镍镉电池和镍氢电池充电时间计算

镍镉电池和镍氢电池充电时间计算
镍镉电池和镍氢电池充电时间计算

镍镉电池和镍氢电池充电时间计算

一、充电常识

在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。

对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。

首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢?

例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。

在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。

充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。

正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。

知道了快慢充的概念后,我们还需要了解充电器的情况才能对电池正确充电。目前市场上的充电器主要分为恒流充电器和自动充电器两种

二、恒流充电器

恒流充电器是市场上最常见的充电器,从镍镉电池时代,我们就开始使用恒流充电器。恒流充电器通常使用慢速充电电流,它的使用相对比较简单,只需将电池放在电池仓中即可充电。需要注意的是,对充电时间的计算要准确。

对充电时间的计算有个简单的公式:Hour=1.5C/充电电流。例如:对1200mAH的电池充电,充电器的充电电流为150mA,则时间为1800mAH/150mA等于12小时。当然在很多时候并不能计算出正好的时间,我们可以挑离得最近的半小时以方便记时。例如:充电器的电流为160mA,对1400mAH的电池充电,则时间为2100mAH/160mA约为13小时,而不用计算到分。

恒流充电器的构造简单,工作稳定,是一种不错的充电方式,对电池寿命的影响小。但它也有其局限性,首先必须计算时间,另外随着镍氢电池的容量越来越大,恒流充电所需的时间也越来越长,对使用带来了一定的不便。因此,近年来快速自动充电器也逐渐流行起来

三、快速自动充电器

快速自动充电器在这两年越来越受到大家欢迎,它具有充电速度快,安全等特点。但也有一部分人对它有疑虑,因为快速充电器基本都使用快充电流来充电,这些人怕它会对电池的寿命产生影响。那么实际的情况如何呢?

首先要肯定的是大电流充电对电池寿命的影响是很小的,在很多情况下我们都要用到快速充电甚至超高速充电,充电电流有时可以达到2C或更高。大电流并不是电池杀手,真正对电池寿命产生影响的是大电流充电时产生的高热。

我们对电池充电时要使用比电池标称电压稍高的电压来进行,而电池本身对充电电流会产生一个反电势,因此有一部分电流为了抵消反电势而白白作功,转化为热能。当充电电流越大,就有更多的电能被转化为热能,充电时的温度就越高。过高的温度对充电电池是有害的,在慢速恒流充电器中,由于是慢速充电,产生的热量在可控制范围内,因此并不需要采取特殊的措施。但在快速自动充电器中,采用快充电流就会产生更高的温度。因此目前市场上的快速自动充电器都采用了各种方法来降低充电时的温度,通常所使用的是余弦法,也就是说并非用恒定的大电流充电,而是像余弦波那样电流强度随之变化,这样能缓解热量的积聚,从而将温度控制在一定范围内。由于这类充电器不再使用恒定的电流充电,也和过去的恒流充电器有明显的区别

使用快速充电器的另一个问题是,当充电时间到了之后如果忘记停止充电,对电池的伤害要远大于慢速恒流充电器过充产生的伤害。因此为了解决过充问题,快速充电器一般都采用了比如电压斜率判断法等方法来判断电池是否接近充满,这些充电器都使用了控制电路或者IC芯片来完成这一任务。当电池接近充满时,控制电路会自动转入涓流充电模式,对电池进行涓流充电。采用涓流电流对电池进行充电的好处是很明显的,其一如前所述,涓流充电能将电池充的很满,其次就是不用担心过充的问题,因此使用这类充电器的最大好处就是不用再去计算时间。

具体的使用方法可以查看各自的使用说明书,以防操作不当。快速充电器有一个分支就是超高速的充电器,这类充电器应用范围不大,设计、结构和工艺都很复杂,因此价格相当昂贵。

在一些特殊的场合,人们需要在很短的时间内充好电池使用,这就需要使用超高速充电器。由于超高速充电器需要极大的充电电流,有些甚至使用了2C-3C的充电电流,其发热问题尤为严重,仅仅采用余弦波充电还不够,因此这类充电器很多都采用在一个余弦波后插入一个很短暂的放电这种方法。这种做法可以缓解由于反电势消耗充电电流所产生的热量积累,从而进一步控制温度。

四、放电

上一篇曾介绍了充电电池的记忆效应,我们也知道当记忆效应逐渐累积,会使电池的实际使用容量大幅下降。要减轻记忆效应所带来的负作用,一个有效的方法就是放电。一般来讲由于镍镉电池的记忆效应比较明显,建议在反复充电使用5-10次后就作一次放电,而镍氢电池的记忆效应要好些,可以在反复充电使用20-30次后作一次放电。

在市场上销售的一些高档充电器自身带有放电功能,但绝大部分的中低档充电器是没有放电功能的,这时我们该怎么办呢?在了解了放电的原理后,我们也可以自己尝试着对电池进行放电。

