农田灌溉水质标准2005

农田灌溉水质标准2005
农田灌溉水质标准2005

农田灌溉水质标准

农田灌溉水质标准(按照灌溉水的用途,农业灌溉水水质要求分二类:

一类是指工业废水或城市污水作为农业用水的主要水源,并长期利用的灌

区。灌溉量:水田800方/亩年,旱田300方/亩年。二类是指工业废水或城

市污水作为农业用水的补充水源,而实行清污混灌沦灌的灌区。其用量不超

过一类的一半。

内容:中华人民共和国国家标准农田灌溉水质标准

Standards for irrigation water puality

GB5084-2005代替GB5084-92国家环境保护局2005-07-21 批准2006-11-01实施

为贯彻执行《中华人民共和国环境保护法》、防止土壤、地下水和农产

品污染、保障人体健康,维护生态平衡,促进经济发展,特制订本标准。

1 主题内容与适用范围

1.1 主题内容

本标准规定了农田灌溉水质要求、标准的实施和采样监测方法。

1.2 适用范围

本标准适用于全国以地面水、地下水和处理后的城市污水及与城市污水

水质相近的工业废水作水源的农田灌溉用水。

本标准不适用医药、生物制品、化学试剂、农药、石油炼制、焦化和有

机化工处理后的废水进行灌溉。

2 引用标准

GB8978 污水综合排放标准

GB3838 地面水环境质量标准

CJ 18 污水排放城市下水道水质标准

CJ 25.1 生活杂用水水质标准

3 标准分类

本标准根据农作物的需求状况,将灌溉水质按灌溉作物分为三类:

3.1 一类:水作,如水稻,灌水量800m3亩?年

3.2 二类:旱作,如小麦、玉米、棉花等。灌溉水量300m3/亩?年。

3.3 三类:蔬菜,如大白菜、韭菜、洋葱、卷心菜等。蔬菜品种不同,

灌水量差异很大,一般为200~500m3/亩?茬。

4 标准值

农田灌溉水质要求,必须符合表1的规定。

表1 农田灌溉水质标准mg/L

项目水作旱作蔬菜

1 生化需氧量(BOD5) ≤60 100

2 化学需氧量(CODcr) ≤200 300 150

3 悬浮物≤ 150 200 100

4 阴离子表面活性剂(LAS) ≤ 5.0 8.0 5.0

5 凯氏氮≤12 30 30

6 总磷(以P计) ≤ 5.0 10 10

7 水温,℃≤35

8 pH值≤ 5.5~8.5

9 全盐量≤1000(非盐碱土地区)2

000(盐碱土地区)有条

件的地区可以适当放

10 氯化物≤250

11 硫化物≤ 1.0

12 总汞≤0.001

13 总镉≤0.005

14 总砷≤0.05 0.1 0.05

15 铬(六价) ≤0.1

16 总铅≤0.1

17 总铜≤ 1.0

18 总锌≤ 2.0

19 总硒≤0.02

20 氟化物≤ 2.0(高氟区) 3.0(一

般地区)

21 氰化物≤0.5

22 石油类≤ 5.0 10 1.0

挥发酚≤ 1.0

苯≤ 2.5

三氯乙醛≤ 1.0 0.5 0.5 丙烯醛≤0.5

硼≤ 1.0 (对硼敏感作物,

如:马铃薯、笋瓜、韭

菜、洋葱、柑桔等)

2.0 (对硼耐受性

较强的作物,如小麦、

玉米、青椒、小白菜、

葱等)

3.0 (对硼耐受性

强的作物,如:水稻、

萝卜、油菜、甘兰等)

粪大肠菌群数,个/L ≤10000

蛔虫卵数,个/L ≤ 2

4.1 在以下地区,全盐量水质标准可以适当放宽。

4.1.1 具有一定的水利灌排工程设施,能保证一定的排水和地下水径流

条件的地区;

4.1.2 有一定淡水资源能满足冲洗土体中盐分的地区。

4.2 当本标准不能满足当地环境保护需要时,省、自治区、直辖市人民

政府可以补充本标准中未规定的项目,作为地方补充标准,并报国务院环境

保护行政主管部门备案。

5 标准的实施与管理

5.1 本标准由各级农业部门负责实施与管理,环保部门负责监督。

5.2 严格按照本标准所规定的水质及农作物灌溉定额进行灌溉。

5.3 向农田灌溉渠道排放处理后的工业废水和城市污水,应保护其下游

最近灌溉取水点的水质本标准。

5.4 严禁使用污水浇灌生食的蔬菜和瓜果。

6水质监测

6.1 当地农业部门负责对污灌区水质、土壤和农产品进行定期监测和评价。

6.2 为了保障农业用水安全,在污水灌溉区灌溉期间,采样点应选在灌

溉进水口上。化学需氧量(COD)、氰化物、三氯乙醛及丙烯醛的标准数值为一次测定的最高值,其他各项标准数值均指灌溉期多次测定的平均值。

6.3 本标准各项目的检测分析方法见表2。

表2 农田灌溉水质标准选配分析方法

附加说明

本标准由国家环保局科技标准司提出。

本标准由农业部环境保护科研监测所负责起草。

本标准主要起草人王德荣、崔淑贞、徐应明、赵静、杜道灯等。

本标准由国家环境保护局负责解释。

最新渔业水质标准 渔业用水水质标准

最新渔业水质标准渔业用水水质标准 为贯彻执行《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国海洋环境保护法》、《中华人民共和国渔业法》,防止和控制渔业水域水质污染,保证鱼、虾、贝、藻类正常生长、繁殖和水产品的质量,特制订本标准。 1主题内容与适用范围 2 3 4 5 6 2 GB7467水质六价铬的测定二碳酰二肼分光光度法 GB7468水质总汞测定冷原子吸收分光光度法 GB7469水质总汞测定高锰酸钾一过硫酸钾消除法双硫腙分光光度法GB7470水质铅的测定双硫腙分光光度法 GB7471水质镉的测定双硫腙分光光度法

