冷却塔爆破拆除方案

冷却塔

爆破拆除方案

目录

一、编制依据 (1)

二、工程概况 (1)

三、工程重难点及方案选择 (4)

四、爆破缺口和爆破参数的设计 (5)

4.1 爆破缺口的设计 (5)

4.2 预处理 (5)

4.3 爆破参数的设计 (6)

五、爆破器材选择与起爆网路设计 (9)

5.1 爆破器材选择 (9)

5.2 起爆网路设计 (9)

六、安全技术校核 (9)

6.1 爆破振动校核 (10)

6.2 塌落振动校核 (11)

6.3 减小爆破振动与触地振动的措施 (13)

6.3 爆破飞石的安全防护问题 (13)

6.4 爆破振动监测 (14)

七、施工技术设计 (15)

7.1 钻孔 (15)

7.2装药、填塞和连接起爆网路 (16)

7.3 飞石及粉尘防护、警戒和起爆 (16)

八、脚手架的搭设 (17)

九、施工机具、仪表及器材表 (19)

十、爆破施工组织设计 (20)

十一、文明施工措施 (21)

十二、环保措施 (22)

冷却塔爆破拆除方案

一、编制依据

1、GB6722-2003《爆破安全规程》;

2、《民用爆炸物品管理条例》;

3、《建筑施工扣件式钢管脚手架安全技术规范》;

4、项目建设单位提供的图纸、资料;

5、现场踏勘情况。

二、工程概况

待拆除冷却塔塔高60m,其中塔体部分高54.2m,塔体顶部直径26m,底部直径41m,塔壁呈旋转双曲面形,最大壁厚0.45m,最小壁厚0.12m。塔体由底部32对人字柱支撑,人字柱高5.8m,截面积0.25m×0.40。人字柱坐落在底部水池边缘,水池直径为47.6m。塔体自重约2400t,该冷却塔结构长径比较小,重心低,属于钢筋混凝土薄壳结构。内部有圈梁、导水槽、塑料除水器、铁篦子等。

冷却塔周围环境:北面17m处为发电厂分析室,160m处为DCS(分布式控制系统),高差约为6.6m;西面27m处为发电厂地磅房;东、南两面为场平范围,几百米范围内都是空地。(见下图)

空 地

冷却塔周边环境示意图

堆煤场分析室

厂区大门地磅房

倾倒方向

倒塌

中心线

213.75°

待拆除的冷却塔

冷却塔内部构造

三、工程重难点及方案选择

3.1 工程重、难点

(1)冷却塔的爆破拆除期间,不能影响厂区的正常生产活动,尤其要对DCS(分布式控制系统)进行重点保护,这是此次爆破施工的重点;

(2)该冷却塔属于旋转双曲面薄壁结构的高耸建筑物,结构长径比较小,内部结构复杂,预处理部分量大,脚手架的搭设区域狭窄,给搬运钢管和搭设脚手架造成不小困难;

(3)冷却塔结构复杂,尺度很大,目前拆除案例不多,在重庆是第一次拆除类似建筑物,技术难度大;

(4)由于本次工程量大,周边环境较复杂,爆破的安全组织工作难度大。

3.2 方案选择

由于冷却塔的复杂结构,采用人工和机械方式不安全,从安全性和经济效益方面考虑,采用爆破的方式拆除。可供选择的爆破方案有原地坍塌和定向倒塌两种方式。为确保周边建筑物的安全和冷却塔充分解体,采用向东南侧倾倒、逐段解体的方式,为确保倒塌方向的准确性,进行了精密的爆破组织设计,同时采用经纬仪进行测量定位。

四、爆破缺口和爆破参数的设计

4.1 爆破缺口的设计

该冷却塔共32对人字柱,每对人字柱对应的圆心角为11.25°,设计的倒塌中心线落在一对人字柱柱基上,以此为中心柱向两边对称爆破拆除共1+9+9=19对人字柱时,爆破切口圆心角为213.75°,切口高为人字柱、圈梁和预切窗口高度之和5.8+1.3+8.0=15.1m。为确保冷却塔能顺利的向东南侧倾倒,并有足够的支撑不发生下坐和后坐,爆破切口设计圆心角为213.75°,即19对人字柱的弧长长度,爆破切口上部直径为35m长72.12 m,下部长94.7m。

4.2 预处理

为减小一次齐爆药量,降低爆破规模,提高爆破安全性,使冷却塔顺利坍塌和形成良好的破碎效果,在保证结构安全的前提下,进行以下预拆除:(1)在爆破切口上部(圈梁上方),预先用炮机拆打出高为8m、宽为2m 的10个窗口,窗口之间预留支撑塔壁6m。为了预处理后塔体的受力均衡,爆破切口内开窗部分的中心线落在人字柱柱基的正上方,而保留支撑塔壁部分由柱基相邻的两对人字柱对称支撑,因此,按爆破拆除19对人字柱统计,窗口为10个,两端的窗口同时作为定向窗使用。在爆破切口上方(圈梁上部),预先用炮机拆打出高为8m、宽为2m的10个窗口,窗口之间预留6m宽的支撑塔壁。炮机施工时,要由安全技术人员现场指挥作业;在支

撑侧的13对人字柱的每对人字柱底部打一个孔(不装药),使其容易在爆破倒塌瞬间形成支撑铰链。

(2)用炮机拆除冷却塔内部中心井、铁栏杆、塑料除水器和塑料填料等。(3)爬梯和避雷针在缺口内的部分全部割断。

(4)进水管和其他附属设施预先采用人工或机械的方式予以拆除,并把冷却塔底部积水抽干。

(5)装药完毕,拆除冷却塔内部铁篦子、导水槽、竖直立柱。

4.3 爆破参数的设计

爆破切口范围内有19对人字柱、高8m宽6m的11个薄壁结构的支撑塔壁、高1.3m厚0.45m的圈梁等结构。冷却塔预拆除后的爆破切口范围内保留的支撑塔壁在4.3m和7.3m高处进行钻孔,保证在塔体倒塌时该部分保留塔壁折断不形成支撑;而圈梁只需在预拆除窗口下方进行钻孔将其炸断即可破坏其支撑,人字柱在其底端和顶端各打五排孔及中间打一排孔破坏其支撑。

(1)炮孔直径:

d=40mm

(2)最小抵抗线:

冷却塔支撑塔壁4.3m和7.3m高处的壁厚分别为0.22m和0.18m

处进行了钻孔(δ表示厚度)

塔壁:w1=0.5·δ1=0.5×0.22=0.11m;

w2=0.5·δ2=0.5×0.18=0.09m;

圈梁:w3=0.5·δ3=0.5×0.42=0.21m;

人字柱:w4=0.5·δ4=0.5×0.25=0.125m。

3)、炮孔深度h

塔壁:h1=0.68·δ1=0.68×0.22=0.15m;

h2=0.67·δ2=0.67×0.18=0.12m;

圈梁:h3=0.64·δ3=0.64×0.42=0.27m;

人字柱:h4=0.68·δ4长边=0.68×0.4=0.28m。

4)、炮孔间距a

塔壁:a1=1.5δ1=0.33m;

a2=1.5δ2=0.27m

圈梁:a3=1.45w3=1.45×0.21=0.3m;

人字柱:a3=1.5w3=1.5×0.2=0.3m。

5)、炮孔排距b

塔壁:b1=a1=0.33m;

b2=a2=0.27m

圈梁:b3=a3=0.3m。

6)、单孔装药量:(q取70/W)

塔壁:Q1=( q1·a1·b1+ q2 ·a1·b1·δ1) ·f

=(70/W1×0.33×0.33+ 150×0.33×0.33×0.22)×0.85

≈60g

Q2=( q1·a2·b2+ q2 ·a2·b2·δ2) ·f

=(70/W2×0.27×0.27+ 150×0.27×0.27×0.18)×0.85

≈55g

圈梁:Q3=( q1·a3·b3+ q2 ·a3·b3·δ3) ·f

=(70/W3×0.3×0.3+ 150×0.3×0.3×0.42)×0.85

≈60g

人字柱:采用两层间隔装药,每个药包的装药量为

Q4=( q1·δ4·B+ q2 ·a4·B·δ4) ·f

=(70/W4×0.2×0.25+ 150×0.3×0.2×0.25)×0.85

≈30g

单孔装药量为:30g×2=60g

7)总炮孔数:

N=S/a≈1500个

S为打孔区域总面积,a为单位面积炮孔数。

8)设计总药量:

Q=Q1N≈88kg

Q1为单孔装药量

9)雷管总数:导爆管雷管2000发,瞬发电雷管200发。

爆破参数详见下表:

冷却塔爆破参数表

炮孔部位厚度/m 孔深/m 孔间距/m 孔排距/m 单孔装药量/kg 炮孔数/个总药量/kg

塔壁0.22 0.20 0.20 0.20 0.06 540 32.4 0.18 0.12 0.18 0.18 0.055 360 19.8

圈梁0.42 0.27 0.30 0.30 0.06 240 14.4 人字柱0.40 0.28 0.30 / 0.06 360 21.48 合计/ 1500 88