我们已经知道,镍镉电池和镍氢电池的标称电压是1.2V,但实际上,电池的电压是个变化的值,随着电量是否充足,围绕着1.2V左右进行波动。一般在1V-1.4V之间波动,不同品牌的电池由于工艺上的不尽相同,电压波动范围也不完全一致

对电池进行放电就是采用很小的放电电流,使电池的电压缓慢下降,下降到0.9V-1V之间,就应该停止放电。不建议将电池放电到0.9V之下,这样做会造成过度放电,使电池受到不可逆的伤害,所以充电电池不适合于用在家电遥控器中,就是因为遥控器的使用电流很小,长时间放在遥控器中使用很容易造成过度放电。电池经过一次正确的放电后,你会惊喜的发现电池的容量又恢复到原来的水平,因此当发现电池的容量有所下降时,就最好作一次放电。

自己对电池做放电有个简便的方法,就是接一个小电珠作为负载,但必须使用电表来监视电压值的变化,以防过度放电。

对于充电器的选择,究竟是选择快速充电器还是慢速恒流充电器,这主要看自己使用的侧重点。例如经常外出使用数码相机等设备的朋友,就应该选择快速充电器,以满足时间上的要求,甚至可以购买超高速的充电器,而只使用随身听等设备的朋友,恒流充电器就能满足需要

在掌握了正确的充放电知识后,大家一定能更好地使用自己的充电电池。请大家不要拘泥于快速充电.

充电时间计算

【电池容量看电池外面的标注】

【充电电流看充电器上标注的输入电流】

1、充电电流小于等于电池容量的5%时

充电时间(小时)=电池容量(mAH)×1.6÷充电电流(mA)

2、充电电流大于电池容量的5%,小于等于10%时:

充电时间(小时)=电池容量(mAH)×1.5÷充电电流(mA)

3、充电电流大于电池容量的10%,小于等于15%时:

充电时间(小时)=电池容量(mAH)×1.3÷充电电流(mA

4、充电电流大于电池容量的15%,小于等于20%时

充电时间(小时)=电池容量(mAH)×1.2÷充电电流(mA)

5、充电电流大于电池容量的20%时:

充电时间(小时)=电池容量(mAH)×1.1÷充电电流(mA)

镍氢充电电池正确的使用方法

镍氢电池正确的使用方法: 1、新电池一般经过三到五次充放电循环容量才可达到最高值。 2、原则上采取:充满---用完---充满。 3、电池的正负级保持干净,有利于正常使用和充电。 4、请勿将新旧电池、充电状态不同、容量、种类、品牌不同的电池放在一起充电。 1、充电电池能使用多久?一般能反复充电多少次?答:充电电池使用时间视电池容量和所使用对象的耗电功率而定,在不知道耗电功率的情况下很难估算使用时间。反复充电次数与充电器质量、充电电池质量、充电是否正确有关,理论上充电电池可反复充电1000次,但由于其他原因,一般好质量的充电电池使用700-800次的样子,一般质量的300-500次,不良品或者充电不正确一般在300次以下。 2、会对MP 3、数码相机有损坏吗?答:充电电池的电流是以毫安计算,使用过程中不会对MP3、数码相机产品造成任何损坏。 3、新买的镍氢充电电池需要先充电吗?答:是否需先充视情况而定,最简单的方法就是放进用电器中试一下,如有电就先使用完。新电池头3-5次使用时,最好用慢充充电,并且充电时间可以略微长10%,这样对激活电池有利。 4、如何长时间保存镍氢电池?答:对于想长期不用的镍氢电池,要从电器中取出,然后充满电再存放。方便的话最好每1-2个月使用一次。 5、充电器都是通用的吗?答:基本上都是通用的,但如果你使用的是快充或者极速充的话就请注意(充电电流300MA以上为快充,500MA以上为极速充),这是因为新电池(或者长期未使用的电池)的充电特性曲线和正常使用的电池的充电特性曲线不同,这种不同快充和极速充判断电池是否充满往往会出现失误,经常会出现以下两种现象,一是电池已经充满,但充电器认为电池没有充满而继续充电,会对电池造成部分损坏。二是电池没有充满的时候,快充就认为电池已经充满了,而停止充电了,对电池的激活(到达最大容量)不利,所以快充的说明书上面都说,对新电池的充电可以在充满后仍然充电2-3次就是这个原因。实际使用时我们也可以发现,将用快充充满的新电池,再充电的时候,电池仍然可以充电很长的时间,而用经常使用的电池,再充满后,再充电,一般几十分钟左右充电器就停止充电了,也是这个道理。