GB7472水质锌的测定双硫腙分光光度法 GB7474水质铜的测定二乙基二硫代氨基钾酸钠分光光度法GB7475水质铜、锌、铅、镉的测定原子吸收分光光度法GB7479水质铵的测定纳氏试剂比色法 GB7481水质氨的测定水杨酸分光光度法 GB7482水质*的测定离子选择电极法 GB11911水质铁、锰的测定火焰原子吸收分光光度法 GB11912水质镍的测定火焰原子吸收分光光度法 3渔业水质要求 3.1渔业水域的水质,应符合渔业水质标准(见表1)。 3.2各项标准数值系指单项测定最高允许值。

3.3标准值单项超标,即表明不能保证鱼、虾、贝正常生长繁殖,并产生危害,危害程度应参考背景值、渔业环境的调查数据及有关渔业水质基准资料进行综合评价。 表1渔业水质标准

4渔业水质保护 4.1任何企、事业单位和个体经营者排放的工业废水、生活污水和有害废弃物,必须采取有效措施,保证最近渔业水域的水质符合本标准。 4.2 4.3 消毒。 5 5.1 5.2 5.3 制订地方补充渔业水质标准,报省级人民政府批准,并报国务院环境保护部门和渔业行政主管部门备案。 5.4排污口所在水域形成的混合区不得影响鱼类洄游通道。 6水质监测 6.1本标准各项目的监测要求,按规定分析方法(见表2)进行监测。

工业循环水主要分析报告指标及方法

附页1 工业循环水主要分析方法 一、水质分析中标准溶液的配制和标定 (一)盐酸标准溶液的配制和标定 取9mL市售含HCl为37%、密度为1.19g/mL的分析纯盐酸溶液,用水稀释至1000mL,此溶液的浓度约为0.1mol/L。 准确称取于270~300℃灼烧至恒重的基准无水碳酸钠0.15g (准确至0.2mg),置于250mL锥形瓶中,加水约50mL,使之全部溶解。加1—2滴0.1%甲基橙指示剂,用0.lmol/L盐酸溶液滴定至由黄色变为橙色,剧烈振荡片刻,当橙色不变时,读取盐酸溶液消耗的体积。盐酸溶液的浓度为 c(HCl) = m×1000 / (V×53.00) mol/L 式中 m——碳酸钠的质量,g; V——滴定消耗的盐酸体积,ml; 53.00——1/2 Na2C03的摩尔质量,g/mol。 (二)EDTA标准溶液的配制和标定 称取分析纯EDTA(乙二胺四乙酸二钠)3.7g于250mL烧杯中,加水约150mL和两小片氢氧化钠,微热溶解后,转移至试剂瓶中,用水稀释至1000mL,摇匀。此溶液的浓度约为0.015mol/L。 (1)用碳酸钙标定EDTA溶液的浓度准确称取于110℃干燥至恒重的高纯碳酸钙0.6g(准确至0.2mg),置于250mL烧杯中,加水100mL,盖上表面皿,沿杯嘴加入l+1盐酸溶液10mL。加热煮沸至不再冒小气泡。冷至室温,用水冲洗表面皿和烧杯内壁,定量转移至250mL容量瓶中,用水稀释至刻度,摇匀。 移取上述溶液25.00mL于400mL烧杯中,加水约150mL,在搅拌下加入10mL 20%氢氧化钾溶液。使其pH>l2,加约10mg钙黄绿素—酚酞混合指示剂①,溶液呈现绿色荧光。立即用EDTA标准溶液滴定至绿色荧光消失并突变为紫红色时即为终点。记下消耗的EDTA溶液的体积。 (2)用锌或氧化锌标定EDTA溶液的浓度准确称取纯金属锌0.3g (或已于800℃灼烧至恒重的氧化锌0.38g),称准至0.2mg,放入250mL烧杯中,加水50mL,盖上表面皿,沿杯嘴加入10mL l+1盐酸溶液,微热。待全部溶解后,用水冲洗表面皿与烧杯内壁,冷却。转移入250mL容量瓶中,用水稀释至刻度,摇匀,备用。 用移液管移取上述溶液25.00mL于250mL锥形瓶中,加水100mL,加0.2%二甲酚橙指示剂溶液1~2滴,滴加20%六次甲基四胺溶液至呈现稳定红色,再过量5mL,加热至60℃左右,用EDTA溶液滴定至由红色突变为黄色时即为终点。记下EDTA溶液消耗的体积。 EDTA溶液的浓度用下式计算: c(EDTA) = m×1000 / (M×V×10) mol/L 式中 m——基准物质的质量,mg; M——基准物质的摩尔质量,g/mol,选用碳酸钙时为100.08,选用金属锌(或氧化锌)时为65.39(或81.39); V——滴定消耗的EDTA溶液体积,mL。 用EDTA滴定法测定水硬度时,习惯使用c (1/2 EDTA),这时 c(1/2 EDTA)=2c (EDTA) (三)硝酸银标准溶液的配制和标定 称取1.6g分析纯硝酸银,加水溶解并稀释至1000mL,贮于棕色瓶中。此溶液的浓度约为0.01mol/L。 准确称取0.6g已于500~600℃灼烧至恒重的优级纯氯化钠(准确至0.2mg)。加水溶解后,移至250mL 容量瓶中并稀释至刻度,摇匀。用移液管移取氯化钠溶液10.00mL于250mL锥形瓶中加水约100mL5%铬酸钾溶液lmL,用硝酸银溶液滴定至砖红色出现时即为终点。 记下硝酸银溶液的体积。 用100mL水作空白,记录空白消耗硝酸银溶液的体积。硝酸银溶液的浓度为 c(AgNO3) = m×1000 / [58.44×(V—V0 ) ×25] mol/L 式中 m——氯化钠的质量,g; 58.44——NaCl的摩尔质量,g/mol; V——滴定氯化钠溶液时消耗硝酸银的体积,mL; V0——滴定空白时消耗硝酸银的体积,mL。 ①1g钙黄绿素和1g酚酞与50g分析纯干燥的硝酸钾混合,磨细混匀。 (四)硝酸汞标准溶液的配制和标定

