单向散列函数(HASH函数)基本原

单向散列函数(HASH函数)基本原

单向散列函数(HASH函数)基本原

?

?

?

Hash函数H(m)也名单向散列函数,它是现代密码学的核心。散列函数一直在计算机科学中使用,散列函数就是把可变的输入长度串转换成固定长度输出值(叫做散列值)的一种函数。而单向散列函数是在一个方向上工作的散列函数,从预映射的值很容易计算机其散列值,但要使其散列值等于一个特殊值却很难。好的散列函数也是无冲突的:难于产生两个预映射的值,使他们的散列值相同。

?

?

散列函数是公开的,对处理过程并不保密,单向散列函数的安全性是它的单向性,其输出不依赖于输入。平均而言,预映射值的单个位的改变,将引起散列值中一半位的改变。已知一个散列值,要找到预映射的值,使它的值等于已知的散列值在计算上是不可行的,可把单向散列函数看作是构成指纹文件的一种方法。如果你验证某人持有一个特定的文件(你同时也持有该文件),但你不想他将文件传给你,那幺,就要通知他将该文件的散列值传给你,如果他传送的散列值是正确的,那幺可以肯定他持有那份文件。散列函数可用于数字签名、消息的完整性检测、消息起源的认证检测等。常见的散列算法有MD5、SHA、Snefru和HVAL等。

?

什么是哈希函数

什么是哈希函数 哈希(Hash)函数在中文中有很多译名,有些人根据Hash的英文原意译为“散列函数”或“杂凑函数”,有些人干脆把它音译为“哈希函数”,还有些人根据Hash函数的功能译为“压缩函数”、“消息摘要函数”、“指纹函数”、“单向散列函数”等等。 1、Hash算法是把任意长度的输入数据经过算法压缩,输出一个尺寸小了很多的固定长度的数据,即哈希值。哈希值也称为输入数据的数字指纹(Digital Fingerprint)或消息摘要(Message Digest)等。Hash函数具备以下的性质: 2、给定输入数据,很容易计算出它的哈希值; 3、反过来,给定哈希值,倒推出输入数据则很难,计算上不可行。这就是哈希函数的单向性,在技术上称为抗原像攻击性; 4、给定哈希值,想要找出能够产生同样的哈希值的两个不同的输入数据,(这种情况称为碰撞,Collision),这很难,计算上不可行,在技术上称为抗碰撞攻击性; 5、哈希值不表达任何关于输入数据的信息。 哈希函数在实际中有多种应用,在信息安全领域中更受到重视。从哈希函数的特性,我们不难想象,我们可以在某些场合下,让哈希值来“代表”信息本身。例如,检验哈希值是否发生改变,借以判断信息本身是否发生了改变。` 怎样构建数字签名 好了,有了Hash函数,我们可以来构建真正实用的数字签名了。 发信者在发信前使用哈希算法求出待发信息的数字摘要,然后用私钥对这个数字摘要,而不是待发信息本身,进行加密而形成一段信息,这段信息称为数字签名。发信时将这个数字签名信息附在待发信息后面,一起发送过去。收信者收到信息后,一方面用发信者的公钥对数字签名解密,得到一个摘要H;另一方面把收到的信息本身用哈希算法求出另一个摘要H’,再把H和H’相比较,看看两者是否相同。根据哈希函数的特性,我们可以让简短的摘要来“代表”信息本身,如果两个摘要H和H’完全符合,证明信息是完整的;如果不符合,就说明信息被人篡改了。 数字签名也可以用在非通信,即离线的场合,同样具有以上功能和特性。 由于摘要一般只有128位或160位比特,比信息本身要短许多倍,USB Key或IC卡中的微处理器对摘要进行加密就变得很容易,数字签名的过程一般在一秒钟内即可完成。