镍氢电池充电器电路图及原理分析

镍氢电池充电器电路图及原理分析 镍氢电池充电器原理图:由LM324组成,用TL431设置电压基准,用S8550作为调整管,把输入电压降压,对电池进电行充电,电路附图所示.其工作原理是: 1.基准电压Vref形成 外接电源经插座X、二极管VD1后由电容C1滤波。VD1起保护作用,防止外接电源极性反接时损坏TL431。R3、R4、R5和TL431组成基准电压Vref,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约 为1.40V)。 2.大电流充电 (1)工作原理 接入电源,电源指示灯LED(VD2)点亮。装入电池(参考图片,实际上是用导线引出到电池盒,电池装在电池盒中),当电池电压低于Vref时,IC1-1输出低电平,VT1导通,输出大电流给电池充电。此时,VT1处于放大状态-这是因为电池电压和-VD4压降的和约为3.2V(假设开始充 电时电池电压约为2.5V),而经VD1后的电压大约5.OV,所以,VT1的发射极-集电极压差远大于0.2V,当充电电流为300mA时,VT1发热比较严重,所以最好用PT=625mW的S8550,或者适当增大基极电阻以减小充电电流(注:由于LM324低电平驱动能力较小,实测IC1-2,IC1-4输出低电平并不是0V,而是约为0.8V)。 (2)充电的指示 首先看IC1-3的工作情况:其同相端1O脚通过R13接Vref,R14接成正反馈,反相端9脚外接电容,并有一负反馈通路,所以,它实际上构成了滞回比较器。刚开始时C2上端没有电压,则IC1-3输出高电平。这个高电平有两个放电通路,一个通路是通过R14反馈到10脚,另一通路是经电阻R15对电容C2充电,当充电的电压高于10脚电压V+ 时,比较器翻转输出低电平;与此同时,由于R14的反馈作用,10脚电压立即下跳到V-,这时,电容C2通过电阻R15放电,当放电的电压小于10脚电压V-时,比较器再次翻转输出高电平,由于R14的反馈作用,10脚电压立即上跳到V+,此后电路一直重复上述过程,因此,IC1-3的输出为频率固定的方波信号。 其次看IC1-4的工作情况:电池电压经R2、R16分压,接IC1-4的12脚,因为R2<

镍氢充电电池的使用方法

镍氢充电电池的使用方法 1.一般情况下,新的镍氢电池只含有少量的电量,大家购买后要先进行充电然后再使用。但如果电池出厂时间比较短,电量很足,推荐先使用然后再充电。.新买的镍氢电池一般要经过3-4次的充电和使用,性能才能发挥到最佳状态,很多朋友第一次充电碰到的小问题,比方第一次充电后使用时间没有想象的那么多。在3-4次充电和使用后问题就都迎刃而解了。 2.虽然镍氢电池的记忆效应小,仍然推荐大家尽量每次使用完后再充电,并且是一次性充满,不要充一会用一会然后再充。这可是“延年益寿”的重要一点噢。电池充电时,要注意充电器周围的散热,为了避免电量流失等问题发生,保持电池两端的接触点和电池盖子的内部干净,必要时使用柔软、清洁的干布轻擦。 3长时间不用的时候,记得把电池从电池仓中取出,置于干燥的环境中推荐放入电池盒中,可以避免电池短路。长期不用的镍氢电池会在存放几个月后,电池自然进入一种“休眠”状态,电池寿命大大降低。如果镍氢电池已经放置了很长的时候,建议你先用慢充进行充电为宜。、因为:据测试,镍氢电池保存的最佳条件是带电80%左右保存。这是因为镍氢电池的自放电较大(一个月10%-15%左右),如果电池完全放电后再保存,很长时间内不使用,电池的自放电现象就会造成电池的过放电,会损坏电池。不信?那你想一想新买的镍氢充电电池是不是都还有电的,其中就是这个道理。建议:多比较,纠正错误的观点,从正确的方向入手保养电池,否则会事与愿违。 4.对镍氢进行放电。专家建议,尽量不要对镍氢电池进行过放电,过放会导致充电失败,这样做的危害远远大于镍氢电池本身的记忆效应!.万用表自检电池充满与否。一般镍氢电池在充电前,电压在1.2V以下,充满后正常电压在1.4V左右。大家以此判断,也就很容易判断电池的状态了。 5.充电器主要分为快充和慢充。慢充电流小,通常在200mA左右,比如我们常见的充电电流是在160mA左右。她的充电时间长,充电1800mAh的镍氢电池要16个小时左右。时间虽然是慢了些,可是充电会充的很足,并且不伤电池。快充电流通常都在400mA以上,充电时间明显减少很多,3-4个小时就可以搞定,也赢得了大家的喜爱。快充种类很多,价格不一。所以大家也常常有疑问,同是快充,价格为什么相差甚大呢?好的充电器特别是好的快充都带有防过度充电保护功能的,比方我们常见的松下极品充电器BQ390在这方面表现尤为出色,优秀的芯片软件设计能力在对电池充电时,也把快充对电池的伤害降到了最低。 6.矛盾出现:慢充不伤电池但是充电时间太长;快充可以节省时间,但对电池有伤害,即使是目前世面上最好的松下极品充电器BQ390也只能很好的降低伤害程度,但不可完全避免。解决矛盾的方法就是要买一个快充和一个慢充。用快充充一段时间,比方5、10次之后,改用慢充充电一两次。这样就又把电池的性能恢复到最佳状态。电池使用时一般都是电池组,就是4节或6节串联起来,这时候,保持每节电池的平衡就很重要了,否则因为其中的一节电池问题而影响整个电池组的工作。首先要保证电池容量一致,最好选择相同牌子相同型号同时购买的电池。然后,要保持电池内部的电量一致,简单的说,就是电池组的电要么都是满的,要么都是空的。如果有比较多的电池组成若干组电池组,可以试着“精选”一下。具体就是说,将容量、电压等参数相近的电池单体串联成一组电池组,由于条件不足,一般情况下测一下放完点后的电压和冲好电的电压就可以了。 7.高档的NI-MH充电器用的是-DELTAV检测电池电压来判断电池是否充满。电池充电时的电压曲线和放电时有点相似,开始时是比较快的上升,之后缓慢上升,等到充好的时候,电压又开始快速下降,只是下降的幅度不是很大。之前常用的镍镉电池也类似,只是下降的速度和幅度比NI-MH都大。而市场上最多的充电器(比较便宜的那种)常常用的就是衡压充电,