GB11607-89渔业水质标准

为贯彻执行中华人民共和国《环境保护法》、《水污染防治法》和《海洋环境保护法》、《渔业法》,防止和控制渔业水域水质污染,保证鱼、虾、贝、藻类正常生产、繁殖和水产品的质量,特制订本标准。 1 主题内容与适用范围:本标准适用于鱼虾类的产卵场、索饵场、越冬场、洄游通道和水产增养殖区等海、淡水的渔业水域。 2 引用标准(略) 3 渔业水质要求 3.1 渔业水域的水质,应符合表1(渔业水质标准)。 3.2 各项标准数值系指单项测定最高允许值。 3.3 标准值单项超标,即表明不能保证鱼、虾、贝正常生长繁殖,并产生危害,危害程度应参考背景值、渔业环境的调查数据及有关渔业水质基准资料进行综合评价。 4 渔业水质保护 4.1 任何企业事业单位和个人经营者排放的工业废水、生活污水和有害废弃物,必须采取有效措施,保证最近渔业水域的水质符合本标准。 4.2 未经处理的工业废水、生活污水和有害废弃物严禁直接排入鱼虾类的产卵场、索饵场、越冬场和鱼、虾、贝、藻类的养殖场及珍贵水生动物保护区。 4.3 严禁向渔业水域排放含病源体的污水,如需排放此类污水,必须经过处理和严格消毒。 5 标准实施 5.1 本标准由各级渔政监督管理部门负责监督与实施,监督实施情况,定期报告同级人民政府环境保护部门。 5.2 在执行国家有关污染物排放标准中,如不能满足地方渔业水质要求时,省、自治区、直辖市人民政府可制定严于国家有关污染物排放标准的地方污染物排放标准,以保证渔业水质的要求,并报国务院环境保护部门和渔业行政主管部门备案。 5.3 本标准以外的项目,若对渔业构成明显危害时,省级渔政监督管理部门应组织有关单位制订地方补充渔业水质标准。报省人民政府批准,并报国务院环境保护部门和渔业行政主管部门备案。 5.4 排污口所在水域形成的混合区不得影响鱼类洄游通道。 6 水质监测 6.1 本标准各项目的监测要求,按规定表2(渔业水质分析方法)进行监测。

循环水控制指标及解释

循环水水质控制指标及注释 1、PH:7.0-9.2 在25℃时pH=7.0的水为中性,故pH=7.0-9.2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2、悬浮物:≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3、含盐量:≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关系,其比值1μS/cm的电导率相当于0.55-0.90mg/L的含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大于2500mg/L。 4、Ca2+离子:30≤X≤200 mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的情况下,钙离子浓度的高限不宜大于200mg/L。 5、Mg2+离子: 镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2.5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关系:[Mg2+](mg/L)*[SiO2](mg/L)<15000,式中[Mg2+]以CaCO3计,[SiO2]以SiO2计。

工业循环水水质标准 2

循环冷却水的水质标准表 项目 单位 要求和使用条件 允许值 悬浮物 Mg/L 根据生产工艺要求确定 <20 换热设备为板式,翅片管式, 螺旋板式 <10 PH 值 根据药剂配方确定 7-9.2 甲基橙碱度 Mg/L 根据药剂配方及工况条件确 定 <500 钙离子 Mg/L 根据药剂配方及工况条件确定 30-200 亚铁离子 Mg/L <0.5 氯离子 Mg/L 碳钢换热设备 <1000 不锈钢换热设备 <300 硫酸根离子 Mg/L 对系统中混凝土材质的要求 按现行的<岩土工程勘察规范>GB50021 94的规定执行 硫酸根离子与氯离子之和 <1500 硅酸 Mg/L <175 镁离子与二氧化硅的乘积 <15000 游离氯 Mg/L 在回水总管处 0.5-1.0 石油类 Mg/L <5 炼油企业 <10 注: 甲基橙碱度以碳酸钙计; 硅酸以二氧化硅计; 镁离子以碳酸钙计。 3.1.8密闭式系统循环冷却水的水质标准应根据生产工艺条件确定; 3.1.9敞开式系统循环冷却水的设计浓缩倍数不宜小于3.0.浓缩倍数可按下式计算: N=Q M /Q H +Q W (3.1.9) 式中 N 浓缩倍数; Q M 补充水量((M 3 /H); Q H 排污水量((M 3/H);

Q W 风吹损失水量(M 3 /H). 3.1.10敞开式系统循环冷却水中的异养菌数宜小于5×105个/ML 粘泥量宜小于4ML/M 3 ; 表10-3锅炉加药水处理时的水质标准 表10-4蒸汽锅炉采用锅外化学水处理时的 水质标准 项目 给水 锅水 额定蒸汽压力,MPA 《1 》1 《1.6 >1.6 <2.5 <1 >1 <1.6 >1.6 <2.5 悬浮物, <5 <5 <5 总硬度 <0.03 <0.03 <0.03 总碱度 无过热器 6-26 6-24 6-16 有过热器 <14 <12 PH >7 >7 >7 10-12 10-12 10-12 含油量 <2 <2 <2 溶解氧 <0.1 <0.1 <0.05 溶解固形物 无过热器 <4000 <3500 <3000 有过热器 <3000 <2500 亚硫酸根 10-30 10-30 磷酸根 10-30 10-30 相对碱度(游离氢氧化钠 <0.2 <0.2 <0.2 项目 单位 给水 锅水 悬浮物 Mg/L <20 PH 值 》7 10-12 总硬度 Mg/L <4 溶解固形物 Mg/L <5000 相对碱度 Mg/L 总碱度 Mg/L 8-26

循环水质标准

循环冷却水的水质标准表 硅酸以二氧化硅计; 镁离子以碳酸钙计。 3.1.8密闭式系统循环冷却水的水质标准应根据生产工艺条件确定; 3.1.9敞开式系统循环冷却水的设计浓缩倍数不宜小于3.0.浓缩倍数可按下式计算: N=Q M/Q H+Q W (3.1.9) 式中N 浓缩倍数; Q M 补充水量((M3/H); Q H 排污水量((M3/H); Q W风吹损失水量(M3/H). 3.1.10敞开式系统循环冷却水中的异养菌数宜小于5×105个/ML粘泥量宜小于4ML/M3;