五、爆破器材选择与起爆网路设计

5.1 爆破器材选择

炸药选用2号岩石乳化炸药;选用脚线不得小于3m的毫秒延期非电雷管的1、3、5段;采用瞬发电雷管起爆非电雷管。

5.2 起爆网路设计

将爆破切口内分成三个区域起爆,中间三对人字柱及其垂直对应的上方区域用1段毫秒导爆管雷管起爆,中间区域两侧各三对人字柱及其对应区域用3段起爆,爆破切口两边各五对人字柱及其对应区域用5段起爆。导爆管每12根为一组,为保证所有炮孔充分起爆,采用电网路与非电网路组合网路起爆,每组导爆管雷管用两发电雷管的复式电网路起爆(见爆破起爆分段示意图)。

装药前进行1:1网路试验,检验爆破器材及网路可靠性。

图5、起爆网络图

六、安全技术校核

为确保DCS(分布式控制系统)和分析室的绝对安全,需对由爆破和塔体塌落在DCS(分布式控制系统)处和分析室处产生的振动进行校核。

6.1 爆破振动校核

6.1.1 DCS (分布式控制系统)处

1)爆破振动校核

根据《爆破安全规程》中关于爆破安全振动速度的计算公式:

α

????? ??=R Q KK v c 31

1 式中:Q ——单响药量,Kg ,取37kg ;

R ——爆区边缘至被保护目标的距离,m (取160m );

V 1——质点峰值振速,cm/s ;

K ——修正系数,0.25~1.0,

K c = 30~500,取为100;

α—地震波衰减系数,α=1.5~2.0,取2。

经计算DCS 处的爆破振动: v 1 = 1cm/s

炸药爆炸引起的振动可按下式计算:

57.131

1.32????? ??=R Q v b

式中:

v b —质点振动速度,cm/s ;

Q —最大一段药量,Q =37kg ;

R —至药包几何中心的距离,m ,取160m 。

经计算DCS 处的爆破振动: v b =0.7cm/s

可见,由爆破在DCS (分布式控制系统)处产生的振速满足《爆破安

全规程》的要求。

6.1.2 分析室处

对17m 处的分析室,其17m 为冷却塔最底端支撑侧边沿离分析室的距离,而实际上爆破区域的药包中心离分析室的距离应为17m + 22.78m=39.78m ,需对分析室处的振动进行校核,其安全允许振速按照《爆破安全规程》GB6722—2003的规定,对周边建筑的振速控制在2~3cm/s 以下。

根据《爆破安全规程》中关于爆破安全振动速度的计算公式(R 取39.78m):

α

????? ??=R Q KK v c 311 经计算分析室处爆破振动: v 1 = 0.35cm/s

炸药爆炸引起的振动按下式计算:

57.131

1.32????? ??=R Q v b

经计算分析室处爆破振动: v b =0.312cm/s

可见,由爆破在分析室处产生的振速要小于《爆破安全规程》允许的安全振动。

6.2 塌落振动校核

6.2.1 DCS (分布式控制系统)处

根据塌落振动速度公式:

βσ))((

3

1MgH

R K V t = 式中:v t —触地引起的地面质点振速,cm/s ;

Mgh —触地冲量,(式中:m 为同时倒地的建筑物质量,m =2400t ;g

—重力加速度,9.8m/s 2;h —建筑物重心高度,取28m );

K t —衰减参数,取1.12,

β—衰减参数,取-1.66

R —触地边缘至被保护目标的距离,取160m 。

σ—冷却塔爆破后解体构件混凝土破坏强度,包含地面介质破坏的

折合强度,以混凝土结构破坏为主一般取值10MPa

经计算: v t =0.12cm/s

可见,由塔体塌落在DCS (分布式控制系统)处产生的振速要小于人在DCS (分布式控制系统)处走路产生的振动。

因此,对冷却塔进行爆破,完全能保证DCS (分布式控制系统)的安全。

6.2.2 分析室处

按照《爆破安全规程》GB6722—2003的规定,对周边建筑的振速控制在2~3cm/s 以下。

根据塌落振动速度公式:

βσ

))((

3

1MgH R K V t = R 取62.56m

经计算: v t =0.55cm/s

可见,由坍塌在分析室处产生的振速要小于《爆破安全规程》允许的

安全振动。

6.3 减小爆破振动与触地振动的措施

爆破拆除时引起周围建筑物振动的原因是:

(1)炸药爆破时引起的爆破振动;

(2)建筑物在倾倒触地时引起的冲击振动。

1)减小爆破振动的措施

为减小爆破振动,采用毫秒微差控制爆破,控制最大段单响药量,控制爆破振动。通过6.1的校核,爆破产生的振动速度对DCS(分布式控制系统)和分析室均小于《爆破安全规程》规定安全允许振速。

2)减小触地振动的措施

为了降低落地振动,设计合理爆破参数,使冷却塔逐段解体,以降低触地振动波的强度。通过6.2的校核,塌落产生的振动速度对DCS(分布式控制系统)和分析室均小于《爆破安全规程》规定安全允许振速.

6.3 爆破飞石的安全防护问题

由于冷却塔壁较薄,配筋率较高,并且要求爆破后混凝土飞离钢筋网,因此炸药单耗大(q=1500g/m3),则不可避免会产生爆破飞石,爆破飞石距离(L)与单耗(q)的关系为

L=71q0.58

L=90m

在冷却塔和需保护的分析室之间离分析室3m处采用高6m、宽2m、2m 一步距、6m一单侧斜撑的双排钢管架进行防护,防止爆破时飞石危害,保护分析室绝对安全。在钢管架靠爆破区域的一侧悬挂3m长、0.3m宽竹跳

板满挂密眼安全网等防护材料。

由于此次冷却塔爆破采用定向倒塌方式,靠需保护侧塔壁、人字柱和圈梁不进行钻孔装药,而倒塌侧无任何需保护的设施、设备。

对于塔体坍塌过程中溅起的飞石,由于倒塌方向500范围内为空旷区域,无任何设备、设施和人员,故无影响,施工时,保证有充分的撤离距离,为防止倒塌溅起飞石,爆破前用机械将倒塌方向地面摊平。

6.4 爆破振动监测

为确保17m 处的分析室、160m 处的DCS (分布式控制系统)及其它建筑物的安全,在冷却塔爆破过程中必须实施爆破振动监测。设防标准按照《爆破安全规程》GB6722—2003的规定,对周边建筑的振速控制在2~3cm/s 以下。震动传感器应设置在分析室、DCS 旁,以期科学地督导爆破施工。

(1)测试系统

使用仪器及系统布置:(IDEC )UBOX —20016、(IDTS )—3850/4850等记录仪及配套传感器,为了提高抗干扰能力,各测点之间用屏蔽线连接。

图5.3.3、爆破振动监测系统图

(2)监测方案

1)测点布置。研究爆破地震动波传播规律通常是沿爆破区径向或环

向布置1 条或几条地表测线,径向测点按对数曲线布置,测点应放在同一传感器测点1

(IDEC )UBOX —20016或IDTS3850/4850

爆破振动记录仪 计算机

打印机

传感器测点2

传感器测点n

地层或基础上,每一测点必须测垂直方向振动量,最好能同时测3 个方向量。监测点应布置在被监测对象附近的地表、基础或建筑物上。

2)传感器和爆破振动记录仪标定

每隔一定的时间(半年或一年)对所使用的传感器和爆破振动记录仪进行标定,确保监测数据真实可靠。

3)量测数据的处理与使用。

将得到的振速与安全判据(有关规程所规定的允许振动速度值)相比较,可以判断建筑物、构筑物是否安全。若所测得的振动速度值大于允许值时,则应采取减振措施;小于允许值时,可加大起爆规模,提高施工效率。

应用公式V=K(Q1/3/R)α及一元回归法对所测得的数据进行回归分析,得到与介质、地形有关的系数K、α,从而可得到质点振速V 的衰减规律,然后根据上式、允许最大振动速度、爆心距R,推算出下一次允许起爆药量Q,以达到科学装药。

七、施工技术设计

7.1 钻孔

炮孔的装药结构、药包直径、装药量、装药长度、堵塞长度必须符合设计要求。一般由二人一组,一人操作;一人负责监督和记录。

(1)按爆破设计的破坏部位和孔位进行标孔,标孔时应注意避开钢筋。

(2)钻孔时,孔径—般不小于38~42mm。以利于提高装药集中度,相对增加堵塞长度。

(3)每一个孔都要进行精确测量,孔深不够时需要加深,超过设计深度时则要用炮泥填至设计深度,保证每个炮孔都合格。

7.2装药、填塞和连接起爆网路

(1)药卷应缓慢送入炮孔,且保证药包紧贴孔底。

(2)禁止将起爆药包从孔中拨出或拉出。

(3)堵塞物应用土壤,细砂或其它混合物,禁止使用块及可燃的材料。施工过程中应保证堵塞质量。

(4)装药和堵塞过程中均须谨慎保护雷管脚线、连接电线等,以防发生事故。

(5)为了提高装药速度.可预先按药量及炮孔个数准备好药卷,并准备好炮泥,严禁边打孔边装药。

(6)装药堵塞作业时应有爆破技术人员在现场进行技术指导和检查监督。

7.3 飞石及粉尘防护、警戒和起爆

爆破拆除钢筋砼冷却塔,除了爆破可能产生个别飞石之外,冷却塔落地撞击破碎也会激起飞石,所以必须对个别飞石进行防护。措施如下:(1)、保护性防护:沿冷却塔支撑侧原有围墙采用高6米、宽2米、2米一步距、6米一单侧斜撑的双排钢管架进行防护,防止爆破时飞石危害,保护分析室绝对安全。在钢管架靠爆破区域的一侧悬挂3米长、0.3米宽竹跳板满挂密眼安全网等防护材料。