UPS蓄电池后备时间计算方法

U P S蓄电池后备时间计算 方法 Prepared on 24 November 2020

UPS(不间断电源)蓄电池后备时间的计算方法详解 关于UPS(不间断电源)的后备时间以及所需蓄电池容量的计算 有很多种方法,这里介绍两种最常用的恒功率法、最大放电电流法。 一、恒功率法: 现在以美国GNB 蓄电池和胜为电气(SINWAY)OMEGA 系列容量 80kVA 的 UPS 为例,计算步骤(按100%线性满载核算) 1.确定UPS 的负载功率。 给定的后备时间和相应的负载功率(kW)决定了电池的容量。 P=S ×PF 其中:P:有功功率; S:视在功率; PF:负载功率因素 根据要求按UPS 满载计算,功率因素计算。 S=80kVA,PF=,因此 P=80×=64kW 2.根据给出的负载功率计算出电池功率 PBATT = POUT /η 其中: BATT P :电池负载功率; OUT P :负载功率; η:逆变器的效率 这里的OUT P 就是第一步计算出的P(负载功率),逆变器的效率 取95%。 BATT P = 64kW / 95% = kW 3.确定电池的参数指标

对于普遍使用的铅酸电池常使用如下参数: cell N = 构成每个电池的单体电池数目 大家通常所见的铅酸免维护电池实际上是单体电池的组合,每节 单体铅酸电池的额定电压是2Vdc,因此一块12V 的电池是由6 节单体电池构成的。对于OMEGA 系列UPS 需2V 单体电池174 节,即29 节12V 的电池: V = 低电池关机电压 UPS 的逆变器低电池关机电压。 cell low V = 单体电池放电终了电压 以上几个参数不同的UPS 是不同的,SINWAY 80kVA UPS 的这些 直流参数见如下: 80KVA 默认关机电压为305V 因此可求得: 80KVA: cell low V =305 /174= 4.计算单节电池负载功率 单节电池功率 =电池负载功率/单体电池节数 80KVA:P cell = ( 174) = 387 W/cell 5.由以上计算值,确定自己所需的电池容量及数目。 根据电池供应商给出的恒功率放电的单体电池瓦特/时间关系表 和已有的参数值: V cell low = P cell = 387 W/cell 预期后备时间是60 分钟,查下表(GNB 电池制造厂提供)可知:

