电路-第9章 网络图论基础

网络图论图论是数学的一个分支,是富有

趣味和应用极为广泛的一门学科。

(1)图

图(a)电路,如果用抽象线段表示支

路则得到图(b)所示的拓扑图,它描

述了电路的点和线的连接关系,称

为电路的图。

定义:图G 是描述电路结点支路连

接关系的拓扑图,它是支路和结点

的集合。

1)支路总是连接于两个结点上。

2)允许孤立结点存在,不允许孤立的支路存在。移走支路,该支路连接的两个结点要保留在电路中,而移走结点,则要将连接于该结点的所有支路移走。

电路的图是用以表示电路几何结构的图形,图中的支路和结

点与电路的支路和结点一一对应。

9.1 网络图论的基本概念

(3)有向图:标示了参考方向

的图

(2)子图:图G1中的所有支路

和结点都是图G

中的支路和结点,则称G1

是G 的一个子图。

子图示例

9.1 网络图论的基本概念

(4)连通图

图中任何两结点之间存在由支路

构成的路径,则称为连通图。

连通图和非连通图示例

9.1 网络图论的基本概念(5)回路

从某个结点出发,经过一些支路

(一条支路仅经过一次)和一些结

点(每个结点仅经过一次)又回到

出发点所经闭合路径。

树和非树示例

(6)树

G1是G 的一个子图,且

满足以下三个条件:

A 、是连通的;

B 、包含G 中所有结点;

C 、不包含回路。

G1称为G 的一棵树。

9.1 网络图论的基本概念

(7)树支、树支数

构成树的支路称为树支。树支数为:

割集示例

(8)连支、连支数

不属于树的支路称为连支。连支数为:

(9)割集、割集方向

移走某些支路,图分成了两个分离的

部分,则这些支路的集合称为割集。

割集的方向:从一部分指向另一部分

的方向。

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL

和KVL方程的矩阵形式

(1)增广矩阵

描述图中结点和支路关联情况的矩阵。矩阵元素:

增广矩阵为n

×b 阶矩阵。图9.2.1图的增广矩阵:

9.2.1 关联矩阵A

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

(2)关联矩阵A

增广矩阵每一列对应一条支路,非零元素两个,一

个是1一个是-1,表示1号支路从1号结点流向2号结

点;每一行代表一个结点,如第1行表示支路1、4、

6连在1号结点,且支路1从1号结点流出,支路4流

入1号结点,支路6流出1号结点。

增广矩阵中只有n-1行是独立的,删除任一行,即得

到关联矩阵A:((n-1)×b阶矩阵)

思考:如何由A画出有向图?

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

9.2.2 回路矩阵B

描述独立回与与支路的关联矩阵称为回路矩阵。

独立回路:

一个电路回路很多,如果回路的KVL方程相互独立,则称这些回路是独立的。

独立回路的个数及选取方法:

连接n个结点至少需要n-1条支路,所以树支集合是连接n个结点最少支路的集合,少一条则是非连通,多一条则构成回路。

所以,选独立回路可以选单连支路回路,即所谓的基本回路。

只有一根连支,其它都是树支,称为单连支回路,或称基本回路。

独立回路个数:b-n+1,即等于连支数。

独立回路选取方法:对较简单电路通过观察选取,平面电路选网孔;对复杂电路选

基本回路作为独立回路。

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

回路矩阵是l=(b-n+1)xb阶矩阵,其元素:

右图所示B矩阵:

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

如果以1、2、3为树支,以基本回路为独立回

路,并且以连支作为回路的正方向,支路的

排列顺序选树支后连支,则:

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

9.2.3 割集矩阵Q

割集是支路的集合,移走割集中的所有支路,将使图分成两个部分,从其中一

部分指向另一部分的方向即为割集的方向,每个割集只有两个可能的方向,任

意假定一个方向为割集的方向,即为该割集的正方向。

割集矩阵是描述割集与支路的关联矩阵,A矩阵是Q的特例。

独立割集与树支数一样,即n-1。Q是(n-1)xb阶矩阵,其元素:

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

单树支割集(基本割集)

通常可以用闭合曲线割这个图,与曲线相交的支路即为

一个割集。一个图有很多割集,但独立的割集只有n-1

个,如何获取独立割集呢?

