超声波的特性

超声波的特性
超声波的特性

超声波的特性

束射特性

由于超声波的波长短,超声波射线可以和光线一样,能够反射、折射,也能聚焦,而且.遵守几何光学上的定律。即超声波

射线从一种物质表面反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射,也就是要

改变它的传插方向,两种物质的密度差别愈大,则折射也愈大。

吸收特性

声波在各种物质中传播时,随着传播距离的增加,强度会渐进减弱,这是因为物质要吸收掉它的能量。

对于同一物质,声波的频率越高,吸收越强。

对于一个频率一定的声波,在气体中传播时吸收最历害,在液体中传播时吸收比较弱,在固体中传播时吸收最小。

超声波的能量传递特性

超声波所以往各个工业部门中有广泛的应用,主要之点 还在于比声波具有强大得多的功率。为什么有强大的功率

呢?因为当声波到达某一物资中时,由于声波的作用使物质中的分子也跟着振动,振动的频率和声波频率—样,分子振动的

频率决定了分子振动的速度。频率愈高速度愈大。物资分子由于振动所获得的能量除了与分子的质量有关外,是由分子

的振动速度的平方决定的,所以如果声波的频率愈高,也就是物质分子愈能得到更高的能量、超声波的频率比声波可以高

很多,所以它可以使物资分子获得很大的能量;换句话说,超声波本身可以供给物质足够大的功率。

超声波的声压特性

当声波通入某物体时,由于声波振动使物质分子产生压缩和稀疏的作用,将使物质所受的压力产生变化。由于声波振动引起

附加压力现象叫声压作用。

由于超声波所具有的能量很大,就有可能使物质分子产生显诸的声压作用、例如当水中通过一般强度的超声波时,产生的附

加压力可以达到好几个大气压力。液体中存起着如此巨大的声压作用,就 会引起值得注意的现象。当超声波振动使液体分子

压缩时,好象分子受到来直四面八方的压力;当超声波振动使液体分子稀疏时,好象受到向外散开的拉力,对于液体,它们

比较受得住附加压力的作用,所以在受到压缩力的时候;不大会产生反常情形。但是在拉力的作用下,液体就会支持不了,在

拉力集中的 地方,液体就会断裂开来,这种断裂作用特别容易发生在液体中存在杂质或气

泡的地方,因为这些地方液体的强

度特别 低,也就特别经受不起几倍于大气压力的拉力作用。由于发生断裂的结果,液体中会产生许多气泡状的小空腔,这种空泡

存在的时间很短,一瞬时就会闭合起来。空腔闭合的时候会 产生很大的瞬时压力,一般可以达到几千甚至几万个大气压

力。液体在这种强大的瞬时压力作用下,温度会骤然增高。 断裂作用所引起的互大瞬时压力,可以使浮悬在液体中 的固体表

面受到急剧破坏。我们常称之为空化现象。

超声波的应用具有以下的特点:

1. 超声波具有较好的指向性——频率越高,指向性越强。这在诸如探伤和水下声通讯等应用场合是主要的考虑因素。

2. 频率高时,相应地波长将变短,因而波长可与传播超声波的试样材料的尺寸相比拟,甚至波长可远小于试样材料

的尺寸.这在厚度尺寸很小的测量应用中以及在高分辨率的探伤应用中是非常重要的。 3. 超声波用起来很安静,人们听不到它。这一点在高强度工作场合尤为重要。这些高强度的工作用可闻频率的声波

来完成时往往更有效,然而遗憾的是,可闻声波工作时所产生的噪声令人难以忍受,有时甚至是对人体有害的。

作者:小型超声波清洗机@深圳劲泰超声波设备 修订1.1 2011-11-22

劲泰——超声波清洗机领导品牌!

文章转自:https://www.360docs.net/doc/438444081.html,/equipment/131.html

关键词:超声波清洗济分类超声波清洗济

深圳劲泰超声波设备有限公司——超声波设备行业领导品牌。

自行开发的全系列超声波清洗机、日光灯回收处理设备。

品质、服务一流!我们有专业的生产、研发、销售、售后等全方位的团队,给客户高质量的产品和满意的服务是我们的目标!

在超声波清洗行业内质量遥遥领先于国内同类企业!具有非常多的成功案例!