单向散列函数算法Hash算法

单向散列函数算法(Hash算法): 一种将任意长度的消息压缩到某一固定长度(消息摘要)的函数(过程不可逆),常见的单向散列算法有MD5,SHA.RIPE-MD,HAVAL,N-Hash 由于Hash函数的为不可逆算法,所以软件智能使用Hash函数作为一个加密的中间步骤 MD5算法: 即为消息摘要算法(Message Digest Algorithm),对输入的任意长度的消息进行预算,产生一个128位的消息摘要 简易过程: 1、数据填充..即填出消息使得其长度与448(mod 512)同余,也就是说长度比512要小64位(为什么数据长度本身已经满足却仍然需要填充?直接填充一个整数倍) 填充方法是附一个1在后面,然后用0来填充.. 2、添加长度..在上述结果之后附加64位的消息长度,使得最终消息的长度正好是512的倍数.. 3、初始化变量..用到4个变量来计算消息长度(即4轮运算),设4个变量分别为A,B,C,D(全部为32位寄存器)A=1234567H,B=89abcdefH,C=fedcba98H,D=7654321H 4、数据处理..首先进行分组,以512位为一个单位,以单位来处理消息.. 首先定义4个辅助函数,以3个32为双字作为输入,输出一个32为双字 F(X,Y,Z)=(X&Y)|((~X)&Z) G(X,Y,Z)=(X&Z)|(Y&(~Z)) H(X,Y,Z)=X^Y^Z I(X,Y,Z)=Y^(X|(~Z)) 其中,^是异或操作 这4轮变换是对进入主循环的512为消息分组的16个32位字分别进行如下操作: (重点)将A,B,C,D的副本a,b,c,d中的3个经F,G,H,I运算后的结果与第四个相加,再加上32位字和一个32位字的加法常数(所用的加法常数由这样一张表T[i]定义,期中i为1至64之中的值,T[i]等于4294967296乘以abs(sin(i))所得结果的整数部分)(什么是加法常数),并将所得之值循环左移若干位(若干位是随机的??),最后将所得结果加上a,b,c,d之一(这个之一也是随机的?)(一轮运算中这个之一是有规律的递增的..如下运算式),并回送至A,B,C,D,由此完成一次循环。(这个循环式对4个变量值进行计算还是对数据进行变换??) For i=0 to N/16 do For j=0 to 15 do Set X[i] to M[i*16+j] End AA = A BB=B CC=C DD=D //第一轮,令[ABCD K S I]表示下面的操作: //A=B+((A+F(B,C,D)+X[K]+T[I])<<

哈希算法散列

计算机算法领域 基本知识 Hash,一般翻译做“散列”,也有直接音译为”哈希“的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 HASH主要用于信息安全领域中加密算法,他把一些不同长度的信息转化成杂乱的128位的编码里,叫做HASH值. 也可以说,hash就是找到一种数据内容和数据存放地址之间的映射关系 基本概念 * 若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。 * 对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称冲突。具有相同函数值的关键字对该散列函数来说称做同义词。综上所述,根据散列函数H(key)和处理冲突的方法将一组关键字映象到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象” 作为记录在表中的存储位置,这种表便称为散列表,这一映象过程称为散列造表或散列,所得的存储位置称散列地址。 * 若对于关键字集合中的任一个关键字,经散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。 常用的构造散列函数的方法 散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,数据元素将被更快地定位ǐ 1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a?key + b,其中a和b为常数(这种散列函数叫做自身函数) 2. 数字分析法 3. 平方取中法 4. 折叠法 5. 随机数法 6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即H(key) = key MOD p, p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词。 处理冲突的方法 1. 开放寻址法;Hi=(H(key) + di) MOD m, i=1,2,…, k(k<=m-1),其中H(key)为散列函数,m为散列表长,di为增量序列,可有下列三种取法: 1. di=1,2,3,…, m-1,称线性探测再散列; 2. di=1^2, (-1)^2, 2^2,(-2)^2, (3)^2, …, ±(k)^2,(k<=m/2)称二次探测再散列;

哈 希 常 见 算 法 及 原 理

计算与数据结构篇 - 哈希算法 (Hash) 计算与数据结构篇 - 哈希算法 (Hash) 哈希算法的定义和原理非常简单,基本上一句话就可以概括了。将任意长度的二进制值串映射为固定长度的二进制值串,这个映射的规则就是哈希算法,而通过原始数据映射之后得到的二进制值串就是哈希值。 构成哈希算法的条件: 从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法)对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同; 散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小; 哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。 哈希算法的应用(上篇) 安全加密 说到哈希算法的应用,最先想到的应该就是安全加密。最常用于加密的哈希算法是 MD5(MD5 Message-Digest Algorithm,MD5 消息摘要算法)和 SHA(Secure Hash Algorithm,安全散列算法)。 除了这两个之外,当然还有很多其他加密算法,比如 DES(Data Encryption Standard,数据加密标准)、AES(Advanced Encryption Standard,高级加密标准)。

前面我讲到的哈希算法四点要求,对用于加密的哈希算法来说,有两点格外重要。第一点是很难根据哈希值反向推导出原始数据,第二点是散列冲突的概率要很小。 不过,即便哈希算法存在散列冲突的情况,但是因为哈希值的范围很大,冲突的概率极低,所以相对来说还是很难破解的。像 MD5,有 2^128 个不同的哈希值,这个数据已经是一个天文数字了,所以散列冲突的概率要小于 1-2^128。 如果我们拿到一个 MD5 哈希值,希望通过毫无规律的穷举的方法,找到跟这个 MD5 值相同的另一个数据,那耗费的时间应该是个天文数字。所以,即便哈希算法存在冲突,但是在有限的时间和资-源下,哈希算法还是被很难破解的。 对于加密知识点的补充,md5这个算法固然安全可靠,但网络上也有针对MD5中出现的彩虹表,最常见的思路是在密码后面添加一组盐码(salt), 比如可以使用md5(1234567.'2019@STARK-%$#-idje-789'),2019@STARK-%$#-idje-789 作为盐码起到了一定的保护和安全的作用。 唯一标识(uuid) 我们可以给每一个图片取一个唯一标识,或者说信息摘要。比如,我们可以从图片的二进制码串开头取 100 个字节,从中间取 100 个字节,从最后再取 100 个字节,然后将这 300 个字节放到一块,通过哈希算法(比如 MD5),得到一个哈希字符串,用它作为图片的唯一标识。通过这个唯一标识来判定图片是否在图库中,这样就可以减少很多工作量。

