 定义[3] n 级行列式 111212122212n n n n nn a a a a a a a a a L L M M M L 等于所有取自不同行不同列的个n 元素的乘积1212n j j nj a a a L (1)的代数和,这里12n j j j L 是 1,2,,n L 的一个排列,每一项(1)都按下列规则带有符号:当12n j j j L 是偶排列时,(1)带正号,当 12n j j j L 是奇排列时,(1)带有负号.这一定义可写成 () () 121212111212122212121n n n n j j j n j j nj j j j n n nn a a a a a a a a a a a a τ= -∑L L L L L M M M L 这里 12n j j j ∑ L 表示对所有n 级排列求和. 1.2 性质[4] 性质1.2.1 行列互换,行列式的值不变. 性质1.2.2 某行(列)的公因子可以提到行列式的符号外. 性质1.2.3 如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同. 性质1.2.4 两行(列)对应元素相同,行列式的值为零. 性质1.2.5 两行(列)对应元素成比例,行列式的值为零. 性质1.2.6 某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变.

性质1.2.7 交换两行(列)的位置,行列式的值变号. 2 行列式的分类及其计算方法 2.1 箭形(爪形)行列式 这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算.即利用对角元素或次对角元素将一条边消为零. 例1 计算n 阶行列式 ()123 23111100 1000100 n n n a a D a a a a a =≠L L L L L L L L L L . 解 将第一列减去第二列的 21a 倍,第三列的3 1 a 倍L 第n 列的1n a 倍,得 122 3111 11000 00 00 n n n a a a a D a a ?? --- ?? ?= L L L L L L L L L L 1221n n i i i i a a a ==?? =- ?? ? ∑ ∏. 2.2 两三角型行列式 这类行列式的特征是对角线上方的元素都是c ,对角线下方的元素都是b 的行列式,初看,

相关文档
最新文档