扎扎实实做超声波清洗设备!更多请搜索深圳劲泰超声波设备进去官网详细了解。

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告 一实验目的 1.了解超声波的物理特性及其产生机制; 2.学会用相位法测超声波声速并学会用逐差法处理数据; 3.测量超声波在介质中的吸收系数及反射面的反射系数; 4.并运用超声波检测声场分布。 5.学习超声波产生和接收原理, 6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。 7.观察和测量声波的双缝干涉和单缝衍射 二实验条件 HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪 三实验原理 1、超声波的有关物理知识 声波是一种在气体。液体、固体中传播的弹性波。声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。 声波频谱分布图 振荡源在介质中可产生如下形式的震荡波: 横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。 纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。 表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。 板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。

超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。 2、理想气体中的声速值 声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为 μrRT =V (1) 式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730= 代入式(1)得, 00001V 1)(V T t T t T rR t T rR ++?+===μμ (2) 对于空气介质,0℃时的声速0V = m s 。若同时考虑到空气中的蒸汽的影响,校准后 声速公式为: s m p p T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强。 3、共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气传播,到达接收器,如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波,反射面处为位移的波节。改变接收器与发射源之间的距离l ,在一系列特定的距离上,媒质中出现稳定的驻波共振现象。此时,l 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。不难看出,在移动接收器的过程中,相邻两次达到共振所对应的接收面之间的距离即为半波长。因此,若保持频率 v 不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离(2/λ),就可以用λv =V 计算声速。 声压变化与接收器位置的关系:

超声波特性

2.1 超声波的定义 波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。声波是一种弹性机械波。人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。 在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。 2.2超声波的物理特性 当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ?为反射横波,L ?为反射纵波,L ?为折射纵波,S ?为折射横波。 L 图2.1超声波的反射、折射及其波形转换 这些物理现象均遵守反射定律、折射定律。除了有纵波的反射波折射波以外,还有横波的反射和折射。 因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。在理想介质中,超声波的波动方程描述方法与电磁波是类似的。描述简谐声波向X 正方向传播的质点位移运动可表示为: ()cos()A A x t kx ω=+ (2.1) 0()ax A x A e -= (2.2) 式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。衰减系数与声波所在介质和频率关系: 2af α= (2.3)

式(2.3)中,a 为介质常数,f 为振动频率。 2.2.1超声波的衰减 从理论上讲,超声波衰减主要有三个方面: (1) 由声速扩展引起的衰减 在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。 (2) 由散射引起的衰减 由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。 (3) 由介质的吸收引起的衰减 超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。 扩散衰减仅取决于波的几何形状而与传播介质的性质无关。对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率 η:动力粘滞系数 C :超声波传播速度 v C :定容比热 p C :定压比热 ρ:传播介质密度 式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示: 223 83f C πηβρ= (2.5) 把C = 2.5)可得: 3223 322283()M f R T β πηργ=?? (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。在实际应用中,一般选

超声诊断仪基本原理及其结构

江西中医学院计算机学院08生物医学工程2班黄月丹学号2 超声诊断仪原理及其基本结构 超声成像检查技术是指运用超声波的物理特性,通过高科技电子工程技术对超声波发射、接收、转换及电子计算机的快速分析处理和显像,从而对人体软组织的物理特性、形态结构与功能状态作出判断的一种非创性检查技术。 超声诊断技术的发展历程 20世纪50年代建立,70年代广泛发展应用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。80年代介入性超声逐渐普及,体腔探头和术中探头的应用扩大了诊断范围,也提高了诊断水平,90年代的血管内超声、三维成像、新型声学造影剂的应用使超声诊断又上了一个新台阶。 二.超声诊断仪的种类 (一) A型这是一种幅度调制超声诊断仪,把接收到的回声以波的振幅显示,振幅的高低代表回声的强弱,以波型形式出现,称为回声图,现已被B型超声取代,仅在眼科生物测量方面尚在应用,其优点是测量距离的精度高。(二) B型这是辉度调制型超声诊断仪,把接收到的回声,以光点显示,光点的灰度等级代表回声的强弱。通过扫