单向杂凑函数解读

第 6 章單向雜湊函數 密碼學上的雜湊函數(Cryptographic Hash Function),為一種可以將任意長本文由【中文word文档库】https://www.360docs.net/doc/429050798.html,搜集整理。中文word文档库免费提供海量教学资料、行业资料、范文模板、应用文书、考试学习和社会 经济等word文档 度的輸入訊息加以濃縮、轉換,成為一相當短的固定長度輸出訊息的函數,此一輸出訊息一般稱為文件摘要(Message Digest)或雜湊值(Hash Value)。 設計或使用雜湊函數於密碼學系統上的主因是因為利用公開金鑰密碼系統簽章時,因其運算速度較慢,若對整份文件加以簽章則效率不彰。因此加以變通,使用由該文件經過雜湊函數運算所產生之長度較短,但足以區別該文件的文件摘要(Message Digest),或稱文件的數位指紋(Digital Fingerprint),來加以簽章,取代原先對整份文件簽章的方式,以加速數位簽章的應用。 雜湊函數與加密演算法一樣,均是將訊息加以隱藏。但其不同點在於加密演算法的結果可以藉由適當的方式加以還原,而雜湊函數則必須具單向與不可逆(One-Way)的特性。因此使得給定文件時,順向計算該文件的雜湊值相單簡單快速,但經過雜湊函數濃縮、運算後的文件摘要,無法反向還原成先前的訊息。 密碼學中所使用的單向雜湊函數(One-Way Hash Function)必須具備以下兩個特性: 1.當給定一特定的雜湊輸出值後,欲找出任何文件可以輸出此一特定 的雜湊值,為計算上的不可行,此為抗拒事先描繪的特性(Preimage Resistance)。 2.即使給定一份文件及其雜湊值後,找出第二份文件可以輸出此一特

最小完美哈希函数(深入搜索引擎)

最小完美哈希函数 哈希函数h是一个能够将n个键值x j的集合映射到一个整数集合的函数h(x i),其值域范围是0≤h(x j)≤m-l,允许重复。哈希是一个具有查找表功能并且提供平均情况下快速访问的标准方法。例如,当数 据包含n个整数键值。某常用哈希函数采用h(x)=x mod m,其中m 是一个较小的值,且满足m>n/a。a是装载因子,表示记录数和可用地址数的比例关系。m一般选择一个素数,因此如果要求提供一个对1000个整数键值进行哈希的函数,一个程序员可能会建议写出如下函数形式:,h(x)=x mod 1399。并且提供一个装载因子为。a=0.7的表,该表声明能够存放1399个地址。 a越小,两个不同键值在相同哈希值相互冲突的可能性就越小,然而冲突总是不可避免。第1次考虑这个问题时,事实可能让人吃惊,最好的例子莫过于著名的生日悖论(birthday paradox)。假定一年有365天,那么要组合多少个人,才能使得出现生日相同的人这一概率超过0.5呢?换句话说,给定一个365个哈希槽(hashslot)。随机选择多少个键值才能够使得出现冲突的概率超过0.5?当首次面对这样一个问题时,一般的反应肯定是认为需要很多人才行。事实上,答案是只需区区23人。找到一个能够满足现实大小要求且无冲突的哈希函数的几率小到几乎可以忽略25。例如,一个1000个键值和1399个随机选择的槽,完全没有冲突的概率为 2.35×10-217(概率的计算诱导公式将在下一节中给出,以公式4.1代入m=1399和n=1000得到),如何才能最好地处理这些不可避免冲突?这一话题将在本节中以大段篇幅展开,这里我们正是要找到其中万里挑一的能够避免所有冲突的哈 希函数。 25可以试图在一群人中做这样一个有趣的实验,笔者曾在讲述哈希表的课上和同学们做 过多次这样的实验。有一项很重要的事情往往被我们忽略,即参加者必须事先在纸上写下他们的生日(或者其他任意日子)。然后才能开始核对的工作,这样才能消除神奇的负反馈。在我们的实验中,除非这样做了,否则也许必须找到366个同学才能遇到第1次碰撞,也许这乜存在心理学悖论吧。

哈 希 常 见 算 法 及 原 理 ( 2 0 2 0 )