镍氢充电电池使用和保养

镍氢充电电池使用和保养 1.一般情况下,新的镍氢电池只含有少量的电量,大家购买后要先进行充电然 后再使用。但如果电池出厂时间比较短,电量很足,推荐先使用然后再充电。 2.新买的镍氢电池一般要经过3-4次的充电和使用,性能才能发挥到最佳状态,很多朋友第一次充电碰到的小问题,比方第一次充电后拍片数量没有想象的那 么多。在3-4次充电和使用后就都迎刃而解了。 3.虽然镍氢电池的记忆效应小,仍然推荐大家尽量每次使用完后再充电,并且 是一次性充满,不要充一会用一会然后再充。这可是“延年益寿”的重要一点噢。 4.电池充电时,要注意充电器周围的散热,太刻意用什么风扇吹没有什么必要,但要注意的是充电器周围不要放置太多杂物。普通用户在使用电池的过程中, 电池往往没有专用的存放包;用户在替换电池后,会习惯性的把电池随手放好,而不管所放的地方是否干净、潮湿。这样的后果就是电池容易弄脏、触点易与 金属?比如钥匙等接触、容易受潮,而这些都是电池的大敌。建议:用户应该设置一个电池专用放置点,并保持电池的清洁。为了避免电量流失等问题发生,保持电池两端的接触点和电池盖子的内部干净,必要时使用柔软、清洁的干布 轻擦。 5.长时间不用的时候,记得把电池从电池仓中取出,置于干燥的环境中推荐放 入牌电池盒中,可以避免电池短路。 6.长期不用的镍氢电池会在存放几个月后,电池自然进入一种“休眠”状态,电 池寿命大大降低。如果镍氢电池已经放置了很长的时候,建议你先用慢充进行 充电为宜。、因为:据测试,镍氢电池保存的最佳条件是带电80%左右保存。这是因为镍氢电池的自放电较大(一个月10%-15%左右),如果电池完全放 电后再保存,很长时间内不使用,电池的自放电现象就会造成电池的过放电, 会损坏电池。不信?那你想一想新买的镍氢充电电池是不是都还有电的,其中 就是这个道理。建议:多比较,纠正错误的观点,从正确的方向入手保养电池,否则会事与愿违。 7.对镍氢进行放电。专家建议。尽量不要对镍氢电池放电,过放会导致充电失败,这样做的危害远远大于镍氢电池本身的记忆效应! 8.万用表自检电池充满与否。一般镍氢电池在充电前,电压在1.2V以下,充 满后正常电压在1.4V左右。大家以此判断,也就很容易判断电池的状态了。

ups电池使用时间的计算方法

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,在停电后一般可以继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,可以满足用户长时间停电时继续供电的需要,一般长效型UPS满载配置时间可达数小时以上。 一般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。一般在电力环境较差、停电较为频繁的地区采用UPS与发电机配合供电的方式。当停电时,UPS先由电池供电一段时间,如停电时间较长,可以起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。一般计算机UPS电池供电时间,可以先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流可以按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率)

如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法 在UPS电源运行中,如果遇到市电供电中断时,蓄电池必须在用户所预期的一段时间内向逆变器提供足够的直流能源,以便在带额定负载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量与下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有在考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量与蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。常见的微机、服务器及其配件的负载特性

镍镉镍氢电池的原理及充电方法

镍镉/镍氢电池的原理及充电方法 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发 明了用于电动车的镍铁电池。遗憾的是,由 于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在 镍电池中开始使用了活性物质。他们将活性 物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947 年密封型镍镉电池研制成功。在这种电池中 ,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应 用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在 工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命 长、成本低的镍氢电池,并且于1978年成功 地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉 带来的污染问题。它的工作电压与镍镉电池 完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国 的重视,各种新技术层出不穷。镍氢电池刚 问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢 电池。1992年,日本三洋公司每月可生产 200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际 先进水平。 蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量通 常用Ah(安时)表示,1Ah就是能在1A的电流 下放电1小时。单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用 的材料和体积决定,因此,通常电池体积越

时间管理电池使用时间的计算办法

最新卓越管理方案您可自由编辑

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,在停电后一般可以继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,可以满足用户长时间停电时继续供电的需要,一般长效型UPS满载配置时间可达数小时以上。 一般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。一般在电力环境较差、停电较为频繁的地区采用UPS与发电机配合供电的方式。当停电时,UPS先由电池供电一段时间,如停电时间较长,可以起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。一般计算机UPS电池供电时间,可以先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流可以按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率)如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法

在UPS电源运行中,如果遇到市电供电中断时,蓄电池必须在用户所预期的一段时间内向逆变器提供足够的直流能源,以便在带额定负载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量与下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有在考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量与蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。常见的微机、服务器及其配件的负载特性

镍镉电池镍氢电池的原理及充电方法

镍镉电池镍氢电池的原理及充电方法 发表于81 天前???被围观151 views+ 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于 1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。1992年,日本三洋公司每月可生产200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。 蓄电池参数

{时间管理}电池使用时间的计算方法

(时间管理)电池使用时间 的计算方法

ups电池使用时间的计算方法 市电停电后,UPS是依靠电池储能供电给负载的。标准型UPS本身机内自带电池,于停电后壹般能够继续供电几分钟至几十分钟;而长效型UPS配有外置电池组,能够满足用户长时间停电时继续供电的需要,壹般长效型UPS满载配置时间可达数小时之上。 壹般长效型UPS备用时间主要受电池成成本、安装空间大小以及电池回充时间等因素的限制。壹般于电力环境较差、停电较为频繁的地区采用UPS和发电机配合供电的方式。当停电时,UPS先由电池供电壹段时间,如停电时间较长,能够起动备用发电机对UPS继续供电,当市电恢复时再切换到市电供电。 电池供电时意主要受负载大小、电池容量、环境温度、电池放电截止电压等因数影响。壹般计算机UPS电池供电时间,能够先计算出电池放电电流,然后根据电池放电曲线查处放电时间。电池放电电流能够按以下经验公式计算: 放电电流=UPS容量(VA)×功率因数/(电池放电平均电压×效率) 如果计算实际负载下的电池放电时间,只需将UPS容量换为实际负载容量即可 后备延时电池的配置方法 于UPS电源运行中,如果遇到市电供电中断时,蓄电池必须于用户所预期的壹段时间内向逆变器提供足够的直流能源,以便于带额定负