描电路,最后显示为断层图像,称为声像图。B型超声诊断仪由于探头和扫描电路的不同,显示的声像图有矩形、梯形和扇形。矩形声像图和梯形声像图用线阵探头实现,适用于浅表器官的诊断;扇形声像图用的探头有多种,机械扇扫探头、相控阵探头和凸阵探头均显示扇形声像图。前二种探头可由小的声窗窥见较宽的深部视野,适用于心脏诊断;后一种探头浅表与深部显示均宽广,适用于腹部诊断,有一种曲率半径小的凸阵探头,也可用小的声窗,窥见深部较宽的视野。 (三) M型 M型超声诊断仪是B型的一种变化,介于A型和B型之间,得到的是一维信息。在辉度调制的基础上,加上一个慢扫描电路,使辉度调制的一维回声信号,得到时间上的展开,形成曲线。用以观察心脏瓣膜活动等,现在M型超声已成为B型超声诊断仪中的一个功能部分不作为单独的仪器出售。(四) D型在二维图像上某点取样,获得多普勒频谱加以分析,获得血流动力学的信息,对心血管的诊断极为有用,所用探头与B型合用,只有连续波多普勒,需要用专用的探头。超声诊断仪兼有B型功能和D型功能者称双功超声诊断仪。(五) 彩色多普勒超声诊断仪具有彩色血流图功能,并覆盖在二维声像图上,可显示脏器和器官内血管的分布、走向,并借此能方便地采样,获得多普勒频谱,测得血流的多项重要的血流动力学参数,供诊断之用。彩色多普勒超声诊断仪一般均兼有B型、M型、D型和彩色血流图功能。(六) 三维超声诊断仪三维超声是建立在二维基础上,在彩色多普勒超声诊断仪的基础上,配上数据采集装置,再加上三维重建软件,该仪器即有三维显示功能。(七) C型C型超声仪也是辉度调制型的一种,与B型不同的是其显示层面与探测面呈同等深度。超声诊断仪基本原理

超声波物理特性

声速 声速与介质的体弹性系数和密度有关。由于介质的弹性系数与温度有关,因此声速也与温度有关。在超声诊断的频段中,人体组织的超声速度与频率无关,而且软组织中的声速都很接近,约为1540m/s。 波长、周期和频率 声波在介质中传播时,两个相邻的同相位点之间的距离,如相邻两点稠密部之间的距离(超声 波在人体中一般是以纵波方式传播),称为声波的波长,以λ表示。波向前移动一个波长的距离所需的时间,称为声波的周期,以T表示。介质中任何一给定点在单位时间内通过的波敝,称为声波的频率,以f 表示。它们之间的关系为 λ=C/f=CT 式中为声波的传播速度。 医学诊断中采用的超声波频率在1-20MHz范围内。 声阻抗 介质中任意点的密度ρ与该点处声波的传播速度C之积为此介质在该点处的声阻抗,以Z表示,即Z=ρC。它是表征介质的声学特性的一个重要物理量。声阻抗的变化将影响超声波的传播。声阻抗是采用反射回波法进行超声诊断的物理基础。 声压级与声强级 声压级LP是以分贝表示的某个声压P与参考分压P0的比值,即LP=20lg(P/P0) 声强级LI是以分贝表示的某个声强I与参考声强I0的比值,即LI=10lg(I/I0) 声强是表示声的客观强弱的物理量,它表示通过垂直于传播方向上单位面积的能流率。声强为I=1/2(ρCω02A2)= p02/(2Z) 声强的单位是mW/cm2或W/m2。 声强与声源的振幅有关,振幅越大,声强也越大。对于平面超声波,他的总功率为强度I和面积S的乘积,即W=IS。 由于超声强度太大会破坏人体正常细胞组织,因其不可逆的生物效应。因此,国际上对诊断用 超声强度安全剂量作出规定,一般接受的安全剂量为20mW/cm2。