哈希算法乱谈(摘自知乎) 最近【现场实战追-女孩教-学】初步了解了Hash算法的相关知识,一些人的见解让我能够迅速的了解相对不熟悉的知识,故想摘录下来,【QQ】供以后温故而知新。 HASH【⒈】算法是密码学的基础,比较常用的有MD5和SHA,最重要的两【О】条性质,就是不可逆和无冲突。 所谓不【1】可逆,就是当你知道x的HASH值,无法求出x; 所谓无【б】冲突,就是当你知道x,无法求出一个y,使x与y的HA【9】SH值相同。 这两条性【⒌】质在数学上都是不成立的。因为一个函数必然可逆,且【2】由于HASH函数的值域有限,理论上会有无穷多个不同的原始值【6】,它们的hash值都相同。MD5和SHA做到的,是求逆和求冲突在计算上不可能,也就是正向计算很容易,而反向计算即使穷尽人类所有的计算资-源都做不到。 顺便说一下,王小云教授曾经成功制造出MD5的碰撞,即md5(a) = md5(b)。这样的碰撞只能随机生成,并不能根据一个已知的a求出b(即并没有破坏MD5的无冲突特性)。但这已经让他声名大噪了。 HASH算法的另外一个很广泛的用途,就是很多程序员都会使用的在数据库中保存用户密码的算法,通常不会直接保存用户密码(这样DBA就能看到用户密码啦,好危险啊),而是保存密码的HASH值,验

证的时候,用相同的HASH函数计算用户输入的密码得到计算HASH值然后比对数据库中存储的HASH值是否一致,从而完成验证。由于用户的密码的一样的可能性是很高的,防止DBA猜测用户密码,我们还会用一种俗称“撒盐”的过程,就是计算密码的HASH值之前,把密码和另外一个会比较发散的数据拼接,通常我们会用用户创建时间的毫秒部分。这样计算的HASH值不大会都是一样的,会很发散。最后,作为一个老程序员,我会把用户的HASH值保存好,然后把我自己密码的HASH值保存到数据库里面,然后用我自己的密码和其他用户的用户名去登录,然后再改回来解决我看不到用户密码而又要“偷窥”用户的需要。最大的好处是,数据库泄露后,得到用户数据库的黑客看着一大堆HASH值会翻白眼。 哈希算法又称为摘要算法,它可以将任意数据通过一个函数转换成长度固定的数据串(通常用16进制的字符串表示),函数与数据串之间形成一一映射的关系。 举个粒子,我写了一篇小说,摘要是一个string:'关于甲状腺精灵的奇妙冒险',并附上这篇文章的摘要是'2d73d4f15c0db7f5ecb321b6a65e5d6d'。如果有人篡改了我的文章,并发表为'关于JOJO的奇妙冒险',我可以立即发现我的文章被篡改过,因为根据'关于JOJO的奇妙冒险'计算出的摘要不同于原始文章的摘要。 可见,摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡

散列函数

散列函数 又称hash函数,Hash函数(也称杂凑函数或杂凑算法)就是把任意长的输入消息串变化成固定长的输出串的一种函数。这个输出串称为该消息的杂凑值。一般用于产生消息摘要,密钥加密等. 一个安全的杂凑函数应该至少满足以下几个条件: ①输入长度是任意的; ②输出长度是固定的,根据目前的计算技术应至少取128bits长,以便抵抗生日攻击; ③对每一个给定的输入,计算输出即杂凑值是很容易的 ④给定杂凑函数的描述,找到两个不同的输入消息杂凑到同一个值是计算上不可行的,或给定杂凑函数的描述和一个随机选择的消息,找到另一个与该消息不同的消息使得它们杂凑到同一个值是计算上不可行的。 Hash函数主要用于完整性校验和提高数字签名的有效性,目前已有很多方案。这些算法都是伪随机函数,任何杂凑值都是等可能的。输出并不以可辨别的方式依赖于输入;在任何输入串中单个比特的变化,将会导致输出比特串中大约一半的比特发生变化。 常见散列函数(Hash函数) ·MD5(Message Digest Algorithm 5):是RSA数据安全公司开发的一种单向散列算法,MD5被广泛使用,可以用来把不同长度的数据块进行暗码运算成一个12 8位的数值; ·SHA(Secure Hash Algorithm)这是一种较新的散列算法,可以对任意长度的数据运算生成一个160位的数值; ·MAC(Message Authentication Code):消息认证代码,是一种使用密钥的单向函数,可以用它们在系统上或用户之间认证文件或消息。HMAC(用于消息认证的密钥散列法)就是这种函数的一个例子。 ·CRC(Cyclic Redundancy Check):循环冗余校验码,CRC校验由于实现简单,检错能力强,被广泛使用在各种数据校验应用中。占用系统资源少,用软硬件均能实现,是进行数据传输差错检测地一种很好的手段(CRC 并不是严格意义上的散列算法,但它的作用与散列算法大致相同,所以归于此类)。 讨论几种散列函数。在以下的讨论中,我们假设处理的是值为整型的关键码,否则我们总可以建立一种关键码与正整数之间的一一对应关系,从而把该关键码的检索转化为对与其对应的正整数的检索;同时,进一步假定散列函数的值落在0到M-1之间。散列函数的选取原则是:运算尽可能简单;函数的值域必须在散列表的范围内;尽可能使得结点均匀分布,也就是尽量让不同的关键码具有不同的散列函数值。需要考虑各种因素:关键码长度、散列表大小、关键码分布情况、记录的检索频率等等。下面我们介绍几种常用的散列函数。 1、除余法

SHA-1(安全哈希算法实现)