载的条件下,其电压不应下降到蓄电池组允许的最低临界放电电压以下。蓄电池的实际可供使用容量和下列等因素有关: ①蓄电池放电电流大小 ②蓄电池环境工作温度 ③蓄电池存储、使用的时间长短 ④负载特性(电阻性、电感性、电容性)及大小只有于考虑上述因素之后,才能正确选择和确定蓄电池的可供使用容量和蓄电池标称容量的比率。决定UPS后备长延时电池容量的重要因素是负荷大小、种类和特性。目前常用的微型机及其配件的负载特性如下表。 常见的微机、服务器及其配件的负载特性

镍氢电池首次充电方法介绍-全文

镍氢电池首次充电方法介绍 - 全文 镍氢电池和镍镉电池一样都有记忆效应,但是要远 小于镍镉电池。所以没有必要每次充电都进行放电操作(因 为操作不当会损害电池) ,只需三个月一次完全充放电以缓 25?35% (月),镍镉电池为15?30% (月),锂电池为2 5% (月)。镍氢电池的自放电率为最大,而锂电池与其他两 氢电池和锂电池都不能耐过充电。因此,镍氢电池以定电流 充电的 PICK CUT 控制方式在充电电压达到最高时, 停止继 续充电为最好的充电方式。而锂电池则使用定电流、定电压 方式充电最好,若以镍镉电池的充电器 -DV 控制方式进行充 使用的时间越长。抛开体积和重量的因素,当然容量越高越 也相同,实际测的初始容量不同:比如一个为 660mAh ,另 个是 605mAh ,那么 660mAh 的就比 605mAh 的好吗。 实际情况可能是容量高的是因为电极材料中多了增加初始 容量的东西,而减少了电极稳定用的东西,其结果就是循环 使用几十次以后,容量高的电池迅速容量衰竭,而容量低的 解记忆效应。 2.镍氢电池的自放电率 镍氢电池为 类电池相比放电率极低。 3.镍氢电池的充电方式 电的话对镍氢电池和锂电池会造成使用寿命的影响。 4. 镍氢电池容量越高越好吗 不同型号的电池,容量越高, 好。 但是同样的电池型号,标称容量(比如 600mAh ) 号,

电池却依然坚挺。许多国内的电芯厂家往往以这个方式来获 得高容量的电池。而用户使用半年以后待机时间却是差得 塌糊涂。民用的那些AA 镍氢电池 (就是五号电池) , 般是1400mAh ,却也有标超高容量的 ( 1600mAh ),道理也 是一样。提高容量的代价就是牺牲循环寿命,厂家不在 电池材料的改性上下文章,是不可能真正“提高”电池容量的。 镍氢电池充电方法科学的充电方法可以延长镍氢电池 的使用寿命。①一般情况下,新的镍氢电池只有很少的 电量,购买后要先进行充电然后再使用。但如果电池出 厂时间短,电量很足,推荐先使用再充电。新的镍氢电池般要经过3-4 次的充电和使用,性能才能发挥到最佳状态。 ②镍氢电池的记忆效应虽然小,最好还是每次使用完再充电,并且是一次性充满,不要充一会用一会然后再充。这是“延年益寿”的重要一点。③ 充电的时候,要注意充电器周围的散热。不用的时候要保持电池清洁,尤 其是两端的触点,必 要时使用柔软的干布轻擦。长时间不用的话,要把电池从电个月后,会进入一种“休眠”状态,电池寿命大大降低。如果镍氢电池已经放置了很长时间,建议先用慢充进行充电为宜。 池仓中取出,置于干燥的环境中④镍氢电池在存放几 般镍氢电池在充电前,电压是在1.2V 以下,充满后正常电压在1.4V 左右。以此可以判断电池是否已经充满。 氢电池第一次充电镍氢电池出厂后的第一次充电包括