超声波的声场特性

第二章超声波声场的特性 第一节波源辐射声场 超声检测或超声相控阵成像检测设备都是工作于主动检测方式。即由作为生源的超声换能器或阵列超声换能器向被检测物体内发射超声波,然后由接收换能器或阵列换能器接收载有被检测物体内缺陷或组织信息的超声回波信号,再通过信息提取与处理,实现对被检测物体内部缺陷或结构的评估与成像。 2.1 波动方程 物理声学中的波动方程是研究超声(或阵列)换能器的声场特性最基本的原理和方程。若被超声检测的物体为金属材质,大部分区域被认为各点的声速和密度是一致的,被认为是均匀体,只是对于缺陷或组织不均匀区域则是不一致的;若被检测物体为生物体,物体内各点的声速与密度存在起伏,并非均匀一致。本书只讨论在工程应用的超声相控阵成像检测技术,因此仅讨论在均匀介质中的声场。在声速与密度非均匀的介质中,声波传播过程用非均匀介质中声波方程来加以描述。非均匀介质中波动方程为 ?2P?1 C2e2P et2 =1 ρ ?ρ??P(式2-1) 式中,P是声强,ρ是介质密度,c是声波的速度,▽是梯度算子。假设声速和密度较之平均声速c0和平均密度ρ0有微小偏移,即 ρ=ρ0+?ρc=c0+?c 其中?ρ<<ρ0,?c<

超声波换能器选用说明及其原理介绍

超声波换能器选用说明及其原理介绍 超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗掉很少的一部分功率(小于10%)。所以,使用超声波换能器最应考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。市面上超声波机械种类繁多,客户必须提供准确可靠的指标,才能保证公司提供的换能器产品能与贵公司的机器良好匹配,发挥最佳性能。 因换能器品种繁多,本文只提供了部分换能器参数。 ①谐振频率:f, 单位:KHz 该频率是指用频率发生器,毫伏表等通过传输线路法测得的频率,或用阻抗特性分析仪等类似仪器测得的频率。一般通称小信号频率。与它相对的是上机频率,即客户将换能器通过电缆连到驱动电源上,通电后空载或有载时测得的实际工作频率。因客户的匹配电路各不相同,同样的换能器配不同的驱动电源表现出来的频率是不同的,这样的频率不能作为订货依据。 ②换能器电容量:CT ,单位:PF 即换能器自由电容,一般可用电容电桥在400Hz-1000Hz的频率下测得,也可用阻抗特性分析仪类似仪器。再简单点,用一般的便携式电容表测量也可满足要求。 ③换能器工作方式 因加工方式和要求不同,换能器的工作方式大致可分为连续工作(花边机,CD套机,拉链机,金属焊接等)和脉冲式工作(如塑焊机),

不同的工作方式对换能器的要求是不同的。一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇式的,有停顿,但瞬间电流很大。平均而言,两种状态的功率都很大的。

④换能器型式和最大功率 整机厂家可能对于不同用途和目的的机器的标称功率有不同的规定,换句话说,同样的换能器用在不同的机器上标称功率可能是不同的。为避免产生岐义,客户应详细说明换能器的结构型式,如柱型、倒喇叭型等,及压电陶瓷晶片的直径和片数。 ⑤安装和配合尺寸 主要有变幅杆材质,表面处理方式,形状。换能器与变幅杆连接螺纹,变幅杆与模具连接螺纹,变幅杆法兰盘处直径、厚度、缺口或螺孔数量和位置。 如有侵权请联系告知删除,感谢你们的配合!

超声波特性

超声波的四个特性及应用特性 来源:全球五金网2011-9-8 作者:济宁天华超声电子仪器有限公司公司产品公司商机公司招商公司新闻 超声波顾名思义,超过常规声波的声波。声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。 超声波特性有四个方面: 1)超声波可在气体、液体、固体、固熔体等介质中有效传播。 2)超声波可传递很强的能量。 3)超声波会产生反射、干涉、叠加和共振现象。 4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。 1.束射特性 由于超声波的波长短,超声波射线能够和光线一样,可以反射、折射,也能聚焦,而且.恪守几何光学上的定律。即超声波射线从一种物质外表反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射,也就是要改动它的传插方向,两种物质的密度差异愈大,则折射也愈大。 2.吸收特性 声波在各种物质中传播时,随着传播间隔的增加,强度会渐进削弱,这是由于物质要吸收掉它的能量。关于同一物质,声波的频率越高,吸收越强。关于一个频率一定的声波,在气体中传播时吸收最历害,在液体中传播时吸收比拟弱,在固体中传播时吸收最小。 3.超声波的能量传送特性 超声波所以往各个工业部门中有普遍的应用,主要之点还在于比声波具有强大得多的功率。为什么有强大的功率呢?由于当声波抵达某一物资中时,由于声波的作用使物质中的分子也跟着振动,振动的频率和声波频率―样,分子振动的频率决议了分子振动的速度。频率愈高速度愈大。 物资分子由于振动所取得的能量除了与分子的质量有关外,是由分子的振动速度的平方决议的,所以假如声波的频率愈高,也就是物质分子愈能得到更高的能量、超声波的频率比声波能够高很多,所以它能够使物资分子取得很大的能量;换句话说,超声波自身能够供应物质足够大的功率。 4.超声波的声压特性 当声波通入某物体时,由于声波振动使物质分子产生紧缩和稠密的作用,将使物质所受的压