中华人民共和国国家标准 地下水质量标准 Quality standard for ground water GB/T 14848-93 国家技术监督局1993-12-30批准1994-10-01实施 1 引言 c为保护和合理开发地下水资源,防止和控制地下水污染,保障人民身体健康,促进经济建设,特制订本标准。 本标准是地下水勘查评价、开发利用和监督管理的依据。 2 主题内容与适用范围 2.1 本标准规定了地下水的质量分类,地下水质量监测、评价方法和地下水质量保护。 2.2 本标准适用于一般地下水,不适用于地下热水、矿水、盐卤水。 3 引用标准 GB 5750 生活饮用水标准检验方法 4 地下水质量分类及质量分类指标 4.1 地下水质量分类 依据我国地下水水质现状、人体健康基准值及地下水质量保护目标,并参照了生活饮用水、工业、农业用水水质最高要求,将地下水质量划分为五类。 Ⅰ类主要反映地下水化学组分的天然低背景含量。适用于各种用途。 Ⅱ类主要反映地下水化学组分的天然背景含量。适用于各种用途。 Ⅲ类以人体健康基准值为依据。主要适用于集中式生活饮用水水源及工、农业用水。 Ⅳ类以农业和工业用水要求为依据。除适用于农业和部分工业用水外,适当处理后可作生活饮用水。 Ⅴ类不宜饮用,其他用水可根据使用目的选用。 4.2 地下水质量分类指标(见表1) 表1 地下水质量分类指标

冷却水的水质要求内容

冷却水的水质要求 介绍 为了确保冷却水系统不过早堵塞,推荐使用闭路循环的散热器用冷却水,其水质符合下述水质(A)要求。如果取自其他水源,冷却水应定期检查,确保其符合水质(A)的要求。 国内一般要求:

*这里水质(A)是用于循环水,水质(B)是用于补充水。水质会逐渐变差,应定期检查循环水确认其符合水质(A)要求。 对于悬浮机械杂质应≤25 mg/L。 答:空分设备一般用江河湖泊或地下水作为冷却水。这种水中通常都含有悬浮物(泥沙及其他污物)以及钙、镁等重碳酸盐[-Ca(HCO3)2和Mg(HCO3)2],称为硬水。悬浮物较多时,易堵塞冷却器的通道、过滤网及阀门等。钙、镁等重碳酸盐在水温升高时易生成碳酸钙(CaCO3)、碳酸镁(MgCO3)沉淀物,即形成一般所说的水垢。一般水温在45℃以上就要开始形成水垢,水温越高越易结垢。水垢附着在冷却器的管壁、氮水预冷器的填料、喷头或筛孔等处,不仅影响换热,降低冷却效果,而且有碍冷却水或空气的流通,严重时会造成设备故障,例如氮水预冷器带水,使蓄冷器(或切换式换热器)冻结。水垢比较坚硬,附在器壁上不易清除。因此,冷却水最好是经过软化处理。采用磁水器进行软化处理较为简便,效果尚可。清除悬浮物应设置沉淀池。如果冷却水循环使用,有利于水质的软化,但占地面积较多,基建投资较大。 对压缩机冷却水,温度一般要求不高于28℃,排水温度小于40℃。对水质要求为:pH值 6.5~8.0 悬浮物含量不大于50mg/L 暂时硬度不大于17°dH 含油量小于5mg/L 氯离子(C1-) (质量分数) 小于50×10-6 硫酸根(SO4-2) (质量分数) 小于50×10-6 氮水预冷系统供排水为独立循环系统。因为冷却水在塔内温升大,排水温度高,结垢严重,所以要求该系统的补充水尽可能采用低硬度水或软水,其暂时硬度一般应不大于8.5°dH,其他要求与压缩机冷却水相同。 充瓶用高压氧压机气缸的润滑水,应采用蒸馏水或软水。 循环冷却水的水质标准表 循环冷却水的水质标准表

渔业水质标准渔业用水水质标准

最新渔业水质标准渔业用水水质标准为贯彻执行《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》和《中华人民共和国海洋环境保护法》、《中华人民共和国渔业法》,防止和控制渔业水域水质污染,保证鱼、虾、贝、藻类正常生长、繁殖和水产品的质量,特制订本标准。 1 主题内容与适用范围 2 引用标准 3 渔业水质要求 4 渔业水质保护 5 标准实施 6 水质监测 附加说明: 主题内容与适用范围 本标准适用于鱼、虾类的产卵场、索饵场、越冬场、洄游通道和水产增养殖区等海、淡水的渔业水域。 2 引用标准 GB5750 生活饮用水标准检验法 GB6920 水质 PH值的测定玻璃电极法 GB7467 水质六价铬的测定二碳酰二肼分光光度法 GB7468 水质总汞测定冷原子吸收分光光度法

GB7469 水质总汞测定高锰酸钾一过硫酸钾消除法双硫腙分光光度法GB7470 水质铅的测定双硫腙分光光度法 GB7471 水质镉的测定双硫腙分光光度法 GB7472 水质锌的测定双硫腙分光光度法 GB7474 水质铜的测定二乙基二硫代氨基钾酸钠分光光度法 GB7475 水质铜、锌、铅、镉的测定原子吸收分光光度法 GB7479 水质铵的测定纳氏试剂比色法 GB7481 水质氨的测定水杨酸分光光度法 GB7482 水质 *的测定离子选择电极法 GB7485 水质总砷的测定二乙基二硫代氨基甲酸银分光光度法GB7486 水质氰化物的测定第一部分:总氰化物的测定 GB7488 水质五日生化需氧量(BOD5) 稀释与接种法 GB7489 水质溶解氧的测定碘量法 GB7490 水质挥发酚的测定蒸馏后4-氨基安替比林分光光度法GB7492 水质六六六、滴滴涕的测定气相色谱法 GB8972 水质五氯酚钠的测定气相色谱法 GB9803 水质无氯酚的测定藏红T分光光度法 GB11891 水质凯氏氦的测定 GB11901 水质悬浮物的测定重量法 GB11910 水质镍的测定丁二铜肟分光光度法 GB11911 水质铁、锰的测定火焰原子吸收分光光度法 GB11912 水质镍的测定火焰原子吸收分光光度法