一般选单树支割集为独立割集。割集中只一条支路是树

支,其它支路均为连的割集称为单树支割集,或称为基

本割集。

图示电路,选1、2、3为树支,并以树支方向作为割集

方向,并选树支后连支排列,则Q矩阵:

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

9.2.4 矩阵形式的KCL和KVL方程

如图所示,以4号结点作为参考结点,KCL方程为:

写成矩阵形式:

即:——A矩阵表示的KCL方程。

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL

和KVL方程的矩阵形式

9.2.4 矩阵形式的KCL和KVL方程

同样,以4号结点作为参考结点,以结点电压表示支路电压:

写成矩阵形式:

即:——A矩阵表示的KVL方程。

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

9.2.4 矩阵形式的KCL和KVL方程

如图所示,以1、2、3为

树支,以基本回路列KVL:

写成矩阵形式:

即:——B矩阵表示的KVL方程。

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

9.2.4 矩阵形式的KCL和KVL方程

同样,以1、2、3为树支,以基本回路回路电流来表示

支路电流:

写成矩阵形式:

即:——B矩阵表示的KCL方程。

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

9.2.4 矩阵形式的KCL和KVL方程

如图所示,以1、2、3为

树支,对基本割集列KCL:

写成矩阵形式:

即:——Q矩阵表示的KCL方程。

9.2 关联矩阵、回路矩阵、割集矩阵、及KCL 和KVL方程的矩阵形式

9.2.4 矩阵形式的KCL和KVL方程

同样,以1、2、3为树支,以树支电压表示支路电压:

写成矩阵形式:

即:——Q矩阵表示的KVL方程。

答案(电子科大版)图论及其应用第一章

习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1) 不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

离散数学的基础知识点总结

离散数学的基础知识点总结 第一章命题逻辑 1.前键为真,后键为假才为假;<—>,相同为真,不同为假;2?主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第二章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含T,存在量词用合取“; 3.既有存在又有全称量词时,先消存在量词,再消全称量词;

第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幕集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幕集P(A)有2°个元素,|P(A)|= 2|A|= 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔AXB的基数为mn , A到B上可以定义2mn种不同的关系; 2.若集合A有n个元素,则|A X\|= n2, A上有2n个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全圭寸闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x组成的集合;

图论及应用第一章完整作业

习 题 1 1. 证明在n 阶连通图中 (1) 至少有n -1条边。 (2) 如果边数大于n -1,则至少有一条闭通道。 (3) 如恰有n -1条边,则至少有一个奇度点。 证明 (1) 若对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,矛盾! 若G 中有1度顶点,对顶点数n 作数学归纳。 当n=2时,G 显然至少有一条边,结论成立。 设当n=k 时,结论成立, 当n=k+1时,设d(v)=1,则G-v 是k 阶连通图,因此至少有k-1条边,所以G 至少有k 条边。 (2) 考虑v 1→v 2→?→v n 的途径,若该途径是一条路,则长为n-1,但图G 的边数大于n-1,因此存在v i ,v j ,使得v i adgv j ,这样,v i →v i+1→?→v j 并上v i v j 构成一条闭通道;若该途径是一条非路,易知,图G 有闭通道。 (3) 若不然,对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,与已知矛盾! 2. 设G 是n 阶完全图,试问 (1) 有多少条闭通道? (2) 包含G 中某边e 的闭通道有多少? (3) 任意两点间有多少条路? 答 (1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n -2)…1. 3. 证明图1-27中的两图不同构: 证明 容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4. 证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 图 1-27 图1-28