超声波是怎么产生的

超声波是怎么产生的声波是物体机械振动状态(或能量)的传播形式。超声波是指振动频率大于20190Hz以上的,其每秒的振动次数(频率)甚高,超出了人耳听觉的一般上限(20190Hz),人们将这种听不见的声波叫做超声波。由于其频率高,因而具有许多特点:首先是功率大,其能量比一般声波大得多,因而可以用来切削、焊接、钻孔等。再者由于它频率高,波长短,衍射不严重,具有良好的定向性,工业与医学上常用超声波进行超声探测。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声波频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性,1兆Hz=10PHz,即每秒振动100万次,可闻波的频率在16-20190HZ 之间)。 超声波在媒质中的反射、折射、衍射、散射等传播规律, 与可听声波的规律没有本质上的区别。但是超声波的波长很 短,只有几厘米,甚至千分之几毫米。与可听声波比较,超声 波具有许多奇异特性:传播特性——超声波的波长很短,通 常的障碍物的尺寸要比超声波的波长大好多倍,因此超声波 的衍射本领很差,它在均匀介质中能够定向直线传播,超声 波的波长越短,该特性就越显著。功率特性——当声音在空 气中传播时,推动空气中的微粒往复振动而对微粒做功。 声波功率就是表示声波做功快慢的物理量。在相同强度下,声波

的频率越高,它所具有的功率就越大。由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用当超声波在介质的传播过程中,存在一个正负 压强的交变周期,在正压相位时,超声波对介质分子挤压,改变介质原来的密度,使其增大; 在负压相位时,使介质分子稀疏,进一步离散,介质的密度减小,当用足够大振幅的超声波作用于液体介质时,介质分子间的平均距离会超过使液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡。这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到了很好的搅拌作用,从而使两种不相溶的液体(如水和油)发生乳化,且加速溶质的溶解,加速化学反应。这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。

超声波的频率范围是指

超声波的频率范围是指 1、一般来说大于20KHZ的频率即可算是超声波的范畴。 2、作为清洗用途的超声波频率一般在25KHZ~130KHZ之间,常用的工作频率为28KHZ,33KHZ,40KHZ,80KHZ,100KHZ,120KHZ等。 3、理论上频率越高清洗密度越大,清洗洁净度越高,但相对力度越小,多用于精密清洗。而频率越低则反之。所以40KHZ以下的工作频率一般用于普通工业零件或污垢较多的情况下的清洗,如五金机械零件除油除腊等工作。而40KHZ以上的工作频率大多用于精密零件的精密清洗,如光学/光电子玻璃器件及半导体材料/器件等零件的精密清洗。 ·超声波清洗应用的范围及设备应用 1、超声波清洗应用范围相当广泛,随着工业技术的发展,各种工业零件的洁净度的要求也相对的越来越高。特别是光电子及半导体行业的洁净度要求已达到了um级了。 2、本公司在超声技术方面通过多年的研究及开发,在高频超声波的制造和应用上取得了较大的进展。我公司的高频清洗机的工作频率有40KHZ,80KHZ,100KHZ,120KHZ,130KHZ 等规格。主要适用于精密工业零件的清洗,如液晶显示器件(STN,TFT,PDP等);半导体硅片;硬盘盘片;电真空器件等。 3、本公司研制开发成功的棒型超波装置以其简单独特的外型,广泛的适用范围,可靠的高使用性能,较长的使用寿命,简单方便的安装方式,得以处在世界超声技术的先进行列。·超声波清洗机的选用 1、首先要清楚超声清洗是一种清洗手段,要完成工件的清洗需要有一套完整的清洗工艺及其配套的项目 它包括了可能不止一种的清洗手段及配套的清洗环境(温度,清洗溶液,气体等)。 2、挑选合适合理的清洗工艺。 不同工件的形状,材料,制作工艺及其配套的清洗剂和使用环境都有相关联的影响。要达到工件的清洗洁净度要求,清洗设备的结构制造工艺及配套手段(包括水电气等方面)都要有综合考虑。 3、在保证达到清洗效果前题下,考虑以合理的成本购买相关设备。 合理的成本包括设备的制造成本和使用成本,另外影响的因素还有相关的工作环境,人员配置,操作性能等方面的影响。