工业循环水水质化验项目及方法

循环冷却水PH 值的测定方法 方法:PH 计直接测定 1. 开机前准备 a 、 电极梗旋入电极梗插座,调节电极夹到适当位置。 b 、 复合电极夹在电极夹上拉下电极前端的电极套。 C 、用蒸水清洗电极,清洗后用滤纸吸干。 2. 开机 电源线插入电源插座。 按下电源开关,电源接通后,预热 30min,接着进行标定。 3. 标定 仪器使用前,先要标定,一般来说,仪器在连续使用时,每天要标定一次。 a) b) c) d) e) f) g) (如用混合磷酸定位温度为100C 时,PH=6.92 ); h) 用蒸馏水清洗过的电极,再插入 PH = 4.0 0 (或PH = 9.18)的标准溶液中,调节 斜率旋钮使仪器显示读数与该缓冲溶液中当时温度下的 PH 值一致。 i) 重复(f ) -- (h )直至不用再调节定位或斜率两调节旋钮为止。 j) 仪器完成标定。 4. 测量PH 值 经标定过的PH 计仪器,即可用来测定被测溶液,被测溶液与标定溶液温度相同与否, 测 量步骤也有所不同。 (1) 被测溶液与定位溶液温度相同时,测量步骤如下: ① 用馏水洗电极头部,用被测溶液清洗一次; ② 把电极浸入被测溶液中,用玻璃棒搅拌溶液,使溶液均匀,在显示屏上读出溶液的 PH 值。 (2) 被测溶液和定位溶液温度不相同时,测量步骤如下: ① 电极头部,用被测溶液清洗一次; ② 用温度计测出被测溶液的温度值 ③ 调节 温度”调节旋钮(8),使白线对准补测溶液的温度值。 ④ 把电极插入被测溶液内,用玻璃棒搅溶液,使溶液均匀后读出该溶液的 循环冷却水电导率的测定方法 测定方法:电导率仪直接测量 1. 开机:按下电源开关,预热 30min 。 2. 校准:将“量程”开关旋钮指向“检查”,“常数”补偿调节旋钮指向 “温度” 补偿调节旋钮指向“ 25”刻度线,调节“校准”调节旋钮,使仪器显示 3. 测量: 在测量电极插座处拨去短路插座; 在测量电极插座处插上复合电极; 把选择开关旋 钮调到PH 档; 调节温度补偿旋钮,使旋钮白线对准溶液温度值; 把斜率调节旋钮顺时针旋到底(即调到 100%位置); 把清洗过的电极插入PH = 6.8 6的缓冲溶液中; 调节定位调节旋,使仪器显示读数与该缓冲溶液当时温定下降时的 PH 值相一致 PH 值。 1”刻度线, 100.0 S ? cm -1 0

循环水处理标准GB

新版国标《工业循环冷却水处理设计规范》G B50050-2007释义新版国标《工业循环冷却水处理设计规范》GB50050-2007要实施了,杭州冠洁工业清洗水处理科 技有限公司与您共同学习,共同提高。 国标《工业循环冷却水处理设计规范》GB50050-2007 说明 1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点 1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需要适时进行复审,标准复审周期一般不超过五年”。我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。 1.2 循环冷却水处理技术的发展 我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处

理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。 我国的循环冷却水处理是20 世纪70 年代后期从国外引进磷系配方开始的,至今已取得了巨大的进步,说明我国的水处理药剂应用水平不低,表1 为我国循环冷却水处理配方发展过程。 表1 我国循环冷却水处理配方发展 年代配方 1975~1979 聚磷酸盐/膦酸盐/聚丙烯酸(用酸调pH) 聚磷酸盐/膦酸盐/锌/聚丙烯酸(用酸调pH) 1980~1985 多元醇磷酸酯/锌/磺化木质素(用酸调pH) 1980~1985 膦酸盐/聚合物或共聚物(碱性处理) 硅酸盐或钼酸盐配方 1986~1992 磷酸盐/二元、三元共聚物全有机配方,系统可连续运行1~2 年1993 新型膦酸盐及新型共聚物开始进入市场,碱性处理比重在提高 1998 开始开发无磷无金属配方 目前循环冷却水处理已经在我国各个行业的循环水系统中得到应用。不论是国产

循环水水质控制指标及注释

序号项目控制指标注释 1 PH 7.0-9.2 在25℃时pH=7.0的水为中性,故pH=7.0-9.2的水大体上属于中性或微碱性的范围;冷却水的腐蚀性随pH 值的上升而下降;循环水的pH值低于这一范围时,水的腐蚀性将增加,造成设备的腐蚀;循环水的pH值高 于这一范围时,则水的结垢倾向增大,容易引起换热器的结垢。 2 悬浮物≤10mg/L 悬浮物会吸附水中的锌离子,降低锌离子在水中的浓度;一般情况下,循环冷却水的悬浮物浓度或浊度不应大 于20mg/L,当使用板式、翅片管式或螺旋板式换热器时,悬浮物浓度或浊度不宜大于10mg/L。 3 含盐量≤2500mg/L 含盐量也可通过电导率来间接表示,天然淡水的电导率通常在50-500μS/cm;电导率与含盐量大致成正比关 系,其比值1μS/cm的电导率相当于0.55-0.90mg/L的 含盐量;在含盐量高的水中,Cl-和SO42-的含量往往较高,因而水的腐蚀性较强;含盐量高的水中,如果Ca2+、 Mg2+和HCO3-的含量较高,则水的结垢倾向较大;投加缓蚀剂、阻垢剂时,循环冷却水的含盐量一般不宜大

于2500mg/L。 4 Ca2+离 子30≤X≤200mg/L 从腐蚀的角度看,软水虽不易结垢,但其腐蚀性较强,因此循环水中钙离子浓度不宜小于30mg/L;从结垢的角度看,钙离子是循环水中最主要的成垢阳离子,因此循环水中钙离子浓度也不宜过高;在投加阻垢分散剂的 情况下,钙离子浓度的高限不宜大于200mg/L。 5 Mg2+离 子镁离子也是冷却水中一种主要的成垢阳离子,循环水中镁离子浓度不宜大于60mg/L或2.5mmol/L(以Mg2+计);由于镁离子易与循环水中的硅酸根生成类似于蛇纹石组成的不易用酸除去的硅酸镁垢,故要求循环水中镁离子浓度遵从以下关 系:[Mg2+](mg/L)*[SiO2](mg/L)<15000式中[Mg2+ ]以CaCO3计,[SiO2]以SiO2计 6 铜离子浓 度 0.1mg/L 循环水中的铜离子会引起钢和铝的局部腐蚀,因此循环水中的铜离子浓度不宜大于0.1mg/L。 7 铝离子浓≤0.5mg/L 天然水中铝离子的含量较低,循环水中的铝离子往往是由于补充水在澄清过程中添加铝盐作混凝剂而带入的;