图论及应用第一章完整作业

习题 1 1. 证明在n阶连通图中 (1)至少有n-1条边。 (2)如果边数大于n-1,则至少有一条闭通道。 (3)如恰有n-1条边,则至少有一个奇度点。 证明(1) 若对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,矛盾! 若G中有1度顶点,对顶点数n作数学归纳。 当n=2时,G显然至少有一条边,结论成立。 设当n=k时,结论成立, 当n=k+1时,设d(v)=1,则G-v是k阶连通图,因此至少有k-1条边,所以G至少有k条边。 (2) 考虑v 1v 2v n的途径,若该途径是一条路,则长为n-1,但图G的边数 大于n-1,因此存在v i,v j,使得v i adgv j,这样,v i v i+1v j并上v i v j构成一条闭通道; 若该途径是一条非路,易知,图G有闭通道。 (3) 若不然,对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,与 已知矛盾! 2.设G是n阶完全图,试问 (1)有多少条闭通道? (2)包含G中某边e的闭通道有多少? (3)任意两点间有多少条路? 答(1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n-2)…1. 3.证明图1-27中的两图不同构: 图1-27 证明容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4.证明图1-28中的两图是同构的 图1-28 证明将图1-28的两图顶点标号为如下的(a)与(b)图

作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5. 证明:四个顶点的非同构简单图有11个。 证明 m=0 1 2 3 4 5 6 由于四个顶点的简单图至多6条边,因此上表已经穷举了所有情形,由上表知:四个顶点的非同构简单图有11个。 6. 设G 是具有m 条边的n 阶简单图。证明:m =??? ? ??2n 当且仅当G 是完全图。 证明 必要性 若G 为非完全图,则 v V(G),有d(v) n-1 d(v) n(n-1) 2m n(n-1) m n(n-1)/2=??? ? ??2n , 与已知矛盾! 充分性 若G 为完全图,则 2m= d(v) =n(n-1) m= ??? ? ??2n 。 7. 证明:(1)m (K l ,n ) = ln , (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析

复杂网络基础2(M.Chang)

复杂网络基础理论 第二章网络拓扑结构与静态特征

第二章网络拓扑结构与静态特征 l2.1 引言 l2.2 网络的基本静态几何特征 l2.3 无向网络的静态特征 l2.4 有向网络的静态特征 l2.5 加权网络的静态特征 l2.6 网络的其他静态特征 l2.7 复杂网络分析软件 2

2.1 引言 与图论的研究有所不同,复杂网络的研究更侧重 于从各种实际网络的现象之上抽象出一般的网络几何 量,并用这些一般性质指导更多实际网络的研究,进 而通过讨论实际网络上的具体现象发展网络模型的一 般方法,最后讨论网络本身的形成机制。 统计物理学在模型研究、演化机制与结构稳定性 方面的丰富的研究经验是统计物理学在复杂网络研究 领域得到广泛应用的原因;而图论与社会网络分析提 供的网络静态几何量及其分析方法是复杂网络研究的 基础。 3

2.1 引言 静态特征指给定网络的微观量的统计分布或宏观 统计平均值。 在本章中我们将对网络的各种静态特征做一小结 。由于有向网络与加权网络有其特有的特征量,我们 将分开讨论无向、有向与加权网络。 4 返回目录

2.2 网络的基本静态几何特征 ¢2.2.1 平均距离 ¢2.2.2 集聚系数 ¢2.2.3 度分布 ¢2.2.4 实际网络的统计特征 5

2.2.1 平均距离 1.网络的直径与平均距离 网络中的两节点v i和v j之间经历边数最少的一条简 单路径(经历的边各不相同),称为测地线。 测地线的边数d ij称为两节点v i和v j之间的距离(或 叫测地线距离)。 1/d ij称为节点v i和v j之间的效率,记为εij。通常 效率用来度量节点间的信息传递速度。当v i和v j之间没 有路径连通时,d ij=∞,而εij=0,所以效率更适合度 量非全通网络。 网络的直径D定义为所有距离d ij中的最大值 6

电子科技大学研究生试题图论及其应用参考答案

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8 分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k 七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X | v v 1 3 图G

图论及其应用第一章答案(电子科大版)

习题一(yangchun): 4.证明下面两图同构。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈ E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=--- 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