(2)、安全警戒线范围为倒塌反方向及其两侧150m,其它方向350 m。

(3)、爆破前在倒塌方向地面垫层上洒水,并在冷却塔倒塌瞬间用消防水车对倒塌区喷水,防止尘土飞扬。

八、脚手架的搭设

为了方便进行钻孔和装药,需要在冷却塔人字柱周围和冷却塔内部搭建脚手架。外围脚手架搭设在冷却塔周围的混凝土通道上,内部脚手架搭设在冷却塔井字架上,并以冷却塔内的铁板作为脚手架底板垫木,脚手架的材料自冷却塔的中间竖井向上提升至施工平台。在施工平台满铺竹笆或跳板。脚手架为双立杆,立杆间距1.8m,水平间距1.8m,附作剪刀撑,脚手架与塔壁和人字柱相拉接,拉接杆采用双卡扣。

脚手架施工方案如下:

1、材料要求

1)、杆件的规格的要求:

杆件采用外径48mm,壁厚3.5mm的钢管,其材质应符合《GB700—79》3号钢的技术条件,每1000mm重量为3.84kg。

2)、选材要求

钢面无凹凸状、无疵点、裂纹和变形

3)、加工要求

二端切口需平直,严禁斜口、毛口、卷口等现象。

4)、扣件的规格要求:

扣件采用可锻铸铁,符合国家规定要求,抗拉强度大于等于3.234×105/KN/M2,延伸率大于等于8%,螺丝、螺帽采用3号钢技术条件,符合《GB5-66》和《GB41-66》的技术要求,铆钉采用20、25号铆钉钢,所有扣件应有出厂合格证。扣件螺栓拧紧扭力矩70N/m时,不得破坏。

2、脚手架搭设工艺

钢管脚手搭设的施工顺序为:内立杆→外立杆→小横杆→大横杆→搁栅→防护拦杆→斜拉杆→连墙杆→垫铺笆→ 竖挡脚板→挂安全网。

3、脚手架高度、步距和纵距

本工程脚手架高度随施工高度而定,步距每步取 1.8m,立杆纵距取1.8m,立杆与壁面距离为0.30m,小横杆悬臂为0.15m,里外立杆距离为1m。

4、脚手的稳固保护措施:

为维护脚手架的稳固,做到安全生产,除了在选材中严格规定,搭设中做到杆件的牢固连接外,还应具备斜杆和连壁杆推拉的保护。

a、斜杆:

1)、斜杆距离

每9m设置不同方向一付。如脚手架一个立面纵向间距小于6.5m,应设单跨“之”字形斜杆。

2)、角度

斜杆设置角度与地面成45-60度夹角,纵向总距较长的脚手架立面,应采取60度夹角为宜。本工程斜杆设置角度为45度。

3)、接长

斜杆接长,应采用搭接且搭接长度不小于0.05m,相邻的两个搭接不在同一水平高度上。

b)、连墙杆

为确保脚手架的安全和稳固,需在每隔1.8m高度要沿塔壁四周设置连墙杆。连接脚手架的部位,应尽量靠近小横杆与立杆的连接处,不能用小横杆直接作为连壁杆,连壁杆位置设置应保持上下垂直一线。连壁节点

冷却塔爆破拆除施工方案

AAA厂煤堆场改造项目建设场地平整施工凉 水塔爆破拆除 施 工 组 织 设 计 编制单位:AAAAAAAAAA爆破有限公司 2009年4月1日

一、工程概况 该塔底部直径47.562m,顶部直径25.948m,最小直径22.9m(位于+48m水平),塔筒壁厚由下向上逐渐缩小,最大45cm,最小12cm。塔基基础为圆形基础,基础以上均匀分布32对钢筋混凝土人字柱,人字柱垂高5.8m,斜长净长6.236 m,横断面为40cm×25cm;128根支撑柱,支撑柱横断面为30cm×25cm。该冷却塔距北面煤分析室只有20米,西、南面为空地,东面约40米有发电车间煤分析室。 采用定向倒塌爆破,缺口大小是冷却塔能否按设计方向倒塌的关键,若爆破缺口过小,倾倒力矩将会小于结构的极限弯矩,会出现爆而不倒的现象。经过多次计算和论证,取爆破缺口圆角221°,冷却塔底部周长为128.59m,爆破缺口处的周长78.72m,保留部分长49.87m。 方案选择: 方案方案一 人工方法拆除 方案二 爆破方法拆除 方案三 机械方法拆除 优缺点1、成本低 2、工期特别长,满足不了 工程进度需要 3、安全隐患多,安全性差。 1、成本较低 2、工程进度快 3、技术措施得当的 情况下,安全性好。 1、投入大型设备量特别大,成本 高 2、工期较长 3、施工组织难度较大,交叉作业 情况多,安全性一般。 二、爆破方案和爆破缺口范围的确定: 该塔为轻型薄壁钢筋混凝土结构,上窄下宽,底部直径大,倾倒难度较大,应防止坐而不倒以及塌而不碎,因此爆破方案采用较大炸高,以获得较大的触地冲能,使薄塔筒触地充分解体。具体采用“预处理部分塔壁板块,爆破支撑柱的定向倒塌的爆破方案”,方向为正南向。爆破预先处理缺口为正方形,处理缺口前五个为下3m正方形,上为1.5m宽的长方形,其他缺口为下长3m,宽2m的长方形。长方形最高5m,最低为2m,梯子形由中心线向后开,爆破缺口圆心角取221°,人字柱爆破20对,留12对。本次爆破采用雷管段位为,Ms1、Ms3、Ms10、Ms12,除支柱和连接使用Ms1,圈梁预先切割七处,将预处理区分为六块。内部支柱不承重,所以内部支柱爆破炮孔可以上、中、下各4个,孔距为0.3m。需打128根。

冷却塔维修施工方案

凉水塔大修 安装施工技术规范 需方:夏津热电有限公司 施工方:山东格瑞德集团有限公司 二零一五年十二月 安装施工技术规范 1、工程概况 1.1维修内容:填料更换,PVC管道支撑角铁、玻璃钢波纹板固定角铁、竖井栏杆、爬梯更换,预埋件、预埋管、预埋管封口、分水井盖板等做玻璃钢防腐,玻璃钢填料托架、喷水嘴、除水器、PVC管道等检查处理。 2、编制依据 2.1GBJ300-88《建筑安装工程质量检验评定统一标准》 2.2GBJ243-82《通风与空调工程施工及验收规范》 2.3GBJ303-88《建筑电气安装工程质量验收评定标准》 2.4GBJ304-88《通风与空调工程质量检验评定标准》 3、施工前的准备及条件 3.1劳动力配备 负责人:1人 质量员:1人 安全员:1人 电工:1人 辅助工:12人 3.2作业人员资格要求

3.2.1所有作业人员都经过职业技术培训进场三级安全教育和体验合格后,才能上岗,衣着整齐、精神状态良好。 3.3作业所需要的施工机械 3.3.1施工机械使用计划表 3.3.2作业所需工器具(表3) 3.3.3检验器具使用计划一览表 3.3.4安装所用安装材料一览表

4进度总计划及工期控制措施 本工程总工期为60天,开工时间为具备安装条件算起,为保证计划的完成制定此工期。(注:也可根据甲方的要求,用最快的时间保质保量的完成施工任务) 4.1、编制项目实施进度计划,合理安排进度,以保证工程总进度计划。 4.2、掌握实际进度值与计划差异,分析产生的原因并提出调整措施方案,并相应调整施工进度计划及劳动力、材料设计。 4.3、认真做好施工准备,按程序施工。 4.4、推行做好施工准备,按程序施工。 4.5、制定切实可行的防雨措施,确保工程顺利进行。 5、质量保证措施 5.1安装工程施工质量要点 5.1.1主要设备安装质量控制要点 a、设备安装前要对设备、原材料检查,试验不合格的设备、材料不 许使用,使用材料要实施见证取样制度。 b、安装工程要防止质量通病,抓好重点,关键部位。 5.1.2施工质量控制要点 a、认真熟悉设计施工图,充分理解设计意图,熟悉和掌握有关施工