空调冷却水水质实用标准化DB31

空调冷却水水质标准DB31/T143-94 工业冷却水水质规GB50050-2007

SO 4 2-+Cl-mg/l ≤2500 硅酸(以SiO 2 计)mg/l ≤175 Mg2+×SiO 2 (Mg2+以CaCO 3计) mg/l PH≤8.5≤5000 游离氯mg/l 循环回水总管处0.2~1.0 NH 3 -N mg/l 铜合金换热设备≤1 ≤10 石油类mg/l 非炼油企业≤5 炼油企业≤10 COD Cr mg/l ≤100 中央空调冷却水 中央空调冷却水处理 中央空调系统通过冷冻水循环、制冷剂循环和冷却水循环。冷却水多为开放式系统,冷冻水与采暖水为封闭式。目前,高层建筑或封闭式厂房的冷冻水与采暖水多为同一系统,在夏季走冷冻水,在冬季走采暖水。

图表1循环水流程图 中央空调水系统的用水通常分为两类,即未经过任何处理的自来水和软化水。水中对设备主要产生影响的因素分别为硬度、碱度、微生物、pH值、Cl-、氧含量等。自来水因地区不同而水质变化较大,在水的循环过程中,硬度和碱度是造成结垢的主要因素,而Cl-、低pH、溶解氧、生物粘泥是造成腐蚀的罪魁祸首。冷却塔管理 开放式冷却塔从空气吸入灰尘、泥土、烟灰、有机物碎片和其它各种各样的物质。进入冷却塔中的空气中的颗粒物会被冷却水洗涤下来,进入循环水中,并逐渐浓缩。冷却塔周围的空气环境严重影响冷却水的质量,比如土建、风向、空气污染程度等,因此,做好冷却塔的管理非常重要,做好定期的清扫工作。如果灰尘比较大,就需要循环水的旁滤处理,进行水质净化。 小资料:每立方厘米中含有100,000个以上的颗粒物,在大城市附近是很正常的。Clive Broadbent在1992年ASHRAE(美国取暖、制冷和空调工程师协会)年会上报道,“一座200冷吨的冷却塔在一个季节,从空气和补加水中吸收的颗粒物在600磅以上”(ASHRAE手册,1996)。 结垢控制---中央空调主机(蒸发器、冷凝器管理)管理 由于冷却塔水的蒸发,水不断浓缩,水质矿物质含量逐渐增多,结垢倾向加大,可能会造成空调主机热交换效率下降,日常表现为:主机开机后,在短时间温度不能降低到适宜温度;主机的工作时间延长,开机台数增多;主机报警等故障。因此,需要对主机定期的清洗。 另外一个重要问题,就是换热器泄露,造成主机严重故障。如果主机换热器表面结垢,这就为水中微生物的附着创造了条件,一些厌氧菌会产生硫酸或盐酸,在氯离子Cl-的作用下,在换热器的表面部位,由慢慢地腐蚀逐渐变为加速腐蚀,造成设备泄露,换热器报废。水中细菌、微生物含量以及水的浊度,是控制腐

工业循环水冷却设计规范

工业循环水冷却设计规范(2009-05-16) 目录 第一章总则 第二章冷却塔 第三章喷水池 第四章水面冷却 附录本规范用词说明 附加说明 第一章总则 第1.0.1条本规范适用于新建和扩建的敞开式工业循环水冷却设施的设计。 第1.0.2条工业循环水冷却设施的设计应符合安全生产、经济合理、保护环境、节约能源、节约用水和节约用地,以及便于施工、运行和维修等方面的要求。 第1.0.3条工业循环水冷却设施的设计应在不断总结生产实践经验和科学试验的基础上,积极开发和认真采用先进技术。 第1.0.4条工业循环水冷却设施的类型选择,应根据生产工艺对循环水的水量、水温、水质和供水系统的运行方式等使用要求,并结合下列因素,通过技术经济比较确定: 一、当地的水文、气象、地形和地质等自然条件; 二、材料、设备、电能和补给水的供应情况; 三、场地布置和施工条件; 四、工业循环水冷却设施与周围环境的相互影响。 第1.0.5条工业循环水冷却设施应靠近主要用水车间;并应避免修建过长的给水排水管、沟和复杂的水工建筑物。 第1.0.6条工业循环水冷却设施的设计除应执行本规范外,尚应符合现行有关的国家标准、规范的规定。 第二章冷却塔 第一节一般规定 第2.1.1条冷却塔在厂区总平面布置中的位置应符合下列规定:

一、冷却塔宜布置在厂区主要建筑物及露天配电装置的冬季主导风向的下风侧; 二、冷却塔应布置在贮煤场等粉尘污染源的全年主导风向的上风侧; 三、冷却塔应远离厂内露天热源; 四、冷却塔之间或冷却塔与其他建筑物之间的距离除应满足冷却塔的通风要求外,还应满足管、沟、道路、建筑物的防火和防爆要求,以及冷却塔和其他建筑物的施工和检修场地要求; 五、冷却塔的位置不应妨碍工业企业的扩建。 第2.1.2条当环境对冷却塔的噪声有限制时,宜采取下列措施: 一、机械通风冷却塔应选用低噪声型的风机设备; 二、冷却塔周围宜设置消声设施; 三、冷却塔的位置宜远离对噪声敏感的区域。 第2.1.3条冷却塔的集中或分散布置方案的选择,应根据使用循环水的车间数量、分布位置及各车间的用水要求,通过技术经济比较后确定。第2.1.4条冷却塔一般可不设备用。冷却塔检修时应有不影响生产的措施。 第2.1.5条冷却塔的热力计算宜采用焓差法或经验方法。 第2.1.6条冷却塔的热交换特性宜采用原型塔的实测数据。 当缺乏原型塔的实测数据时,可采用模拟塔的试验数据,并应根据模拟塔的试验条件与设计的冷却塔的运行条件之间的差异,对模拟塔的试验数据进行修正。 第2.1.7条冷却塔的通风阻力系数宜采用原型塔的实测数据。当缺乏实测数据时,可按经验方法计算。 第2.1.8条冷却塔的最高冷却水温不应超过生产工艺允许的最高值;计算冷却塔的最高冷却水温的气象条件应符合下列规定: 一、根据生产工艺的要求,宜采用按湿球温度频率统计方法计算的频率为5%~10%的日平均气象条件; 二、气象资料应采用近期连续不少于五年,每年最热时期三个月的日平均值。 第2.1.9条计算冷却塔的各月的月平均冷却水温时,应采用近期连续不少于五年的相应各月的月平均气象条件。