图论基础知识

图论基本知识 对于网络的研究,最早是从数学家开始的,其基本的理论就是图 论,它也是目前组合数学领域最活跃的分支。我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。 本章只给出非平凡的定理的证明,过于简单直观的定理的证明将 留给读者。个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。 图的基本概念 图G 是指两个集合(V ,E),其中集合E 是集合V×V 的一个子集。 集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。若{,}x y E ,就称图G 中有一条从x 到y 的弧(有向边),记为x→

y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。以后如果没有特殊的说明,所有出现的图都是简单图。记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。图2.1a 给出了一个计算机分级网络的示意图,及其表示为顶点集和边集的形式。 图2.1:网络拓扑结构示意图。图a 是10阶有向图,顶点集为 {1,2,3,4,5,6,7,8,9,10},边集为{1→2,1→3,1→4,2→5,2→6,2→7,3→6,4→7,4→8,6→9,7→9,8→10};图b 是6阶无向图,顶点集为{1,2,3,4,5,6},边集为{13,14,15,23,24,26,36,56}。 从定义中可以看到,从任意顶点x 到y 不能连接两条或以上 边,本文所讨论的图,均符合上述要求,既均为不含多重边的图。如

离散数学第七章图的基本概念知识点总结docx

图论部分 第七章、图的基本概念 7.1 无向图及有向图 无向图与有向图 多重集合: 元素可以重复出现的集合 无序积: A&B={(x,y) | x∈A∧y∈B} 定义无向图G=, 其中 (1) 顶点集V≠?,元素称为顶点 (2) 边集E为V&V的多重子集,其元素称为无向边,简称边. 例如, G=如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} , 定义有向图D=, 其中 (1) V同无向图的顶点集, 元素也称为顶点 (2) 边集E为V?V的多重子集,其元素称为有向边,简称边. 用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E 注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的

通常用G表示无向图, D表示有向图, 也常用G泛指 无向图和有向图, 用e k表示无向边或有向边. V(G), E(G), V(D), E(D): G和D的顶点集, 边集. n 阶图: n个顶点的图 有限图: V, E都是有穷集合的图 零图: E=? 平凡图: 1 阶零图 空图: V=? 顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=的一条边, 称v i,v j 为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点. 定义设无向图G=, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l 至少有一个公共端点, 则称e k,e l相邻. 对有向图有类似定义. 设e k=?v i,v j?是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.

图论及其应用第三章答案电子科大

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通,而在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从u 与 到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u 在每一条(x,y)的路上,则与已知矛盾,G 是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v 是单图G 的割点,则G ?v 有两个连通分支。现任取x,y ∈V(G ?v), 如果x,y 不在G ?v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,x,与y 在G ?v 的补图中连通。若x,y 在G ?v 的同一分支中,则它们在G ?v 的补图中邻接。所以,若v 是G 的割点,则v 不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

电子科技大学研究生试题图论及其应用参考答案

电子科技大学研究生试题 图论及其应用参考答案 Last revision date: 13 December 2020.

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于 3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图答__是___; 是否可1-因子分解答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k v v 1 3 图G

图论及其应用1-3章习题答案(电子科大)

习题一 1. (题14):证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )→u i (1≤ i ≤ 10) 容易证明,对?v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。 2. (题6)设G 是具有m 条边的n 阶简单图。证明:m =???? ??2n 当且仅当G 是 完全图。 证明 必要性 若G 为非完全图,则? v ∈V(G),有d(v)< n-1 ? ∑ d(v) < n(n-1) ? 2m

证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ? ∣V 1∣= ∣V 2 ∣。 4. (题12)证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ?v in v ik 构成一个圈 。 5. (题17)证明:若G 不连通,则G 连通。 证明 对)(,_G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 习题二 2、证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,令V 1 、V 2 为度为1的顶点,由于其他的顶点度数均为0或者2,且T 中无圈,则从V 1到V 2 有且只有一条连通路。所以,每棵恰有两个1度顶点的树均是路。得证。 5、证明:正整数序列),...,,(21n d d d 是一棵树的度序列当且仅当 )1(21 -=∑=n d n i i 。 证明:设正整数序列),...,,(21n d d d 是一棵树T 的度序列,则满足 E d n i i 21 =∑=,E 为T 的边数,又有边数和顶点的关系1+=E n ,所以)1(21 -=? ∑=n d n i i 14、证明:若e 是n K 的边,则3)2()(--=-n n n n e K τ。 若e 为Kn 的一条边,由Kn 中的边的对称性以及每棵生成树的边数为n-1,Kn 的所有生成树的总边数为:2 )1(--n n n ,所以,每条边所对应的生成树的棵数为: 32 2)1(2 1 )1(--=--n n n n n n n ,所以,K n - e 对应的生成树的棵数为: 332)2(2)(----=-=-n n n n n n n n e K τ 16、Kruskal 算法能否用来求: (1)赋权连通图中的最大权值的树? (2)赋权图中的最小权的最大森林?如果可以,怎样实现?