SHA-1(安全哈希算法实现) 如题,不知道sha-1的自己百度吧。 1 #include 2 #include //定义vector数组 3 #include //记录消息 4usingnamespace std; 5 6constint NUM = 8; //一个字由32比特(或者8个16进制数) 7constint BIT = 512; //消息认证码要以512比特一组 8 9//字常量 10string H0 = "67452301"; 11string H1 = "EFCDAB89"; 12string H2 = "98BADCFE"; 13string H3 = "10325476"; 14string H4 = "C3D2E1F0"; 15 16//定义SHA1(安全哈希算法)类 17class SHA1 18 { 19public: 20//将一个字符串形式的字转化为vector数组 21 vector hex_into_dec(string word); 22 23//将vector转化为string字符串形式 24string num_into_message(vector A); 25 26//两个字X和Y的逻辑"和" 27 vector word_AND(vector A,vector B); 28 29//两个字X和Y的逻辑"或" 30 vector word_OR(vector A,vector B); 31 32//两个字X和Y的逻辑"异或" 33 vector word_XOR(vector A,vector B); 34 35//两个字X和Y的逻辑"补" 36 vector word_COMPLEMENT(vector A); 37 38//两个字X和Y的摸2^32整数加 39 vector word_ADD(vector A,vector B); 40

哈希算法介绍

哈希算法简介

目录 1哈希算法概念 (2) 2哈希函数 (3) 3冲突的解决方法 (3) 4哈希算法应用 (4)

关键词: 算法、哈希、c语言 摘要: 哈希算法在软件开发和Linux内核中多次被使用,由此可以见哈希算法的实用性和重要性。本文介绍了哈希算法的原理和应用,并给出了简略的代码实现,以便读者理解。

1哈希算法概念 哈希(hash 散列,音译为哈希) 算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。 哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希算法都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。 哈希表是根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上,并以关键字在地址区间中的项作为记录在表中的存储位置,这种表称为哈希表,所得存储位置称为哈希地址。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。 查找一般是对项的摸个部分(及数据成员)进行,这部分称为键(key )。例如,项可以由字符串作为键,附带一些数据成员。 理想的哈希表数据结构只不过是一个包含一些项的具有固定大小的数组。 通常的习惯是让项从0到 TableSize-1之间变化。 将每个键映射到0到TableSize-1 这个范围中的某个数 ,并且将其放到适当的单元中,这个映射就称为散列函数(hash funciton )。 如右图,john 被散列到3,phil 被散列到4,dave 被散列到6,mary 被散列到7. 这是哈希的基本思想。剩下的问题则是要选择一个函数,决定当两个键散列到同一个值的时候(称为冲突),应该做什么。

HASH函数

密码学 (第十三讲) HASH函数 张焕国 武汉大学计算机学院

目录 密码学的基本概念 1、密码学 2、古典 、古典密码 3、数据加密标准( ) DES) 、数据加密标准(DES 4、高级 ) AES) 数据加密标准(AES 高级数据加密标准( 5、中国商用密码( ) SMS4) 、中国商用密码(SMS4 6、分组密码的应用技术 7、序列密码 8、习题课:复习对称密码 、公开密钥密码(11) 9、公开密钥密码(

目录 公开密钥密码(22) 10 10、 11、数字签名(1) 12、数字签名(2) 13、 、HASH函数 13 14 14、 15、 15 PKI技术 16 16、 、PKI 17、习题课:复习公钥密码 18、总复习

一、HASH 函数函数的概念的概念 1、Hash Hash的作用的作用 ?Hash Hash码也称报文摘要码也称报文摘要。。 ?它具有极强的错误检测能力错误检测能力。。 ?用Hash Hash码作码作MAC ,可用于认证认证。。 ?用Hash Hash码辅助码辅助数字签名数字签名。。 ?Hash Hash函数可用于函数可用于保密保密。。

一、HASH 函数的概念 2、Hash Hash函数的定义函数的定义 ①Hash Hash函数将任意长的数据函数将任意长的数据M 变换为定长的码h , 记为记为::h=HASH(M)h=HASH(M)或或h=H(M)h=H(M)。。 ②实用性:对于给定的数据对于给定的数据M M ,计算,计算h=HASH(M)h=HASH(M)是是 高效的。 ③安全性安全性:: ? 单向性:对给定的对给定的Hash Hash值值h ,找到满足H(x)H(x)==h 的x 在 计算上是不可行的计算上是不可行的。。 否则否则,,设传送数据为设传送数据为C=C=<<M ,H(M||K )>,K 是密钥。攻击者可以截获攻击者可以截获C,C,求出求出Hash 函数的逆函数的逆,,从而得出 M||S =H -1(C),然后从M 和M ||K即可即可得出得出K。