ups的使用和计算方法时间

UPS的使用和计算方法时间 一、目的确保机房和桌面设备安全运行;分析用户实际需求,按照标准满足用户需要。 二、UPS的作用市电中断时重要用电设备有干净纯洁的电源使用在市电没有中断时, 但是电源有杂波干扰,电压忽高忽低,频率变化频繁而影响计算机正常运行,如果经过UPS,其有稳压稳频。 一、目的 确保机房和桌面设备安全运行; 分析用户实际需求,按照标准满足用户需要。 二、UPS的作用 市电中断时重要用电设备有干净纯洁的电源使用 在市电没有中断时,但是电源有杂波干扰,电压忽高忽低,频率变化频繁而影响计算机正常运行,如果经过UPS,其有稳压稳频的作用,电源干净可靠 三、UPS的使用范围 一般均应用于保护重要设备,例如:计算机设备,精密仪器等。 并非所有负载均适用,尤其是电感性负载,像电风扇、空调等家电均不适用 复印机、激光打印机等激活电流较大的设备亦不适用于UPS 平时UPS长期处于超载使用时,将缩短电子组件及UPS的寿命 四、UPS的种类 1、常见分类 2、根据UPS的备用时间 UPS依备用时间可分为标准型及长效型 标准型UPS备用时间为5-15分钟,长效型为1-8小时 假如您的设备停电时,只需要存盘、退出即可,那选用标准型UPS 假如您的设备停电时,仍须长时间运转,那须选用长效型UPS

五、UPS相关参数计算方法 1、计算和确定相关参数前的注意事项 UPS的配置先要考虑哪些重要用电设备要做电源保护,从而计算出其负载 计算负载容量时只能以负载最大功率计算 所保护之设备均会标示其功率(w)值或电流(A)值 如是功率(W)值÷0.8=V A值 如市电流(A)值×220=V A值 2、UPS和电池容量的计算举例 一个计算机机房有4台PC机,一台服务器,一个网络交换机需要进行2小时电源保护,计算步骤和方法实例如下: A. 总负载功率计算 4台PC机250W X 4 = 1000W 1台服务器700W X 1 = 700W 1台网络交换机100W X 1 =100W 以上合计:1800W B. UPS容量计算(按常用的在线式UPS计算) 在线式UPS一般功率因数为0.8,1800W÷0.8=2250V A 考虑UPS容量的冗余,一般以20%到30%(UPS最佳工作状态是负载70%到80%) UPS容量应该为2250V A X 1.3 = 2925V A,从而可以得出选用3000V A的UPS C. 品牌和型号的确定 建议选择主流的APC品牌 考虑空间放置、价格等问题,在此选择APC SURT3000XLI D. 电池容量的计算 APC SURT3000XLI功率因数为0.8(厂商资料所得) 该UPS实际功率为3000V A X 0.8 = 2400W APC SURT3000XLI UPS的电池直流电压为192V(查资料可以得出) 根据W = U X I,所以I = W ÷ U =2400 ÷ 192 = 12.5A,计算可得电流是12.5A 延时1小时得用12.5AH的电池,现在需要延时2小时,即需要25AH的电池 按市场主流松下电池规格:24AH-12V;38AH-12V;65AH-12V;100AH-12V 根据以上计算可以选用38AH-12V的松下蓄电池一组就可以延时2小时 UPS常用电池电压为12V,而APC SURT3000XLI UPS的电池电压为192V,所以应该需要16节(192V ÷ 12V =16) E. 由此可以得出: 选用APC 3KV A的UPS(APC SURT3000XLI) 配置16节38AH-12V的松下蓄电池 加一个电池箱,可以让受保护的设备延时2小时电源保护 六、UPS日常使用注意事项

UPS后备时间电池计算公式

U P S后备时间电池计算 公式 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

U P S电池放电时间计算方法(逆变效率按90%、12V电池放电终止电压10.5V) 1、计算蓄电池的最大放电电流值: I最大=Pcosф/(η*E临界) 注:P→UPS电源的标称输出功率 cosф→UPS电源的输出功率因数(UPS一般为0.8) η→UPS逆变器的效率,一般为0.88~0.94(实际计算中可以取0.9) E临界→蓄电池组的临界放电电压(12V电池约为10.5V,2V电池约为1.7V) 2、根据所选的蓄电池组的后备时间,查出所需的电池组的放电速率值C,然后根据: 电池组的标称容量=I最大/C 3、由于使用E临界——电池的最低临界放电电压值,所以会导致所要求的电池组的安时容量偏大的局面。按目前的使用经验,实际电池组的安时容量可按下面公式计算: 例如1.10KVAUPS延时60分钟 电池的最大放电电流26.4A=标称功率10000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=26.4A÷0.61C=43.3AH 10KVA延时60分钟,电池配置为32节1组12V44AH。选配时32节12V1组容量≥44AH 例如1.20KVA延时180分钟 电池的最大放电电流52.9A=标称功率20000×0.8÷(0.9效率*32节*10.5V每节电池放电电压) 电池组的标称容量=52.9A÷0.28C=188.5AH 20KVA延时180分钟,电池配置为32节1组12V190AH。选配时32节12V1组容量≥190AH