冷却塔模板拆除方案

濮阳宏业生物质热电2000m2冷却塔冷却塔模板拆除方案 编制人: 审核人: 批准人: 日期: 编制单位:嘉泰建设发展有限公司

冷却塔模板拆除方案 一、工程概况 由于模板拆除过程比较复杂,而且施工比较危险,为了保证在模板拆除过程中施工人员的安全,顺利完成冷却塔筒壁的施工任务,特编制本方案。 二、模板拆除方案 1、拆除顺序: 拆除前准备→顶部临时安全防护栏杆焊接→顶部女儿墙内、外模板拆除→第三十板模板拆除→第二十九板模板拆除→吊架拆除→临时防护栏杆拆除 2、拆除方法: 2.1拆除准备:拆除前首先要检查拆除用的工具和安全防护用品(安全帽、安全带、安全网等)是否满足要求,严禁使用不合格的工具和安全防护用品。 2.2安全防护:为了保证拆除人员的安全,拆除前首先在冷却塔顶部用钢筋焊一圈临时安全防护栏杆。并且将安全网挂在塔顶预埋的钢筋上绑扎牢固。 2.3顶部女儿墙拆除:将女儿墙的内外模板拆除,拆除的模板应及时运到地面,禁止在顶部堆放材料和工具。 2.4中间模板拆除:首先把中间三角架支撑拆除,人员站在最下一板三脚架上弦杆,从一点开始逐档拆除脚手板及吊篮,至最后一档时拆除人员用吊绳将脚手板及吊篮栓绑好后,上至挑沿平台上,吊运人员再将吊篮及脚手板吊运至地上。 2.5最下一节拆除:内模拆除前先将内侧吊架上移至塔顶预埋吊环(吊环内传钢管固定),拆除同筒壁翻模系统拆除。外侧拆除前,先将兜底安全网拆除,再拆除三角架及模板,人员站位于吊篮板上,堵洞及涂料涂刷同筒壁,对拉螺杆洞补完后,拆除吊篮及吊篮板,拆除人员佩戴安全带并栓绑棕绳,挑沿上人员监护,安全带及棕绳生根于栏杆桩上,从一点开始,逐档拆除脚手板及吊篮,至最后一档时,拆除人员用吊绳将脚手板及吊篮栓绑好后,上至挑沿平台上,吊运人员再将吊篮及脚手板吊运至地面上,外侧翻模系统拆除完毕。 三、拆除安全防护措施: 1、严格执行地方有关部门和我公司有关安全生产制度和安全技术操作规程,认真做好安全技术交底,及时排除不安全因素,确保安全施工。 2、施工人员进入现场必须正确佩戴安全防护用品。 3、严禁酒后进入施工现场。

中级拆除爆破设计题

中级拆除爆破设计题 设计要求:做出可实施的爆破技术设计,设计文件应包括(但不限于):爆破方案选择、爆破参数设计、药量计算、起爆网路设计、爆破安全设计计算、安全防护措施等,及相应的设计图和计算表。 1、某工厂有一座报废的钢筋混凝土烟囱,高60m,决定采用爆破方法进行拆除。爆破部位的外直径D = 5m,壁厚δ = 25cm。烟囱四周为建筑群,最近建筑物距烟囱中心为12m,其他建筑物距烟囱中心20~30m。在东北方向有一较为开阔的场地。试确定爆破拆除方案并进行爆破拆除设计。 图1 待拆烟囱周围环境示意图 2、待拆烟囱为钢筋混凝土结构,高75m,底部外直径5.5m,壁厚δ = 30cm,内有厚12cm、高8m 的耐火砖衬砌(预先拆除)。下部正南地面以上75cm处有205×335(cm)的烟道口,边框宽30cm,厚75cm;正北有出灰口115×145(cm),边框宽20cm,厚55cm;烟囱筒壁配筋为:竖筋φ16与φ12相间,间距20cm,环筋φ9,间距20cm。周围环境见图3,四周均有建筑物,只有东南方向有24°角的范围可供倒塌,试确定爆破拆除方案及爆破拆除设计。 图2 待拆烟囱周围环境示意图 3、某钢筋混凝土圆筒形敞口式结构物,内径7.0m,壁厚0.25m,底厚0.5m,

配φ10mm的双层钢筋。距最近民用建筑10m,20m处有高压线。根据结构物的特点,确定爆破拆除方案并进行爆破拆除设计。 图3 钢筋混凝土圆筒形结构物剖面图 4、有一座废弃的圆筒形钢筋混凝土结构碉堡,高5m,外直径5.6m,壁厚0.4m,顶盖厚0.5m,顶盖中心处有50×40cm的小孔,距碉堡中心20m处有一砖结构民房。确定爆破拆除方案并进行爆破拆除设计。 图4 碉堡结构图 5、待拆除的铁路桥梁墩台为钢筋混凝土结构(含筋量很少),地面以上高度10m,地面以下基础深3m,墩台尺寸厚度大于2m。由于用机械破碎法进行拆除难度大,且工期时间长,因此,为加快施工进度,决定采用控制爆破方法对废弃桥梁墩台进行破碎(要求处理到和地面一平)。 拟拆除的桥梁墩台南、北两侧环境较好(均为原有铁路路基);西侧距临时铁路线100m,距民房160m;东侧环境比较复杂,距居民楼最近距离为25m,且楼房较为密集。两桥墩相距15m。具体周围环境情况如图1所示。确定爆破拆除方

冷却塔改造施工方案

冷却塔施工组织方案 一.冷却塔改造施工编制依据: 1. 机械设备安装工程施工及验收通用规范] GB50231-98; 2. [电气装置安装工程低压电器施工及验收规范] GB50254; 3. 大型设备吊装工程施工工艺标准》SH3515-2003; 4.《起重机安全操作规程》BS7121-3; 5.《起重吊装手册》; 6. 现场实际勘察的施工作业条件; 7. 冷却塔生产标准: [玻璃纤维增强塑料冷却塔第1部分:中小型玻璃纤维增强塑料冷却塔]() 8. 冷却塔安装、试运行执行以下标准: [机械设备安装工程施工及验收通用规范]GB50231-98; [通风机械设备安装工程质量检验评定标准]TJ305; 二.冷却塔改造施工工艺流程: 冷却塔进场 施工人员进场 吊装 冷却塔安装 管路/电路施工 冷却系统调试 三.冷却塔改造材料设备明细价格:(表格) 1.原有冷却塔移位费

2.新冷却塔 3.管路材料明细 4.电路材料明细 5.控制部分明细 6.管道保温 7.基础费用 8.人工费用 9.施工耗材 塔加防冻液及改造 四.冷却塔改造施工周期:(表格) 1.冷却塔生产周期: 2.施工周期: 3.系统调试周期: 五.安全、文明施工: 1.现场施工人员分工明确,统一指挥,不得擅自离开工作岗位。 2.作业现场周围为危险区,禁止无关人员在危险区域内同行、逗留。 3.进入施工现场必须正确佩戴安全帽、安全鞋,合理放置工具。 4.安全用电,所有用电设备安装拆除均由专业电工担任。 5.施工人员应遵守需方单位施工现场规章制度,文明施工。 6.施工中不能影响需方单位正常生产,遵守需方单位管理规定。 六.冷却塔改造调试验收: ◆冷却塔安装 1. 组装完成后,进行塔体检查。外观有无变形;连接是否整齐;塔体 各部件有无缺少;填料方向是否正确;紧固件是否松动;风机各部件规格、 组装是否正确;传动部分是否水平;塔体内是否清理干净;安装现场是否清理等。 2. 以上工作完成后,认真填写《作业验收证明》中的“用户处组装”, 并与用户进行设备情况解释,如有未完成项,需在“工作未完理由”栏内说

冷却塔施工方案

江苏长强钢铁有限公司资源综合利用余气发电项目工程 施工组织设计/重大施工技术方案报审表 表号: A11 工程名称:江苏长强钢铁有限公司资源综合利用余气发电项目工程编号: 致江苏长强钢铁有限公司设备部: 现报上江苏长强钢铁有限公司资源综合利用余气发电项目工程的冷却塔工程专业施工组织设计/重大施工技术方案,请审查。 附件:江苏长强钢铁有限公司资源综合利用余气发电项目工程的冷却塔工程专业施工组织设计/重大施工技术方案 施工单位(章):项目负责人: 日期: 总包单位审核意见: 总包单位(章): 项目负责人: 日期:

本表一式3份,建设单位存1份、总包单位存1份,施工单位存1份。 江苏长强钢铁有限公司资源综 合利用余气发电项目工程 冷 却 塔 施 工 方 案

编制:王云超 审核: 批准: 编制单位:河北省冶金建设集团有限公司编制日期: 目录 1、工程概况 (2) 2、施工顺序 (2) 3、施工方法………………………………………………2-17 4、脚手架搭设方案………………………………………17-19 5、安全措施………………………………………………19-20