第2章 超声波发射声场与规则反射体的回波声压

第二章超声波发射声场与规则 反射体的回波声压 超声波探头(波源)发射的超声场,具有特殊的结构。只有当缺陷位于超声场内时,才有有可能被发现。 由于液体介质中的声压可以进行线性叠加,并且测试比较方便。因此对声场的理论分析研究常常从液体介质入手,然后在一定条件下过渡到固体介质。 又由于实际探伤中广泛应用反射法,因此本章在讨论了超声波发射声场以后,还讨论了各种规则反射体的回波声压。 第一节纵波发射声场 一、圆盘波源辐射的纵波声场 1.波源轴线上声压分布 在不考虑介质衰减的条件下,图2.1所示的液体介质中圆盘源上一点波源ds辐射的球面波在波源轴线上Q点引起的声压为 式中 P o——波源的起始声压; d s——点波源的面积; λ——波长; r——点波源至Q点的距离; κ———波数,κ=ω/c=2π/λ; ω——圆频率,ω=2πf;‘ t——时间。 根据波的迭加原理,作活塞振动的圆盘波 源各点波源在轴线上Q点引起的声压可以线性迭加,所以对整个波源面积积分就可以得到波源轴线上的任意一点声压为 其声压幅值为 (2.1) 式中 R s—波源半径; χ——轴线上Q点至波源的距离。 上述声压公式比较复杂,使用不便,特作如下简化。 当χ≥2R,时,根据牛顿二项式将(2.1)式 简化为 (2.2) 根据sinθ≈θ(θ很小时)上式可简化为 (2.3) 式中 Fs——波源面积, (2.3)式表明,当χ≥3R;/A时,圆盘源轴线上的声压与距离成反比,与波源面积成正比。 波源轴线上的声压随距离变化的情况如图2.2所示。

(1)近场区:波源附近由于波的干涉而出现一系列声压极大极小值的区域,称为超声场的近场区,又叫菲涅耳区。近场区声压分布不均,是由于波源各点至轴线上某点的距离不同,存在波程差,互相迭加时存在位相差而互相干涉,使某些地方声压互相加强,另一些地方互相减弱,于是就出现声压极大极小值的点。 波源轴线上最后一个声压极大值至波源的距离称为近场区长度,用N表示。 声压P有极大值,化简得极大值对应的距 离为 式中n=O、1、2、3、……<(D s-一x)/2λ的正整数,共有n+1个极大值,其中n=0为最后一个极大值。因此近场长度为 (2.4) 声压P有极小值,化简得极小值对应的距离为 式中,n=0、1、2、3、……N的区域称为远场区,又叫富琅和费区。远场区轴线上的声压随距离增加单调减少。当x>3N时,声压与距离成反比,近似球面波的规律,P=PoFs/λx.这是因为距离χ足够大时,波源各点至轴线上某一点的波程差很小,引起的相位差也很小,这样干涉现象可略去不计。所以远场区轴线上不会出现声压极大极小值。 2.波束指向性和半扩散角 至波源充分远处任意一点的声压如图2.3所示。 点波源d s在至波源距离充分远处任意一点M(r,O)处引起的声压为 整个圆盘源在点M(r,θ)处引起的总声压幅值为 (2.5) 式中 r——点M(r,θ)至波源中心的距离; θ——r与波源轴线的夹角;