几种字符串哈希HASH算法的性能比较

几种字符串哈希HASH算法的性能比较 2011年01月26日星期三 19:40 这不就是要找hash table的hash function吗? 1 概述 链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。 设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash 链表的构造和冲突的不同实现方法对效率当然有一定的影响,然而Hash函数是Hash链表最核心的部分,本文尝试分析一些经典软件中使用到的字符串 Hash函数在执行效率、离散性、空间利用率等方面的性能问题。 2 经典字符串Hash函数介绍 作者阅读过大量经典软件原代码,下面分别介绍几个经典软件中出现的字符串Hash函数。 2.1 PHP中出现的字符串Hash函数 static unsigned long hashpjw(char *arKey, unsigned int nKeyLength) { unsigned long h = 0, g; char *arEnd=arKey+nKeyLength; while (arKey < arEnd) { h = (h << 4) + *arKey++; if ((g = (h & 0xF0000000))) { h = h ^ (g >> 24); h = h ^ g; } } return h; } 2.2 OpenSSL中出现的字符串Hash函数 unsigned long lh_strhash(char *str) { int i,l; unsigned long ret=0; unsigned short *s; if (str == NULL) return(0); l=(strlen(str)+1)/2; s=(unsigned short *)str; for (i=0; i ret^=(s[i]<<(i&0x0f)); return(ret);

安全哈希函数简介

安全哈希函数 一、哈希函数定义 Hash,一般翻译做“散列”,也有直接音译为”哈希”的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。 二、性质 基本特性:如果两个散列值是不相同的(根据同一函数),那么这两个散列值的原始输入也是不相同的。但反过来不同的原始输入不一定能得到相同的散列值,即发生了碰撞。哈希函数的定义域无限,而值域有限,因此理论上来讲每个哈希函数都可以找到碰撞。 一个“优良”的hash函数f 应当满足以下三个条件: 任意y,找x,使得f(x)=y,非常困难。此为哈希函数的单向性,或抗原像性(preimage resistant)。 给定x1,找x2,使得f(x1)=f(x2),非常困难。弱抗碰撞性,或抗第二原像性(second preimage resistant)。 找x1,x2,使得f(x1)=f(x2),非常困难。强抗碰撞性(Collision Resistant)。 三、分类 哈希函数有字符串哈希函数,一般用于数据存储;安全哈希函数 安全哈希函数的分类: 根据安全水平: 弱抗碰撞哈希函数和强抗碰撞哈希函数,后者是包含前者的。 在保护口令的应用中,只需弱抗碰撞性就够了,但在数字签名中,必须有强抗碰撞性。

根据是否使用密钥: 带密钥的哈希函数:消息的散列值由只有通信双方知道的秘密密钥K来控制,此时散列值称作MAC(Message Authentication Code) 不带密钥的哈希函数:消息的散列值的产生无需使用密钥,此时散列值称作MDC(Message Detection Code 四、哈希函数的用途 数字签名 哈希函数可以提高签名的速度,减少运算,又可以不泄露签名所对应的消息,还可以将消息的签名与加密变换分开处理。 校验 可以校验数据是否被篡改。传输消息之前对消息进行哈希变换,接收者也进行相同的哈希变换,若两个哈希值相同,可以认为消息在传输过程中没有被篡改。 快速访问 散列表的寻址时间复杂度为O(1),在数据存储中运用较多,这里不作详述。 安全访问认证 MD5广泛用于操作系统的登陆认证上,如在Unix系统中用户的密码是以MD5(或其它类似的算法)经Hash运算后存储在文件系统中。当用户登录的时候,系统把用户输入的密码进行MD5 Hash运算,然后再去和保存在文件系统中的MD5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这可以避免用户的密码被具有系统管理员权限的用户知道。 伪随机数生成

密码学作业ch11

1.消息认证是为了对付哪些类型的攻击? 答:伪装(假冒)篡改内容修改顺序修改时间(包括重放) 2.消息认证或数字签名方法有哪两层功能? 答:任何消息认证或数字签名机制基本分两步: 产生认证符(是一个用来认证消息的值)的函数; 将该函数作为原语使接收方可以验证消息真实性的认证协议。 3.产生消息认证有哪些方法? 答:用于消息认证的最常见的密码技术是消息认证码和安全散列函数 MAC是一种需要使用秘密钥的算法,以可变长度的消息和秘密钥作为输入,产生一个认证码。拥有秘密钥的接受方产生一个认证码来验证消息的完整性。 哈西函数将可变长度的消息映射为固定长度的哈西值,或叫消息摘要。对于消息认证来说,安全散列函数还必须以某种方式和秘密钥捆绑起来。 4.对称加密和错误控制码一起用于消息认证时,这两个函数必须以何种顺序执行? 答:先错误控制码后对称加密。

5.什么是消息认证码? 答:消息认证码,是用来保证数据完整性的一种工具,可以防止数据未经授权被篡改,用数学语言描述,是一个让双方共享的密钥k和消 (m),这个函数值就是一个息m作为输入函数,如果将函数记为mac k 认证标记。 6.消息认证码和散列函数之间的区别是什么? 答:消息认证码(MAC)依赖公开函数,密钥控制下对消息处理,生成定长认证标识,并加以认证。 散列函数:将任意长度的消息换为定长的消息摘要,并加以认证。 7.为提供消息认证,应以何种方式保证散列值的安全? 答:a.用对称密码对消息及附加在其后的散列码加密。 b.用对称密码仅对散列加密。 c.用公钥密码和发送方的密钥仅对散列加密。 d.若寄希望保证保密性有希望有数字签名,则先用发送方的密钥对散列码加密 e.该方法使用散列函数但不使用加密函数来进行消息认证。 f.如果对整个消息和散列码加密,则(e)中的方法可提供保密性。 8.为了攻击MAC算法必须要恢复密钥吗? 答:不需要。