渔业水质标准

渔业水质标准 GB11607-89 (1989年8月12日国家环境保护局批准1990年3月1日实施) 为贯彻执行《中华人民共和国环境保护法》、《中华人民共和国水污染防止法》和《中华人民共和国海洋环境保护法》、《中华人民共和国渔业法》,防止和控制渔业水域水质污染,保证鱼、虾、贝、藻类正常生长、繁殖和水产品的质量,特制订本标准。 1主题内容与适用范围 本标准适用于鱼、虾类的产卵场、索饵场、越冬场、洄游通道和水产增养殖区等海、淡水的渔业水域。 2引用标准 GB5750 生活饮用水标准检验法 GB6920 水质PH值的测定玻璃电极法 GB7467 水质六价铬的测定二碳酰二肼分光光度法 GB7468 水质总汞测定冷原子吸收分光光度法 GB7469 水质总汞测定高锰酸钾一过硫酸钾消除法双硫腙分光光度法GB7470 水质铅的测定双硫腙分光光度法 GB7471 水质镉的测定双硫腙分光光度法 GB7472 水质锌的测定双硫腙分光光度法 GB7474 水质铜的测定二乙基二硫代氨基钾酸钠分光光度法 GB7475 水质铜、锌、铅、镉的测定原子吸收分光光度法 GB7479 水质铵的测定纳氏试剂比色法 GB7481 水质氨的测定水杨酸分光光度法 GB7482 水质*的测定离子选择电极法 GB7485 水质总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB7486 水质氰化物的测定第一部分:总氰化物的测定 GB7488 水质五日生化需氧量(BOD5)稀释与接种法 GB7489 水质溶解氧的测定碘量法 GB7490 水质挥发酚的测定蒸馏后4-氨基安替比林分光光度法 GB7492 水质六六六、滴滴涕的测定气相色谱法 GB8972 水质五氯酚钠的测定气相色谱法 GB9803 水质无氯酚的测定藏红T分光光度法 GB11891 水质凯氏氦的测定 GB11901 水质悬浮物的测定重量法 GB11910 水质镍的测定丁二铜肟分光光度法 GB11911 水质铁、锰的测定火焰原子吸收分光光度法 GB11912 水质镍的测定火焰原子吸收分光光度法 3渔业水质要求 3.1渔业水域的水质,应符合渔业水质标准(见表1)。 3.2各项标准数值系指单项测定最高允许值。 3.3标准值单项超标,即表明不能保证鱼、虾、贝正常生长繁殖,并产生危害,危害程度应参考背景值、渔业环境的调查数据及有关渔业水质基准资料进行综合评价。

循环水处理标准GB50050-2007

新版国标《工业循环冷却水处理设计规范》GB50050-2007释义 新版国标《工业循环冷却水处理设计规范》GB50050-2007要实施了,杭州冠洁工业清洗水处理科 技有限公司与您共同学习,共同提高。 国标《工业循环冷却水处理设计规范》GB50050-2007 说明 1. 新版国标《工业循环冷却水处理设计规范》GB50050-2007规范修订的背景、意义及其特点 1.1 我国《标准化法实施条例》规定:“标准实施后,制定标准的部门应按科学技术的发展和经济建设的需精品文档,超值下载 要适时进行复审,标准复审周期一般不超过五年”。我们这本《工业循环冷却水处理规范》第一版是GBJ80-83,第二版,也就是现行版GB50050-95,发布至今已达12年之久,远远超过了标准化的规定,所以要进行修订。 1.2 循环冷却水处理技术的发展 我国循环冷却水处理药剂及技术虽然起步较晚,但紧跟国外的发展趋势,并结合国情进行研究开发和推广应用,具有起点高、发展快的特点。在消化吸收的基础上,先后开发出HEDP、ATMP、EDTMP、PAA、DDM(G4)、聚马、马丙、聚季铵盐。瞄准具有70 年代水平的聚磷酸盐/膦酸盐/聚合物/杂环化合物的循环冷却水处理“磷系复合配方”,进行研究开发,填补了国内空白,满足了大化肥循环冷却水处理药剂国产化的要求。80 年代,随着石油装置和大型冶金装置的引进,对栗田、Nalco Drew、片山等国外著名公司的循环水处理剂及冷却水处理技术进行消化吸收。一大批新的循环水处理剂配方相继开发成功,使我国的循环冷却水处理技术又取得了重要进展,在磷系复合配方的基础上,开发出“磷系碱性水处理配方”、“全有机水处理配方”、“钼系水处理配方”和“硅系水处理配方”。实现了循环冷却水在自然平衡pH 条件下的碱性条件下运行,这类水处理配方除具有“磷系复合配方”的优点外,还避免了加酸操作带来的失误,深受用户的欢迎。90 年代以来,随着水处理技术的进一步提高,国内水处理剂及技术开始出口。同时新型膦酸盐、新型水处理杀生剂的不断开发成功,水处理药剂的前沿研究与国外水平基本接近。“全有机水处理剂配方”应用比重不断提高,与此同时,低磷、无磷、无金属水处理配方不断推向市场。 我国的循环冷却水处理是20 世纪70 年代后期从国外引进磷系配方开始的,至今已取得了巨大的进步,说明我国的水处理药剂应用水平不低,表1 为我国循环冷却水处理配方发展过程。 表1 我国循环冷却水处理配方发展 年代配方 1975~1979 聚磷酸盐/膦酸盐/聚丙烯酸(用酸调pH) 聚磷酸盐/膦酸盐/锌/聚丙烯酸(用酸调pH) 1980~1985 多元醇磷酸酯/锌/磺化木质素(用酸调pH) 1980~1985 膦酸盐/聚合物或共聚物(碱性处理) 硅酸盐或钼酸盐配方 1986~1992 磷酸盐/二元、三元共聚物全有机配方,系统可连续运行1~2 年 1993 新型膦酸盐及新型共聚物开始进入市场,碱性处理比重在提高 1998 开始开发无磷无金属配方 目前循环冷却水处理已经在我国各个行业的循环水系统中得到应用。不论是国产装置还是引进装置,其使用的循环冷却水药剂绝大部分已经国产化,我们已经有能力解决各种条件苛刻的冷却水系统中所遇到的腐蚀、结垢、生物粘泥等问题。 从90 年代开始,我国在循环冷却水处理监控技术开发方面也开展了一些工作,如示踪和远程控制技术已取得初步成果,冷却水系统成垢过程专家系统已开发成功。但在这些方面我们也有较大差距,循环冷却水系统的计算机控制、自动化管理等方面没有投入很大的开发力量,影响了水处理应用技术水平的提高。我国循环冷却水处理技术在某些方面具有较高水平,如我国的膦酸盐类水处理剂的质量已明显提高,接近或达到了国际先进水平,因此已开始大量出口。然而就总体而言,与国际先进水平的差距仍很明显:重点