1、工程概况: 本工程为1350平方米双曲线自然通风冷却塔,塔高57.00m,进风口高度为5.00m,通风筒采用基本相同,最小140mm,最大500mm,环基顶部外直径为52.388m。环形基础、塔筒及淋水构架基础采用现浇钢筋混凝土结构。淋水构架采用预制结构。 2、施工顺序: 土方大开挖→环基垫层施工→环基施工→池底板砼垫层施工 →池底板施工→池壁施工→人字柱施工→环梁施工→风筒施工(淋水构架吊装) →防腐涂料施工→金属构件安装→竣工清理 3、施工方法 3.1施工测量 3.1.1冷却塔定位 根据厂区控制网或建筑方格网按二级导线精度测设控制桩。定位采用全站仪、钢尺等器具。根据施工图,在南北向、东西向轴线上距塔边8m 处埋设钢筋砼桩进行高程及坐标控制,控制点不少于4处,控制桩为500×500×1000mm,桩顶预埋钢板,同时塔门及爬梯进行引线控制,塔中心用φ108钢管上焊铁板做为永久桩进行控制,埋深度不少于1000mm。 3.1.2沉降观测 按图纸要求进行观测,整理观测结果,绘制沉降观测过程曲线。施工期间,冷却塔每升高10m观测一次,总观测次数不少于5次。如沉降发生异常情况,应增加观测次数,并报业主及设计单位以便及时采取措施。 3.2基础部分 3.2.1土方大开挖 开挖前需对基础轴线进行工程测量定位,经建设、监理单位认可后方可进行开挖。 为确保工程进度,开挖时计划采用两台反铲挖掘机进行施工,挖土机沿圆心在坑上进行后退式挖掘作业,所挖土方同时进行清运,挖土放坡系数为1:1,坑底留设500mm宽工作面(半径放大300mm),坑底外侧周围设排水沟及八处集水井,用3台水泵24小时不间断抽水,基坑所挖土方全部外运。由于机械开挖不好控制坑底平整度,故粗略挖至设计底标高。

非爆破拆除方案

编号:AQ-BH-01280 ( 管理资料) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 非爆破拆除方案 Non blasting demolition scheme

非爆破拆除方案 说明:施工方案是根据一个施工项目制定的实施方案;是根据项目确定的,有些项目简单、工期短就不需要 制订复杂的方案。 一、工程概况 高邮市新港漫水闸位于高邮湖新民滩的河港上,介于高邮湖和邵伯湖之间,是淮河入江水道高邮湖控制线7座控制建筑物之一,主要功能为蓄水灌溉和行洪排涝。该闸建成于1968年5月,现状共29孔,其中通航孔1孔,孔宽6.0米,现状通航孔已封堵废弃;节制闸孔28孔,单孔净宽4.0米,总净宽112米。 由于该闸原设计标准低,又经40余年的运行,结构普遍老化,病害较严重,闸身稳定、结构强度等均存在一定的安全隐患。经江苏省水利厅组织的安全鉴定,并报水利部大坝安全管理中心核查,认定该闸为四类闸,建议拆除重建。 二、老闸拆除方案编制依据 1、依据高邮市新港漫水闸除险加固工程招标文件。 2、依据高邮市新港漫水闸除险加固工程投标文件。

3、依据须遵守的标准和规程规范(不限于)。 (1)《水利水电工程施工组织设计规范》SL303; (2)《水利水电工程施工安全防护设施技术规范》 DL5162-2002; (3)《焊接与切割安全》GB9448-1999; (4)《建筑施工起重吊装工程安全技术规范》JGJ276-2012; (5)《建筑拆除工程安全规范》JGJ147-2004; (6)《起重吊运起重信号》GB5085; (7)《建筑施工扣件式钢管脚手架安全技术规程》 JGJ5130-2011。 4、相关的规范、规定及规程。 三、老闸拆除项目内容 1、拆除工程包括老新港漫水闸闸身主体及上下连接护坡翻砌段块石护坡。 本工程拆除工程量较大,主要工作内容包括: (1)老闸闸室底板、墩墙混凝土拆除,约1100m3

隧道爆破拆除方案

爆破方案设计 一、工程概况 茶叶沟隧道位于甘井子区革镇堡新机场建设区域内,为双向四车道公路隧道。双向隧道分别为405m、350m,间距为30m。该隧道高11m、宽12m,净高7.5m。初期衬砌厚度0.25m,二次衬砌厚度为0.5m。隧道拱顶上部岩体高度为18~20m不等,洞口两端岩体高度为2.5m~5m 不等,见图1。隧道周边环境较好,东、西、南、北均为新机场采石场地,隧道南侧800m以远有一高压线。 爆区平面示意图 图1 茶叶沟隧道断面示意图

新机场建设工程,该隧道失去存在意义,因此要对隧道进行爆破拆除。根据相关要求,隧道内部路面和敷设于电缆沟内的光缆必须安全保留,确保通讯畅通。由此本工程需要对茶叶沟隧道进行有限的保护性拆除。 二、拆除方案的选择 1、机械拆除 经查阅相关技术资料,该隧道建设期间采用了小导管超前预注浆预加固处理,并且采用了钢拱、钢筋网锚喷混凝土支护形式。无论是油锤破除,还是无齿锯切除钢拱、钢筋等钢体结构,都需要对隧道周边岩土进行爆破清运,同时还要清除超前注浆小导管。经过这些预处理后方可进行机械拆除。 机械拆除的优点是安全可靠。但浅孔爆破拆除的钻孔数量过大,预计约为10万余孔,这样势必会造成工期大幅度延长,因此该方案不予考虑。 2、爆破拆除 中深孔爆破拆除的优点是施工进度较快,缩短了工期。可以借助周边围岩爆破时炸药的爆炸能量,完成隧道的破碎拆除。但因隧道是一个双心圆的整体结构,整体爆破拆除势必会造成既有光缆和路面不同程度的破坏,因此需要对路面和光缆沟采取一些保护措施,即该隧道的爆破拆除为一项有限的保护性拆除工程。 三、具体方案 1、预处理方法 为了保护光缆的安全,任何拆除工法均需要在光缆上部1.0~1.5m 处将隧道的二次衬砌结构切断,即为预处理。切断具体位置为拱腰处最佳,因为拱腰处受力最薄弱。切断二次衬砌的方法有多种:(1)射孔弹法:在二次衬砌预处理位置布设两排射孔弹,排距250mm,孔间距为250mm,采用导爆索连接。起爆后,射孔弹可将二次衬砌射成一个个孔径10mm、深度350~400mm的小孔。然后将外露的钢筋切断,见图2。

冷却塔爆破拆除方案

冷却塔 爆破拆除方案

目录 一、编制依据 (1) 二、工程概况 (1) 三、工程重难点及方案选择 (4) 四、爆破缺口和爆破参数的设计 (5) 4.1 爆破缺口的设计 (5) 4.2 预处理 (5) 4.3 爆破参数的设计 (6) 五、爆破器材选择与起爆网路设计 (9) 5.1 爆破器材选择 (9) 5.2 起爆网路设计 (9) 六、安全技术校核 (9) 6.1 爆破振动校核 (10) 6.2 塌落振动校核 (11) 6.3 减小爆破振动与触地振动的措施 (13) 6.3 爆破飞石的安全防护问题 (13) 6.4 爆破振动监测 (14) 七、施工技术设计 (15) 7.1 钻孔 (15) 7.2装药、填塞和连接起爆网路 (16) 7.3 飞石及粉尘防护、警戒和起爆 (16) 八、脚手架的搭设 (17) 九、施工机具、仪表及器材表 (19) 十、爆破施工组织设计 (20) 十一、文明施工措施 (21) 十二、环保措施 (22)

冷却塔爆破拆除方案 一、编制依据 1、GB6722-2003《爆破安全规程》; 2、《民用爆炸物品管理条例》; 3、《建筑施工扣件式钢管脚手架安全技术规范》; 4、项目建设单位提供的图纸、资料; 5、现场踏勘情况。 二、工程概况 待拆除冷却塔塔高60m,其中塔体部分高54.2m,塔体顶部直径26m,底部直径41m,塔壁呈旋转双曲面形,最大壁厚0.45m,最小壁厚0.12m。塔体由底部32对人字柱支撑,人字柱高5.8m,截面积0.25m×0.40。人字柱坐落在底部水池边缘,水池直径为47.6m。塔体自重约2400t,该冷却塔结构长径比较小,重心低,属于钢筋混凝土薄壳结构。内部有圈梁、导水槽、塑料除水器、铁篦子等。 冷却塔周围环境:北面17m处为发电厂分析室,160m处为DCS(分布式控制系统),高差约为6.6m;西面27m处为发电厂地磅房;东、南两面为场平范围,几百米范围内都是空地。(见下图)