图论及其应用第三章答案(电子科大)

习题三: ● 证明:是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意及, G 中的路必含. 证明:充分性: 是的割边,故至少含有两个连通分支,设是其中一个连通分支的顶点集,是其余分支的顶点集,对 12,u V v V ?∈?∈,因为中的不连通,而在中与连通,所以在每一条路上,中的必 含。 必要性:取 12,u V v V ∈∈,由假设中所有路均含有边,从而在中不存在从与到的路,这表明不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 : 是块,任取的一点,一边,在边插入一点,使得成为两条边,由此 得到新图 ,显然的是阶数大于3的块,由定理,中的u,v 位于同一个圈 上,于是 中u 与边都位于同一个圈上。 : 无环,且任意一点和任意一条边都位于同一个圈上,任取的点u ,边e , 若在上,则三个不同点位于同一个闭路,即位于同一条路,如不在上,由定理,的两点在同一个闭路上,在边插入一个点v ,由此得到新图,

显然 的是阶数大于3的块,则两条边的三个不同点在同一条路上。 : 连通,若不是块,则中存在着割点,划分为不同的子集块,,,无 环,12,x v y v ∈∈,点在每一条的路上,则与已知矛盾,是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图的割点。 证明:是单图的割点,则 有两个连通分支。现任取, 如果不在的同一分支中,令是与 处于不同分支的点,那么,与在的补图中连通。若在的同一分支中,则它们在 的补图中邻 接。所以,若是的割点,则不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通 度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)} ()25G κ= 最小点割{6,7,8,9,10} 2()5G λ= 最小边割{(2,7)…(1,6)} ● 13.设H 是连通图G 的子图,举例说明:有可 能k(H)> k(G). 解: 通常.

图论及其应用1-3章习题答案(电子科大) (1)

学号:201321010808 姓名:马涛 习题1 4.证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )→u i (1≤ i ≤ 10) 容易证明,对?v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。 6.设G 是具有m 条边的n 阶简单图。证明:m =???? ??2n 当且仅当G 是完全图。 证明 必要性 若G 为非完全图,则? v ∈V(G),有d(v)< n-1 ? ∑ d(v) < n(n-1) ? 2m

证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ? ∣V 1∣= ∣V 2 ∣。 12.证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ?v in v ik 构成一个圈 。 17.证明:若G 不连通,则G 连通。 证明 对)(,_G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 习题2 证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,令V 1 、V 2 为度为1的顶点,由于其他的顶点度数均为0或者2,且T 中无圈,则从V 1到V 2 有且只有一条连通路。所以,每棵恰有两个1度顶点的树均是路。得证。 证明:正整数序列),...,,(21n d d d 是一棵树的度序列当且仅当)1(21-=∑=n d n i i 。 证明:设正整数序列),...,,(21n d d d 是一棵树T 的度序列,则满足E d n i i 21 =∑=,E 为T 的边数,又有边数和顶点的关系1+=E n ,所以)1(21 -=?∑=n d n i i 证明:若e 是n K 的边,则3)2()(--=-n n n n e K τ。 若e 为Kn 的一条边,由Kn 中的边的对称性以及每棵生成树的边数为n-1,Kn 的所有生成树的总边数为:2)1(--n n n ,所以,每条边所对应的生成树的棵数 为: 32 2)1(2 1 )1(--=--n n n n n n n ,所以,K n - e 对应的生成树的棵数为: 332)2(2)(----=-=-n n n n n n n n e K τ Kruskal 算法能否用来求:

离散数学基本知识

离散数学基本知识 01 什么是“数据结构”? 这里我就不说那些“官方的定义”,简单谈谈自己的理解吧。 数据结构是一种抽象的封装。 好像还是有点绕脑,不过没关系,我们继续往下看。 说简单点就是,把一堆基本的数据,按照某种顺序给揉成一坨。 相信大家都吃过饭吧? 做一道菜需要放各种调料,如盐、味精,还有肉等,把它们混在一起就做成了一道菜。 口水鸡是我最喜欢的一道菜,这里我们就以口水鸡为例,来讲一讲什么是数据结构。下图是百度百科中口水鸡的做法。