设计构造哈希表的完整算法,求出平均查找长度

《程序设计与算法分析》实验报告 一设计的目的与内容 1.设计目的 通过本实验需要掌握构造哈希函数表,需要完成设计构造哈希表的完整算法,并求出平均查找长度。 2 实验内容 使用哈希函数:H(K)=3*K MOD 11 并采用开放地址法解决冲突,试在0到10的散列地址空间对关键字序列( 22, 41, 53, 46, 30,13, 01,67)构造哈希函数表,并设计构造哈希表的完整算法,并求出平均查找长度。 二算法的基本思想 1.数据结构的设计 哈希函数H ( key ) =3* key mod 11,哈希表的地址空间为0 ~10,对关键字序列(22, 41, 53, 46, 30,13, 01,67)按线性探测再散列和二次探测再散列的方法分别构造哈希表。 ( 1 )线性探测再散列: 3*22%11 = 0;3*41 %11=2 ;3*53%11 = 5 ;3* 46%11=6;3*30%11=2发生冲突,下一个存储地址(2+ 1 )%11 = 3 ; 3*13%11=6发生冲突,下一个存储地址(6+1 )%11 =7 ; 3*01%11=3发生冲突,下一个存储地址(3+1 )%11 =4 ; 3*67%11=3发生冲突,下一个存储地址是:(3 +1 )%11 =4 发生冲突;下一个存储地址( 4 + 1 )%11=5发生冲突;下一个存储地址( 5 + 1 )%11=6发生冲突;下一个存储地址(6+ 1 )%11=7发生冲突;下一个存储地址(7 + 1 )%11=8未发生冲突。

2.算法的基本思想 开放地址法这个方法的基本思想是:当发生地址冲突时,按照某种方法继续探测哈希表中的其他存储单元,直到找到空位置为止。这个过程可用下式描述: H i ( key ) = ( H ( key )+ d i ) mod m ( i = 1,2,…… ,k ( k ≤ m – 1)) 其中:H ( key ) 为关键字key 的直接哈希地址,m 为哈希表的长度,di 为每次再探测时的地址增量。采用这种方法时,首先计算出元素的直接哈希地址H ( key ) ,如果该存储单元已被其他元素占用,则继续查看地址为H ( key ) + d 2 的存储单元,如此重复直至找到某个存储单元为空时,将关键字为key 的数据元素存放到该单元。增量 d 可以有不同的取法,并根据其取法有不同的称呼: ( 1 ) d i = 1 , 2 , 3 ,…… 线性探测再散列; ( 2 )d i =1^2 ,-1^2 ,2^2 ,-2^2 ,k^2,-k^2…… 二次探测再散列; ( 3 ) d i =伪随机序列伪随机再散列; 三源程序代码及测试结果 1.源程序代码 #include #include #define M 11 #define N 8 struct hterm { int key; //关键字值 int si; //散列次数 };