超声波发生器关于频率自动跟踪的研究

超声波发生器关于频率自动跟踪的研究 超声波发生器(或称功率源)是一种用于产生并向超声换能器提供超声能量的装置。超声波发生器就其激励方式有两种:一种是他激式.另一种是自激式。如果按末级功放管所采用的器件类型分,又可分四种:电子管式超声发生器;可控硅逆变式超声发生器;晶体管式超声发生器及功率模块超声发生器。 电子管式与可控硅逆变式目前基本已淘汰,当前广泛使用的是晶体管式发生器。他激式超声发生器主要包括两部分,前级是振荡器,后级是放大器。一般通过输出变压器耦合,把超声能量加到换能器上。而自激式超声发生器是把振荡、功放、输出变压器及换能器集为一体,形成一闭环回路,回路在满足幅度、相位反馈条件,组成一个有功率放大的振荡器。并谐振于换能器的机械共振频率上。 关于频率自动跟踪 所谓谐振问题就是要求发生器的输出信号频率能对在工作中变化的换能器谐振频率进行跟踪,也即称频率自动跟踪。目前常用的频率自动跟踪大致有以下几种方法: 1.声跟踪 以声耦合方式,从换能器上采集谐振频率的电讯号,然后反馈至前级放大器,使形成自激振荡器。其原理框图如图1.28所示。 图1.28 声跟踪超声波发生器原理框图 由图1.28看出,电路是个闭环系统,电路在通电的瞬间产生一个冲击脉冲,此脉冲经预放、功放去激励换能器,换能器按自身固有频率振动。从而在反馈的声接收器上可得到相同频率的电讯号。经过电路的移相、选频、预放及功放再去激励换能器,如果满足振荡器的相位,幅度条件,系统将自激振荡,且振荡频率跟踪在换能器的共振频率上。 2.电跟踪 所谓“电跟踪”又称反馈自激式振荡器。大致有以下几种形式 (1)阻抗电桥形式的动态反馈系统 阻抗电桥形式的动态反馈系统组成的频率自动跟踪电路其原理如下;它是利用电桥平衡原理补偿换能器电学臂的无功与有功分量,借助于差动变量器提取与换能器机械臂振荡电流成正比的反馈电压,使闭环系统在换能器机械共振频率上自振。本方法对换能器电参数的补偿有可能做到与频率无关,因而在较宽频段内跟踪良好。

超声波焊接工艺特点

超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。 6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生

相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。 (4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。 (5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。

超声波的基本原理及传播特点 (1)

目录 摘要 (2) 引言 (3) 1.超声波的基本原理及传播特点 (4) 1.1什么是超声波 (4) 1.2超声波的基本原理 (4) 1.2.1压电效应及脉冲超声波的产生 (4) 1.2.2超声波波形 (5) 1.3超声波传播的特点 (6) 2.超声波的应用 (6) 2.1超声波在制浆造纸中的应用 (7) 2.2超声波传感器 (8) 2.3超声波测距 (9) 2.4超声波在医学诊断中的应用 (10) 2.5超声波在生物技术领域的应用 (11) 2.5.1用于培养液及药物的雾化 (11) 2.5.2提高种子发芽率和遗传物质的转化率 (11) 2.6超声波在军事中的应用 (11) 3. 结束语 (12) 参考文献 (12) 致谢 (13)

摘要 超声波是一种高能机械波,本文通过介绍超声波的产生机制和基本原理。让读者更深层次的认识超声波,文中根据超声波的自身特点从超声波传感器、超声波测距、及超声波在纸浆造纸中、医学诊断中、生物技术领域中、军事中的应用这六个方面进行详细讲述。超声波是一门年轻的学科,随着超声研究技术的不断成熟,未来将会更好的应用在生产生活中。 关键词:超声波;传感器;测距;医学诊断 Abstract Ultrasonic is a kind of high-energy mechanical wave, this paper introduces the basic principle of ultrasonic generation mechanism and give readers a deeper understanding of ultrasound, in this paper, according to the characteristics of ultrasonic sensors, ultrasonic distance measurement, and ultrasonic in pulp papermaking, medical diagnosis, in the field of biotechnology, the application of the military in these six aspects in detail. Ultrasonic is a young discipline, with the ultrasonic technology matures, the future will be better application in the production and living. Key words: ultrasonic ;the sensor ;ranging; medical diagnosis 引言 超声波最早被人类发现是在1793年由意大利科学家斯帕拉捷在蝙蝠身上发现其存在,随后的30多年里人们进行了有关超声波的产生机理方面的大量研究,直到1830年F ·Savar 用齿轮产生4104.2 HZ 的超声,首次实现了人类在人工控制下超声波的产生,开启了超声历史的新纪元,其他新技术如压电效应与逆压电效应的发现大大推动了超声波的快速发展,在随后的60年间,世界各地区有关超声技术的研究不断的取得突破性成果,20世纪的40年代超声技术开始应用于临床医疗方面,这也同样推动了人类医疗事业的发展,有关超声波在医学方面的应用与研究取得突破性进展,国际间也有过许多的交流与合作,共同推动了超声科技的发展和进步。我国在超声方面的研究相对落后于国际主流国家,我国由于当时特别的时期和特别的情况,20世纪60年代才开始超声方面的研究,有关超声学的相关研究始于也在这个时期真正开始,并且在随后的几年发展中取得了许多重要成果和重要的应用,如金属探伤、种子的培育、印染等。在基础研究方面也取得了重要进展,如研制出有关超声波在固体中衰减所用的检测设备,进行了有关超声乳化等课题的研究,研制出分子声学试验等设备,表面换能器的相关研究在1960年左右开始。改革开放的新时期,超声技术开始了实际应用之路,并且在该领域的一些列成果开始走进我们的生