好,下面我就用程序来表示一下,我写的是伪码,大家能懂就好哈。先来抽象一下“口水鸡”:

对,上述这个结构体就是一个自定义的数据结构,将很多种不同的东西融合在一起;而计算机中的数据结构,则是把一些基本的数据类型,如int、double等融合成一些复杂的数据结构,如map、队列。 抽象完口水鸡再来抽象“你”吧: 然后再来抽象一下“厨师”:

这里的抽象有点随意,不过大家理解就好,我们把一堆很基本的元素抽象成了3个数据结构,这三个元素就是所谓的数据结构。 而平时我们说的链表无非就是把一些基本元素和指针做了融合,树、图也是把指针和一些基本元素融合后再外加一些流程,如函数。 比如python的dict,dict的key,value就是两种相同或者不同的数据类型;dict还提供了一些函数,譬如get(),set()。dict就是一个典型的被封装的数据结构。 所以我说数据结构是一种抽象的封装,当然,数据结构并没有我们举的例子那样简单,但是原理是一样的。 我们平时写程序都是直接去调用这些数据结构,而没有去想它们的内部实现是怎样的。数据结构这门课就是要告诉我们常见的数据结构是如何实现的,比如Vector,map的实现。我们常常听到的譬如平衡二叉树,红黑树,大顶堆等词汇就是出自数据结构这门课。具体了解数据结构后,我们就可以知道队列的内部实现是什么样,词典的内部实现又是什么样。

图论及其应用1-3章习题答案

1. (题14):证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 2. (题6)设G 是具有m 条边的n 阶简单图。证明:m =???? ??2n 当且仅当G 是 完全图。 证明 必要性 若G 为非完全图,则 v V(G),有d(v) n-1 d(v) n(n-1) 2m n(n-1) m n(n-1)/2=??? ? ??2n , 与已知矛盾! 充分性 若G 为完全图,则 2m= d(v) =n(n-1) m= ??? ? ??2n 。 3. (题9)证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。 证明 由于G 为k 正则偶图,所以,k V 1 =m = k V 2 V 1 = V 2 。 4. (题12)证明:若δ≥2,则G 包含圈。 图1-28 (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u u 8 u u 10 (b)

证明 只就连通图证明即可。设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。若v i1v i2…v in 是一条路,由于 2,因此,对v in ,存在点v ik 与之邻接,则v ik v in v ik 构成一个圈 。 5. (题17)证明:若G 不连通,则G 连通。 证明 对)(,_ G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 习题二 2、证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,令V 1 、V 2 为度为1的顶点,由于其他的顶点度数均为0或者2,且T 中无圈,则从V 1到V 2 有且只有一条连通路。所以,每棵恰有两个1度顶点的树均是路。得证。 5、证明:正整数序列),...,,(21n d d d 是一棵树的度序列当且仅当 )1(21 -=∑=n d n i i 。 证明:设正整数序列),...,,(21n d d d 是一棵树T 的度序列,则满足 E d n i i 21 =∑=,E 为T 的 边数,又有边数和顶点的关系1+=E n ,所以)1(21 -=? ∑=n d n i i 14、证明:若e 是n K 的边,则3 )2()(--=-n n n n e K τ。 若e 为Kn 的一条边,由Kn 中的边的对称性以及每棵生成树的边数为n-1,Kn 的所有生 成树的总边数为: 2 )1(--n n n ,所以,每条边所对应的生成树的棵数为: 32 2)1(2 1 )1(--=--n n n n n n n ,所以,K n - e 对应的生成树的棵数为: 332)2(2)(----=-=-n n n n n n n n e K τ 16、Kruskal 算法能否用来求: (1)赋权连通图中的最大权值的树? (2)赋权图中的最小权的最大森林?如果可以,怎样实现? 解:(1)不能,Kruskal 算法得到的任何生成树一定是最小生成树。 (2)可以,步骤如下:

相关文档
最新文档