单向散列函数的原理_实现和在密码学中的应用

收稿日期:2001204228 基金项目:国家重点科技项目(攻关)计划资助课题(20002A312 01205) 单向散列函数的原理、实现和在密码学中的应用3 辛运帏,廖大春,卢桂章 (南开大学信息技术科学学院,天津300071) 摘 要:简要介绍了单向散列函数的有关理论及实现情况,并且以密码学中广泛应用的单向散列函数M D5 为例,详细介绍了它的原理和实现过程。最后简要介绍了单向散列函数在当前的应用,并且提出了一种利用单向散列函数实现的新的用户密钥管理方案。 关键词:单向散列函数;密码学;邮摘散列算法;M D5中图法分类号:TP309.3 文献标识码:A 文章编号:100123695(2002)022*******  The Principle and Implement of One 2way Hash Functions and Their Cryptographic Application XI N Y un 2wei ,LI AO Da 2chun ,LU G ui 2zhang (College o f Information Technology &Science ,Nankai Univer sity ,Tianjin 300071,China ) Abstract :The paper introduces the theory and im plement of one 2way hash functions ,and using the M D5Alg orithm which is extensively used in cry ptography as an exam ple ,introduces its principle and im plement in detail.At last ,we research the application of them ,and pre 2sent a new schedule of user key management. K ey w ords :One 2way Hash Function ;Cry ptography ;Message Digest Hash Alg orithm ;M D5 1 单向散列函数简介 密码学中使用的单向散列函数将任意长度的消息压缩到某一固定长度的消息摘要。单向散列函数又称为单向Hash 函数,它不是加密算法,却在密码学中有着广泛的应用,与各种加密算法有着密切的关系。它的模型为:h =H (M )。 其中,M 是待处理的明文,可以为任意长度;H 是单向散列函数,h 是生成的报文摘要,它具有固定的长度,并且和M 的长度无关。其中H 具有以下的单向性质:①给定H 和M ,很容易计算h ;②给定h 和H ,很难计算M ,甚至得不到M 的任何消息;③给定H ,要找两个不同的M 1和M 2,使得H (M 1)=H (M 2)在计算上是不可行的。 根据单向散列函数的安全水平,可以将单向散列函数分成两类:强碰撞自由的单向散列函数和弱碰撞自由的单向散列函数。上面描述的是强碰撞自由的单向散列函数的性质。如果将第③条改为:给定h 和一个已知的消息M ,找另外一个不同的消息M 1,使得h (M )=h (M 1)在计算上是不可行的,就叫做弱碰撞自由的单向散列函数。 显然强碰撞自由的单向散列函数比弱碰撞自由的单向散列函数安全性要高。因为弱碰撞自由的单向散列函数随着重复使用次数的增加安全性逐渐降低,强碰撞自由的单向散列函数则不会因其重复使用而降低安全性。因此在实际中要求使用强碰撞自由的单向散列函数。除此之外,在实际应用中还要求单向散列函数具有如下特点: (1)单向散列函数能够处理任意长度的明文(至少是在实际应用中可能碰到的长度的明文),其生成的消息摘要数据块长度具有固定的大小,而且,对同一个消息反复执行该函数总是得到相同的信息摘要。 (2)单向散列函数生成的信息摘要是不可预见的,消息摘要看起来和原始的数据没有任何的关系。而且,原始数据的任何微小变化都会对生成的信息摘要产生很大的影响。 (3)具有不可逆性,即通过生成的报文摘要得到原始数据的任何信息在计算上是完全不可行的。 单向散列函数在密码学中有着非常广泛的应用,它被广泛地应用于数字签名、消息的完整性鉴别、消息的起源认证等,另外也和各种密码算法一起构成混合密码系统。 2 实现综述 实现一个安全的单向散列函数并不是一件容易的事 ? 52?第2期辛运帏等:单向散列函数的原理、实现和在密码学中的应用

常见的Hash算法

常见的Hash算法 1.简介 哈希函数按照定义可以实现一个伪随机数生成器(PRNG),从这个角度可以得到一个公认的结论:哈希函数之间性能的比较可以通过比较其在伪随机生成方面的比较来衡量。 一些常用的分析技术,例如泊松分布可用于分析不同的哈希函数对不同的数据的碰撞率(collision rate)。一般来说,对任意一类的数据存在一个理论上完美的哈希函数。这个完美的哈希函数定义是没有发生任何碰撞,这意味着没有出现重复的散列值。在现实中它很难找到一个完美的哈希散列函数,而且这种完美函数的趋近变种在实际应用中的作用是相当有限的。在实践中人们普遍认识到,一个完美哈希函数的哈希函数,就是在一个特定的数据集上产生的的碰撞最少哈希的函数。 现在的问题是有各种类型的数据,有一些是高度随机的,有一些有包含高纬度的图形结构,这些都使得找到一个通用的哈希函数变得十分困难,即使是某一特定类型的数据,找到一个比较好的哈希函数也不是意见容易的事。我们所能做的就是通过试错方法来找到满足我们要求的哈希函数。可以从下面两个角度来选择哈希函数: 1.数据分布 一个衡量的措施是考虑一个哈希函数是否能将一组数据的哈希值进行很好的分布。要进行这种分析,需要知道碰撞的哈希值的个数,如果用链表来处理碰撞,则可以分析链表的平均长度,也可以分析散列值的分组数目。 2.哈希函数的效率 另个一个衡量的标准是哈希函数得到哈希值的效率。通常,包含哈希函数的算法的算法复杂度都假设为O(1),这就是为什么在哈希表中搜索数据的时间复杂度会被认为是"平均为O(1)的复杂度",而在另外一些常用的数据结构,比如图(通常被实现为红黑树),则被认为是O(logn)的复杂度。 一个好的哈希函数必修在理论上非常的快、稳定并且是可确定的。通常哈希函数不可能达到O(1)的复杂度,但是哈希函数在字符串哈希的线性的搜索中确实是非常快的,并且通常哈希函数的对象是较小的主键标识符,这样整个过程应该是非常快的,并且在某种程度上是稳定的。 在这篇文章中介绍的哈希函数被称为简单的哈希函数。它们通常用于散列(哈希字符串)数据。它们被用来产生一种在诸如哈希表的关联容器使用的key。这些哈希函数不是密码安全的,很容易通过颠倒和组合不同数据的方式产生完全相同的哈希值。 2.哈希方法学 哈希函数通常是由他们产生哈希值的方法来定义的,有两种主要的方法: 1.基于加法和乘法的散列 这种方式是通过遍历数据中的元素然后每次对某个初始值进行加操作,其中加的值和这个数据的一个元素相关。通常这对某个元素值的计算要乘以一个素数。

相关文档
最新文档