某爆破拆除工程施工方案

深基坑围护体系中内支撑梁爆破拆除 一、工程概况 1、工程环境 ****园工程位于上海市黄浦区****南外滩,地处****,周边环境及其复杂,基坑西侧为****路,路外为****幼儿园及1栋28层高档办公楼与基坑距离为30米;东侧为****街,路外为新建32层高层住宅楼,与基坑距离为35米;北侧为****弄,路外为7层老式居民楼,与基坑最近距离公约为20米;南侧为上海市****初级中学和1座新建****配电站,与基坑最近距离公约为20米。 2、工程围护结构 地下车库四周采用D950@1150钢筋混凝土钻孔灌注桩挡土,坑内设二道水平钢筋混凝土支撑梁,第一道支撑梁中心标高为-3.1M,第二道支撑梁中心标高为-8.2M,内支撑支承柱采用钢制格构柱,内支撑梁的截面尺寸为800×800mm、1100×800mm、1200×800mm、1400×800mm,围檩、锁口梁截面尺寸为1300×850mm、1000×850mm。基坑围护结构平面图如下: 图1 基坑围护结构平面图 3、工程特点 3.1 工程本身的保护 3.1.1 围护桩的保护基坑四周围护桩作为围护结构的主体,要求在爆破中绝对保证结构体既不渗漏又没有内伤。 3.1.2 钢格构柱的保护要求在第二道支撑梁爆破拆除时,要保护钢格构柱及上部支撑系统的稳定性不受破坏,且不影响栈桥的正常使用。 3.1.3 地下室底、楼板的保护在围护结构支撑梁的爆破拆除中,混凝土要达到一定强度才可以

爆破作业。并要采取必要的措施确保地下室底、楼板的安全。 3.2 基坑四周地下管线的保护 根据基坑四周管线分布图,弄清分布的管线与本工程相对位置,爆破前要和有关管线单位联系,办理相关审批手续,召开有关方面参加的爆破协调会,听取各方意见,采取安全有效的技术措施,确保管线安全要求。 3.3对四周建构筑物的保护 根据基坑总平面布置图,离基坑20m左右的有****路一侧老式居民楼及盐码头街一侧上海市****初级中学及1座新建****配电站,是本爆破拆除工程的重点保护对象。其余建筑与基坑的距离距离大于30m,采取措施后,爆破震动对其影响可以控制。 二、爆破方案设计 支撑拆除爆破是将很多的小药包分散填埋于按预先设计好的孔中,运用微差爆破技术,分段延时起爆,使爆破后既能达到预期的爆破效果,又能把爆破震动、冲击波、飞石、噪音和粉尘等对环境危害程度控制在规定的范围之内的爆破技术。 1、分部位采用不同爆破强度等级和炸药等级根据周围环境,针对不同层次支撑系统和同一层支撑系统中所处位置的不同,选择不同爆破等级,确保周边环境的安全,同时又要尽量缩短施工工期。 2、严格控制一次齐爆药量 针对不同的爆破区域采用不同的一次齐爆药量,以控制爆破作业诱发的地表震动,确保基坑和四周建构筑物和管线的安全。其中: 一般支撑、围檩爆破拆除:一次齐爆药量控制在3公斤以内 基坑南北两侧围檩爆破拆除:一次齐爆药量控制在2公斤以内 3、爆破几何参数

冷却塔维修施工方案(1)

本页为作品封面,下载后可以自由编辑删除,欢迎下载!!! 精 品 文 档 【精品word文档、可以自由编辑!】 严重腐蚀,如不及时维修会给正常使用带来不便,因此急需改造维修,根据贵单

位提出的改造建议,我公司派人对冷却塔现场进行了实地查看,查看后,双方进行了认真交流,针对改造维修的具体内容,我公司进行了充分的考虑与部署,并拟定了详细的施工方案,具体如下: 1、冷却塔现状: 1.1玻璃钢塔片老化。 1.2塔内布水器及填料已老化,不能正常水循环。 1.3电机,支架及铁器腐蚀严重,影响正常使用。 2、改造内容: 2.1 补水器(每塔12台)及补水管(每塔12台)需更换 2.2 PVC全新一级斜波淋水填料需更换 2.3填料支架需清洗维修 2.4旧部件拆除清洗 2.5冷却塔专用风机,减速机(各一台)更换 2.6 铁器除锈防腐(含灯架铁器,塔内铁器,管道) 3、工期: 拆除:3天 安装:7天 共计:10天 4、施工程序: 部件制作(工厂化生产)---拆除旧部件---整体安装 5、施工过程控制与质量要求: 5.1玻璃钢部件制作采用国家建材部常州253厂生产的优质191#聚酯树脂与 济源金源玻纤股份有限公司生产的白金玻钎布复合制作,部件表面喷涂耐风化,耐老化,抗紫外线干扰的胶衣树脂,长期使用不褪色,不龟裂。 5.2填料材质为PVC,要求模具与拉挤过程中,应塑性良好,无较大空隙及杂 质介入,要求阻燃,氧指数>40 5.3 填料支架材质为Q235碳钢,采用除锈后,刷涂环氧沥青漆两边进行防腐。 5.4部件制作及现场安装过程中我公司派1名监工监督施工全过程,不合格 工序不的进入下道工序及施工过程中。

拆除、爆破设计施工方案

拆除、爆破设计专项施工方案 1编制依据 (1)《民用爆破物资管理条例》; (2)《爆破安全规程》(6722-03); (3)《爆破作业人员安全技术审核标准》(53-93); (4)土方与爆破工程施工及验收规范。 2简介 利用炸药在空气、水、土石介质或物体中爆炸所产生的压缩、松动、破坏、抛掷及杀伤作用,达到预期目的即为爆破,目前常用的爆破方式有光面爆破、预裂爆破等爆破方式。 光面爆破沿开挖边界布置密集炮孔,采取不耦合装药或装填低威力炸药,在主爆区之后起爆,以形成平整轮廓面的爆破作业。 预裂爆破沿开挖边界布置密集炮孔,采取不耦合装药或装填低威力炸药,在主爆区之前起爆,从而在爆区和保留岩体之间形成预裂缝,以减弱主爆区爆破时对保留岩体的破坏并形成平整轮廓面的爆破作业。 拆除爆破实质是控制爆破,既要求控制爆破效果,又要求控制爆破效应,即控制爆炸能量释放过程和介质的破碎过程,以达到预期成果。 3拆除、爆破方案 3.1拆除爆破方案 3.1.1拆除爆破设计参数 拆除爆破设计参数包括:最小抵抗线W,孔径a,排距b,单位耗药量q及装药量Q等;同时对爆破振动强度的大小要估算和控制。控制爆破设计参数的选取原则及选取方法如下: 3.1.1.1最小抵抗线W的选取 最小抵抗线W是控制爆破的一个主要参数,要根据爆破体的几何形状和尺寸,钻孔直径,需要的破碎块度大小等因素来决定。

最小抵抗线不宜太小,过小的抵抗线装药量很难控制,而且容易因钻孔误差引起碎块飞散过远。实践经验表明,对直径30—45的钻孔,最小抵抗线值不应小于15, 控制爆破的规模、装药量,也要求最小抵抗线不能过大。因为抵抗线越大,装药量就越多,而钻孔的装药长度在控制爆破中是有限制的。经验表明,用于破碎的控制爆破的抵抗线值取0.4—0.7m较为理想,最大不宜超过1m。混凝土、钢筋混凝土的构筑物要取小一些;三合土、浆砌片石等可以选取大一些的值。 3.1.1.2孔距a和排距b的选取 孔距a 与最小抵抗线W成正比,比值用密集系数m表示,即。 在破碎控制爆破中,m值要大于1。在混凝土构筑物中,1.0~1.3;浆砌片石中1.0~1.5;砖砌构筑物中1.2~2.0。 排距b的选取应视爆破方法而异,多排齐发爆破的排距b要略小于孔距a,多排微差爆破的排距b可选用最小抵抗线W的值。 3.1.1.3孔深L的选取 炮孔深度L也是影响控制爆破的一个重要参数,在选取时要注意以下几点:(1)孔深与爆破件的厚度H有一定关系。当爆破件底部有临空面时,L取(0.55—0.65)H;无临空面时,L取(0.75—0.8)H。孔底留下的厚度要等于或略小于侧向抵抗线,这样既能保证下部的破碎,又能防止爆破时从孔底向下冲开而使周边地不到破碎。 (2)孔深要比最小抵抗线大,并要保证炮孔堵塞长度不小于最小抵抗线。 (3)任何时候孔深也不能小于20,否则会产生冲炮。 (4)从钻孔和装药的角度看,孔深不要大于2m。也就是说,控制爆破的孔深在0.2~2m之间。 3.1.1.4单孔装药量Q的计算 在破碎控制爆破中,单孔装药量Q由下式计算: (g) 式中V—该孔所承担的爆破体体积(m3);