充电电池的标识方法

充电电池的标识方法 根据IEC标准镍镉镍氢电池的标识由5部分组成 1. 电池种类KR标识镍镉电池HF表示镍氢电池HR表示型镍氢电池 2. 电池尺寸资料包括圆形电池的直径高度方型电池的高度宽度厚度数值之间用斜杠隔开单位mm 3. 放电特性符号L表示适宜放电电流倍率在0.5C以内 M表示适宜放电电流倍率在0.5-3.5C以内 H表示适宜放电电流倍率在3.5-7.0C以内 X表示电池能在7C-15C高倍率的放电电流下工作 4. 高温电池符号用T表示 5. 电池连接片表示CF代表无连接片HH表示电池拉状串联连接片用的连接片HB表示电池带并排串联连接用连接片 例如HF18/07/49表示方形镍氢电池宽为18mm,厚度为7mm高度为49mm KRMT33/62HH表示镍镉电池放电倍率在0.5C-3.5之间高温系列单体电池无连接片直径33mm高度为62mm 根据IEC61960标准二次锂电池的标识如下: 1. 电池标识组成3个字母后跟5个数字圆柱形或6个方形数字 2. 第一个字母表示电池的负极材料I表示有内置电池的锂离子L表示锂金属电极或锂合金电极 3. 第二个字母表示电池的正极材料C基于钴的电极N基于镍的电极M基于锰的电极V基于钒的电极 4. 第三个字母表示电池的形状R表示圆柱形电池L表示方形电池 5. 数字圆柱形电池5个数字分别表示电池的直径和高度直径的单位为毫米高 度的单位为十分之一毫米直径或高度任一尺寸大于或等于100mm时两个尺寸之间应加一条斜线

方型电池6个数字分别表示电池的厚度宽度和高度单位毫米三个尺寸任一个大于或等于100mm时尺寸之间应加斜线三个尺寸中若有任一小于1mm,则在此尺寸前加字母t此尺寸单位为十分之一毫米。 例如: ICR18650表示一个圆柱形二次锂离子电池正极材料为钴其直径约为18mm高约为65mm。 ICR20/1050 ICP083448表示一个方形二次锂离子电池正极材料为钴其厚度约为8mm,宽度约为34mm高约为48mm。 ICP08/34/150表示一个方形二次锂离子电池正极材料为钴其厚度约为8mm,宽度约为34mm高约为150mm。 ICPt73448表示一个方形二次锂离子电池正极材料为钴其厚度约为0.7mm,宽度约为34mm高约为48mm。

电池放电时间计算

电池放电时间计算集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

新电池估算方法: 估计算法:电池容量× 0.8 ÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用0.006,机房里选用0.008 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。 4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到1.8v,也就是只要有一只电池达到1.8v,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以1.8×24=43.2v,即可以放到43.2v算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到1.8v,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(0.5-3.5C)、高倍率(3.5-7.0C)、超高倍率(>7.0C)

电池放电时间计算

电池放电时间计算 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

新电池估算方法: 估计算法:电池容量×÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用,机房里选用 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。

4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到,也就是只要有一只电池达到,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以×24=,即可以放到算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(-3.5C)、高倍率(- 7.0C)、超高倍率(>7.0C) 如:某电池的额定容量为20Ah,若用4A电流放电,则放完20Ah的额定容量需用5h,也就是说以5倍率放电,用符号C/5或0.2C表示,为低倍率。

镍镉-镍氢电池的原理及充电方法

镍镉/镍氢电池的原理及充电方法 一、镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发明了用于电动车的镍铁电池。遗憾的是,由于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在镍电池中开始使用了活性物质。他们将活性物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947年密封型镍镉电池研制成功。在这种电池中,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命长、成本低的镍氢电池,并且于1978年成功地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉带来的污染问题。它的工作电压与镍镉电池完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国的重视,各种新技术层出不穷。镍氢电池刚问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢电池。1992年,日本三洋公司每月可生产200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际先进水平。 二、蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量 ......1.小时 ..。单元电池内活性物质 ....1A..的电流下放电 ..通常用Ah( ...安时 ..).表示,1Ah ...就是能在 的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用的材料和体积决定,因此, 通常电池体积越大,容量越高 .............。与电池容量相关的一个参数是蓄电池的充电电流。蓄电池的充电 ...... 电流通常用充电速率 ...C.为蓄电池的额定容量 .........。例如,用2A电流对1Ah电池充电,充电.........C.表示, 速率就是2C;同样地,用2A电流对500mAh电池充电,充电速率就是4C。 电池刚出厂时,正负极之间的电势差称为电池的标称电压。标称电压由极板材料的电极电 ............. 位和内部电解液的浓度决定。 .............当环境温度、使用时间和工作状态变化时,单元电池的输出电压略 有变化,此外,电池的输出电压与电池的剩余电量也有一定关系 .....................。单元镍镉电池的标称电压约为1.3V(但一般认为是1.25V),单元镍氢电池的标称电压为1.25V。 电池的内阻决定于极板的电阻和离子流的阻抗。在充放电过程中,极板的电阻是不变的,但是,离子流的阻抗将随电解液浓度的变化和带电离子的增减而变化。

相关文档
最新文档