敞开式循环冷却水水质要求

敞开式循环冷却水水质要求 杂质名称允许含量过量时的危害含盐量(以导电率 计) 投加缓蚀阻垢剂时,一般不宜大于3000μS/cm腐蚀或结垢 Ca2+ (以CaCO3计)根据碳酸钙饱和指数和磷酸钙饱和指数进行控 制,一般循环水中要求≤500mg/L,≥75 mg/L; 全有机系统≥150 mg/L,使用多元醇和木质素 磺酸盐分散剂时≤1000 mg/L,Ca2+× SO42-( mg/L,均以CaCO3计)≤150000,Ca2+×CO32- (mg/L,均以CaCO3计)≤1200 结垢 Mg2+ (以CaCO3计)Mg2+( mg/L) ×SiO2( mg/L)<15000 产生类似蛇绞石组 成,黏性很强的污垢 铁和锰(总铁量)补充水中(特别在预膜时)≤L 催化结晶过程,本身可成为黏性很强的污垢,导致局部腐蚀 铜离子补充水中≤L(碳钢设备),≤40μg/L(铝材) 产生点蚀,导致局部 腐蚀 铝离子补充水中≤3mg/L 起黏结作用,促进污 泥沉积 总碱度 (以CaCO3计)根据碳酸钙饱和指数进行控制,一般不宜超过 500mg/L,磷系配方需>50mg/L,全有机配方 需>100mg/L;一般情况下要求CO32-≤5mg/L,低 pH系统HCO3—≤200mg/L,高效分散剂系统HCO3 —≤500mg/L 结垢 CL— 在使用不锈钢较多的系统中≤300mg/L,碳钢设 备系统中≤1000mg/L 强烈促进腐蚀反映,加速局部腐蚀,主要

是缝隙腐蚀、点蚀和 应力腐蚀 SO42- SO42+ CL—≤1500mg/L,Ca2+×SO42-( mg/L,均以 CaCO3计) ≤150000 腐蚀 P O43-根据磷酸盐饱和指数进行控制引起磷酸三钙沉淀,在高温下会缓慢转化成羟基磷灰石 浊度(悬浮物)一般要求≤20mg/L,使用板式、翅片式和螺旋 式换热器宜≤10mg/L 污泥沉积 SiO2 ≤175mg/L,Mg2+( mg/L,CaCO3计) ×SiO2( mg/L) <15000 污泥沉积,硅垢油≤5mg/L,炼油企业≤10mg/L污泥沉积 细菌总数(异氧菌数)循环水中总菌数<5×105个/ml;污泥中的总菌 数:循环水中总菌数<100:1 微生物繁殖

无公害食品淡水养殖用水水质标准

无公害食品淡水养殖用水水质标准无公害食品淡水养殖用水水质标准 前言 本标准的全部技术内容为强制性。 本标准在GB 11607-1989《渔业水质标准》的基础上进一步规定了淡水养殖用水中可引起残留的重金属、农药和有机物指标。 本标准作为检测、评价养殖水体是否符合无公害水产品养殖环境条件要求的依据。 本标准由中华人民共和国农业部提出。 本标准起草单位:湖北省水产科学研究所。本标准主要起草人:张汉华、朱江、葛虹、李威、张扬。 1 范围本标准规定了淡水养殖用水水质要求、测定方法、检验规则和结果判定。 本标准适用于淡水养殖用水。 2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB,T 5750 生活饮用水标准检验法 GB,T 7466 水质总铬的测定 GB,T 7468 水质总汞的测定冷原子吸收分光光度法 GB,T 7469 水质总汞的测定高锰酸钾-过硫酸钾消解法双硫腙分光光度法GB,T 7470 水质铅的测定双硫腙分光光度法

GB,T 7471 水质镉的测定双硫腙分光光度法 GB,T 7472 水质锌的-测定双硫腙分光光度法 GB,T 7473 水质铜的测定 2,9-二甲基-1,10-菲哕啉分光光度法 GB,T 7474 水质铜的测定二乙基二硫代氨基甲酸钠分光光度法 GB,T 7475 水质铜、锌、铅、镉的测定原子吸收分光光度法 GB,T 7482 水质氟化物的测定茜素磺酸锆目视比色法 GB,T 7483 水质氟化物的测定氟试剂分光光度法 GB,T 7484 水质氟化物的测定离子选择电极法 GB,T 7485 水质总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB,T 7490 水质挥发酚的测定蒸馏后4-氨基安替比林分光光度法 GB,T 7491 水质挥发酚的测定蒸馏后溴化容量法 GB,T 7492 水质六六六、滴滴涕的测定气相色谱法GB,T 8538 饮用天然矿泉水检验方法 GB 11607 渔业水质标准 GB,T 12997 水质采样方案设计技术规定 GB,T 12998 水质采样技术指导 GB,T 12999 水质采样样品的保存和管理技术规定 GB,T 13192 水质有机磷农药的测定气相色谱法 GB,T 16488 水质石油类和动植物油的测定红外光度法水和废水监测分析方法 3 要求 3(1 淡水养殖水源应符合GB 11607规定。 3(2 淡水养殖用水水质应符合表l要求 表1 淡水养殖用水水质要求序号项目标准值 1 色、臭、味不得使养殖水体带有异色、异臭、异味 2 总大肠菌群,个/L ?5000 3 汞,mg/L ?0(0005

相关文档
最新文档