冷却塔大修施工方案

施工方案 施工工艺流程 淋水填料的组装及安装----配水管的安装---喷溅装置安装---除水器组装及安装。 填料分块的粘接和安装 填料支撑修补制作焊接、安装到位后,再安装填料。 1填料分块的粘接 1.1施工人员应熟悉填料安装图和填料粘接的特点,并根据场地情况和工程进度情况拟订填料粘接的计划。填料粘接前必须对成捆的填料片进行外表面检查,避免使用表面粘接点压扁,破损的填料片。填料片粘接前应将填料片上的污物抖落干净。 1.2要选择地面平整,四周通风的场地作为填料粘接的场所,施工前应清扫干净场地。 1.3填料粘接时,施工人员应带好防毒面具,以二人为一组,一只专用粘接盘。根据现场的实际情况选择塔底进行粘接组装。淋水填料的粘接要牢固,组装一组后立即用平板压紧,防止因成型片本身的翘曲而造成脱胶。 1.4粘接干燥后方可挪动位置置于平整的地面上,堆放高度不超过2米,防止长期暴晒。 2. 填料分块的安装 2.1组装块安装时上下邻层正交排放互相垂直,安装工作分区进行,铺放整齐,块间挤紧填满,对边角、柱周、塔周等不规则空隙部位按实际边界进行正确裁切,确保铺放整齐,覆盖严密,最大缝隙不超过20㎜。 2.2粘接好的填料分块必须在各粘接点固化后,方可装入冷却塔内。 2.3当粘接好的填料分块进行安装时,应对填料分块重新检验,防止在搬

运中损伤的填料分块进入塔内。 2.4填料分块应按照图纸要求的排放要求和顺序进行安装,要做到堆放排列整齐,间距均匀,松紧适宜,无贯通缝隙。在遇到混凝土柱时,填料分块可根据具体情况作局部切割。 2.5安装过程中对填料层间及层面及时清理,不遗留散乱杂物 2.6填料安装后,需在填料上作业时,必须铺上木板进行,严禁直接踩踏。配水管与喷溅装置安装 按照图纸对照配水管编号、归类整理。 b. 在次梁上找准配水管安装位置,并做好安装配水管的就位标记。 c. 用人力将配水管运到塔底,用麻索绳通过滑轮将配水管垂直吊到指定位置。 配水管安装在次梁上找准后,用不锈钢吊架固定,调节螺丝使配水管处于同一水平线上。 e. 配水管吊装时,在作业面上铺好木板,固定好滑轮,操作人员系好安全带,上下联系垂直吊装。 配水管组装:配水管与主水槽采用承插方式连接,承插深度以管端标注的符号为限,承插深度误差<10mm,用橡胶密封圈密封,配水管之间同样采用承插连接,用橡胶密封圈密封。 喷溅装置安装:为保证所有喷嘴喷溅高度一致,在布置上考虑将所有配水管管底标高保持一致。在主水槽上预埋套管的高度各种管径之间不同;对一条配水管,不同管径管道连接时采用偏心大小头连接,偏心大小头用玻璃钢缠绕加固,以防漏水。保证所有喷头垂直向下。三溅式防松喷头布水,喷头材质为ABS塑料一次注塑成型,喷头与配水管采用法兰连接,强度高使用寿命长。该喷头布水均匀,工作水压低(喷头出口正常工作压力仅需0.6mH2O),压力适应范围大,不易堵塞。由于其带有经特殊设计的锁紧防松装置可使其与布水管连接牢固,不脱落,可保证配水系统长期安全运行。正常使用条件下,喷头使用寿命10年。

双曲线型凉水塔拆除方案

双曲线型凉水塔拆除方案凉水塔为双曲线形构筑物,总高71m,底面最大半径28.479 m,标高56m 处半径最小为14.5m,顶部70m标高处半径为15.678 m,凉水塔为筒形结构,壁厚125~375mm,砼标号250#。筒体内9.05标高以上为中空,以下为淋水装置及砼支架,-1.4m~6m为人字柱,支承上部环梁及筒体,人字柱共40根。见图1: 二、施工技术难点 因电厂内生产不能停止,厂方将施工安全列为第一重要,特规定拆除方案必须遵守以下几条: 1、不允许采用爆破拆除。 2、施工中不允许上人搭设脚手架。 3、现场必须严格控制明火。 因此,如何将整体拆除变为分体(割)拆除是本工程施工的难点和关键。 三、施工布署及施工方法 (一)施工布署 根据凉水塔为双曲线型薄壁筒体结构特点,本着经济、安全、高效的原则,塔身主要采用液压长臂剪和破碎锤"由下及上"拆除,整个拆除过程按先后顺序布署为六个阶段: 第一阶段:拆除内部结构及设施(包括托架、淋水架沟、配水槽、竖井、砼梁柱等); 第二阶段:拆除标高7.2m~15.8m部分(该阶段为关键性阶段); 第三阶段:拆除标高7.2m~-1.4m部分; 第四阶段:拆除标高15.8m~52m部分(该阶段为主要阶段); 第五阶段:拆除标高52m~71m部分; 第六阶段:清运-1.4m以上废墟及基础拆除。 (二)施工方法 第一、六阶段(从略)。 1.第二阶段:标高7.2m~15.8m部分的拆除

该部分拆除目的是将标高为15.8m以上部分(筒壁为薄壁钢筋砼)整体缓慢落在水池底面,以便于地面作业,该部分拆除采用液压长臂剪和破碎锤"由下及上"拆除(详见"关键阶段施工方法")。标高7.2m~15.8m部分拆除后,标高15.8m以上部分被套在环梁内部,见图2示意: 2、第三阶段:标高7.2m~-1.4m部分 该部分拆除目的是将第二阶段落地(标高为-1.4m)部分的外围障碍拆除。外围障碍指人字柱及环梁。该部分拆除采用由上及下的方法,使用采用液压长臂剪和2台日本小松PC300液压破碎锤分段捣碎环梁后再分别捣碎人字柱。外围障碍拆除后成为图3实线所示筒体。 3、第四阶段:标高15.8m~52m部分 该部分是整个拆除工程的主要阶段,因为该部分经过第二、第三阶段的拆除后,实际成为一个由地面(-1.4m)"站立"的57.4m高的薄壁筒体,其拆除采用液压长臂剪和破碎锤3台套,沿筒周围均匀布置,同方向(顺时针或逆时针)、高度、匀速开凿(破碎筒壁砼),筒体缓慢下移到底,即"蚕食"型拆除完毕。 5.第五阶段:标高52m~71m部分 该部分是整个筒体拆除的最后阶段,因为该部分经过第二、第三、第四阶段的拆除后,实际成为一个由地面(-1.4m)"站立"的19m高的薄壁筒体(见图4),其高度满足液压长臂剪和破碎锤的拆除高度,所以该部分"由上及下"拆除筒壁砼,一拆到底。 图3 (三)关键部位拆除施工方法 方案中第二阶段(拆除标高7.2m~15.8m部分)为关键性阶段,施工方法详述如下: 1、15.8m以上部分筒体落地(池底-1.4m标高)防倾覆及定向设施布置: 经计算,该部分筒体总重量约为2380吨,选用20道三角钢支架,在环梁内侧沿周长均匀布置,平面布置(见图5)及支架形式(见图6)。(三角钢支架杆件选型计算书从略) 2、筒壁砼拆除:

冷却塔维修施工方案

凉水塔大修 安装施工技术规范需方:夏津热电有限公司 施工方:山东格瑞德集团有限公司 二零一五年十二月

安装施工技术规范 1、工程概况 1.1维修内容:填料更换,PVC管道支撑角铁、玻璃钢波纹板固定角铁、竖井栏杆、爬梯更换,预埋件、预埋管、预埋管封口、分水井盖板等做玻璃钢防腐,玻璃钢填料托架、喷水嘴、除水器、PVC管道等检查处理。 2、编制依据 2.1 GBJ300-88 《建筑安装工程质量检验评定统一标准》 2.2 GBJ243-82《通风与空调工程施工及验收规范》 2.3 GBJ303-88《建筑电气安装工程质量验收评定标准》 2.4 GBJ304-88《通风与空调工程质量检验评定标准》 3、施工前的准备及条件 3.1劳动力配备 负责人:1人 质量员:1人 安全员:1人 电工:1人 辅助工:12人 3.2 作业人员资格要求 3.2.1 所有作业人员都经过职业技术培训进场三级安全教育和体验合格后,才能上岗,衣着整齐、精神状态良好。 3.3 作业所需要的施工机械

4进度总计划及工期控制措施 本工程总工期为60天,开工时间为具备安装条件算起,为保证计划的完成制定此工期。(注:也可根据甲方的要求,用最快的时间保质保量的完成施工任务) 4.1、编制项目实施进度计划,合理安排进度,以保证工程总进度计划。 4.2、掌握实际进度值与计划差异,分析产生的原因并提出调整措施方案,并相应调整施工进度计划及劳动力、材料设计。 4.3、认真做好施工准备,按程序施工。 4.4、推行做好施工准备,按程序施工。 4.5、制定切实可行的防雨措施,确保工程顺利进行。 5、质量保证措施 5.1安装工程施工质量要点 5.1.1主要设备安装质量控制要点 a、设备安装前要对设备、原材料检查,试验不合格的设备、材料不 许使用,使用材料要实施见证取样制度。 b、安装工程要防止质量通病,抓好重点,关键部位。 5.1.2 施工质量控制要点 a、认真熟悉设计施工图,充分理解设计意图,熟悉和掌握有关施工 规范和质量标准。

烟囱爆破拆除设计与施工组织方案

烟囱爆破拆除设计与施工组织方案 因天华公司发展需要,拟将原有机硅厂区烟囱爆破拆除。根据建设方的要求,我公司派出了具有丰富拆除爆破施工经验的有关专家进行了现场勘查,在反复研究的基础上,制定了本拆除施工方案。 1. 工程概述 1.1周边环境 待拆除目标周围环境复杂,其南侧25m是厂内正在使用的电缆沟;东偏南62.5m是控制房;北侧13m是要保护的2层风机房;西侧15m是一临时浅埋的供水管。可供烟囱倒塌的的区域为一长80m,宽35m的狭长通道,在该通道的地下有三条电缆沟。 1.2拆除内容 要拆除的烟囱为砖结构,高55m,下部直径5.48m,壁厚91cm,周长17.2m,在其西侧有一高2m,宽1.5m的出灰口;其7.27m 处为一烟道,宽1.17m,高2.3m。 1.3工程要求 (1 )安全要求:爆破时,保证拆除点周围人员、车辆、设备、管线、建筑物的安全。 (2)工期要求:按施工进度计划,在规定的时间内完成。可能 的情况下尽量提前。

(3)质量要求:按照设计要求爆破破碎,解体块度达到清运要求。 1.4工程特点 1.4.1 环境复杂:待拆除的烟囱只能就地倒塌,周边的电缆、建筑要保护好,周边的桥架的安全更要保证安全。 1.4.2 爆破前准备工作量大:由于烟囱周边的环境复杂,爆前准备工作量大。 1.4.3 拆除施工区四周为正在生产的厂区,对周边环境要求较高 1.4.6 拆除采用控制爆破方法施工,技术含量较高。 2、施工方案设计的原则与依据 2.1 设计依据 2.1.1 业主提供相关招标文件资料及现场勘察所获取的有关资料; 2.1.2 爆破安全规程gb6722-2003 ; 2.1.3 中华人民共和国民用爆炸物品管理条例; 2.1.4 合江县公安局爆破作业的有关规定; 2.1.5 我公司类似工程的施工经验。 2.2 设计原则 2.2.1 安全是整个工程设计、施工的灵魂。 2.2.2 优质是整个工程施工过程的基本要求。 2.2.3 工期是业主对工程的重要要求,追求高效是工程各方的共同目标。 2.3 方案的设计思路发挥公司在控制爆破方面的技术优势,抓住影响

烟囱拆除爆破设计方案

西南科技大学环境与资源学院 控制爆破技术 课 堂 设 计 教师:蒲传金 类别:烟囱拆除爆破设计 班级:采矿 1 0 0 1班 学号: 20100912 姓名:毛德苹

烟囱拆除爆破设计方案 一.工程概况 1.烟囱结构 烟囱高36m, 底部地面以上到4.6m, 截面外部为边长a=1.25m 的正八角形,截面内部为内径Φ=1.5m 的圆。边长的中点墙的厚度为80cm 。 2.烟囱周围环境 烟囱东面离东华门幼儿园的围墙只有1.5m,西部13.5m 处是一排平房,正北24m 处是一座四层楼,西北方向为一座二层的办公楼,环境比较复杂。具体环境布局如下图所示: 二层办公楼 平 房平 房 三层楼房 东华门幼儿园 图1 烟囱爆破周围环境平面图 北 自行车棚 3.注意事项 ①.周围环境复杂,只有一个方向可供烟囱倒塌,因此必须严格控制烟囱倒塌方向。 ②.除考虑爆破本身产生的飞石外,还应加强对烟囱主体触地时产生的飞石进行防护。 ③. 除考虑爆破本身的振动外,还应关注烟囱主体触地时产生的震动。 ④.爆破现场离幼儿园较近,为防止惊吓到孩子,应合理选择爆破时间。 ⑤.确保起爆线路安全可靠。 ⑥.加强对爆破现场杂散电流的检测,以免出现意外情况。 ⑦.雇佣专业施工队伍,确保钻孔,装药等高要求环节的施工质量。

二.爆破方案选择 根据烟囱的自身结构以及爆破现场的周围环境条件,有如下三种爆破施工方案可供选择: 1.定向倒塌 该方案是在烟囱倾倒一侧的底部,将其支撑筒壁炸开一个长度大于该部位筒壁周长1/2且具有一定高度的爆破缺口,使烟囱整体失稳,在本身自重作用下形成倾覆力矩,迫使烟囱按预定方向倾倒。该方案要求在倒塌方向上有必须具备一个一定宽度和一定长度的场地。优点是破坏彻底,工程量小,是拆除高耸建(构)筑物的优选方案。 2.折叠倒塌 当现场的任意方向上都不能满足烟囱整体定向倒塌的情况下,可采用折叠倒塌爆破以缩短爆破范围。其基本原理是,根据现场条件,除了在主体底部布置一个爆破缺口外,还需在主体上部适当高度处布置一同向或者反向的缺口,并设置一定的爆破时间间隔,从而达到在受限的不利环境中进行折叠爆破的目的。其缺点是:施工难度大,技术要求高,风险高,需要专家评审后才能使用。 3.原地坍塌 原地爆破拆除爆破适用于爆破主体周边空间十分狭窄,没有其一般高度大小的爆破空间。该方案施工难度大,稍有失误便会朝任意方向倾倒,易造成安全事故。因此,为保证爆破工作的安全可靠,不到万不得已一般不会采用此法。 4.最终方案选择 通过现场布局图可以知道,在烟囱主体北偏西30°方向有可以提供整个烟囱倒塌的空间。且为了一次性彻底破环烟囱,便于施工,提高爆破工作的安全性、可靠性最终权衡利弊决定选用定向倒塌方案。 三.爆破设计 1.爆破缺口设计 ①.缺口形状选择 为保证倾倒定向准确,防止施工过程忠出现前冲、后坐和偏转现象,施工操作省时省力采用梯形缺口。 ②.修整爆破部位外部轮廓 由于烟囱外部为八边形,且倾倒中心线不一定重合于其对称线。因此,这样一来在倒塌的过程中便可能出现受力不均匀,从而偏移预定倾倒中心线的情况。为确保安全,避免百密一疏的悲剧重演,设计决定由人工对烟囱缺口上下1m范围内的烟囱外体进行精细修整,使这一范围内的外部轮廓变为以原八边形各边中点距烟囱中心距离为半径的圆形(即外径D=3.1m,内部直径为1.5m的圆筒)。从而保证倾倒的准确性。

冷却塔爆破拆除施工方案

如有帮助,欢迎下载支持 AAA厂煤堆场改造项目建设场地平整施工凉 水塔爆破拆除 施 工 组 织 设 计 编制单位:AAAAAAAAAA爆破有限公司 2009年4月1日

如有帮助,欢迎下载支持 一、工程概况 该塔底部直径47.562m,顶部直径25.948m,最小直径22.9m(位于+48m水平),塔筒壁厚由下向上逐渐缩小,最大45cm,最小12cm。塔基基础为圆形基础,基础以上均匀分布32对钢筋混凝土人字柱,人字柱垂高5.8m,斜长净长6.236 m,横断面为40cm×25cm;128根支撑柱,支撑柱横断面为30cm×25cm。该冷却塔距北面煤分析室只有20米,西、南面为空地,东面约40米有发电车间煤分析室。 采用定向倒塌爆破,缺口大小是冷却塔能否按设计方向倒塌的关键,若爆破缺口过小,倾倒力矩将会小于结构的极限弯矩,会出现爆而不倒的现象。经过多次计算和论证,取爆破缺口圆角221°,冷却塔底部周长为128.59m,爆破缺口处的周长78.72m,保留部分长49.87m。 方案选择: 方案方案一 人工方法拆除 方案二 爆破方法拆除 方案三 机械方法拆除 优缺点1、成本低 2、工期特别长,满足不了 工程进度需要 3、安全隐患多,安全性差。 1、成本较低 2、工程进度快 3、技术措施得当的 情况下,安全性好。 1、投入大型设备量特别大,成本 高 2、工期较长 3、施工组织难度较大,交叉作业 情况多,安全性一般。 二、爆破方案和爆破缺口范围的确定: 该塔为轻型薄壁钢筋混凝土结构,上窄下宽,底部直径大,倾倒难度较大,应防止坐而不倒以及塌而不碎,因此爆破方案采用较大炸高,以获得较大的触地冲能,使薄塔筒触地充分解体。具体采用“预处理部分塔壁板块,爆破支撑柱的定向倒塌的爆破方案”,方向为正南向。爆破预先处理缺口为正方形,处理缺口前五个为下3m正方形,上为1.5m宽的长方形,其他缺口为下长3m,宽2m的长方形。长方形最高5m,最低为2m,梯子形由中心线向后开,爆破缺口圆心角取221°,人字柱爆破20对,留12对。本次爆破采用雷管段位为,Ms1、Ms3、Ms10、Ms12,除支柱和连接使用Ms1,圈梁预先切割七处,将预处理区分为六块。内部支柱不承重,所以内部支柱爆破炮孔可以上、中、下各4个,孔距为0.3m。需打128根。

相关文档
最新文档