超声波频率的选择

超声波频率的选择 1、超声波原理: 超声波清洗是基于空化作用,即在清洗液中无数气泡快速形成并迅速内爆。由此产生的冲击将浸没在清洗液中的工件内表面的污物剥落下来。随着超声频率的提高,气泡数量增加而爆破冲击力减弱,因此,高频超声特别适用于小颗粒污垢的清洗而不破坏其工件表面。 气泡是在液体中施加高频(超声频率)、高强度的声波而产生的。因此,任何超声清洗系统都必须具备三个基本元件:盛放清洗液的槽、将电能转化为机械能的换能器以及产生高频电信号的超声波发生器。 2、换能器和发生器 超声清洗系统最重要的部分是换能器。现存两种换能器,一种是磁力换能器,由镍或镍合金制成;一种压电换能器,有锆钛酸铅或其他陶瓷制成。 将电材料放入电压变化的电厂中时,它会发生变形,这就是所谓的“压电效应”。相对来说,磁力换能器是用会在变化的磁场中发生变形的材料制成的。 无论使用何种换能器,通常最基本的因素为其产生空化效应的强度。超声波和其它声波一样,是一系列的压力点,即一种压缩和膨胀交替的波。如果声能足够强,液体在波的膨胀阶段被推开,由此产生气泡;而在波的压缩阶段,这些气泡就在液体中瞬间爆裂或内爆,产生一种非常有效的冲击力,特别适用于清洗。这个过程被称做空化作用。 3、选择准确工作频率的重要性: 当工作频率很低(在人的听觉范围内)就会产生噪音。当频率低于20kHz,工作噪音不仅变得很大,而且可能超出职业安全与保健法或其他条例所规定的安全噪音的限度。在需要高功率去处污垢而不用考虑工件表面损伤的应用中,通常选择从20kHz到30kHz范围内的较低清洗频率。该频率范围内的清洗频率常常被用于清洗大型、重型零件或高密度材料的工件。 随着科技的进步,精密清洗的工件越来越精细,清洁度要求也越来越高。在精密清洗的应用上(如线路板、二极管、液晶体、半导体等)使用传统的频率(20~30kHz),我们会发现不但没法达到清洗的要求,而且还可能造成工件的损伤。最典型的例子就是关于军用电子产品,业已明文规定不允许使用传统的频率(20~30kHz)的超声波清洗。 其实在一些欧美、日本等发达国家,已通过选用高频(80kHz或以上频率)使这个问题得到了解决。那么为什么高频率清洗能避免对工件的损伤呢?大家都知道超声波清洗的基本原理是基于液体的空化效应。事实上空化效应的强度直接跟频率有关,频率越高,空化气泡越小,空化强度越弱,且其减弱的程度非常大。举例说,如将25kHz时的空化强度比作1,40kHz时空化强度则为1/8,到了80kHz时,空化强度就降到0.02。所以如果频率选择正确,超声波损伤工件的问题就不存在了。 这里必须区分二个概念:功率和频率。在精密清洗中,当一定频率的超声清洗后达不到清洁的效果时,如果工件上要去除的杂质颗粒较大,可能是超声功率不足,增加超声功率就可以解决该问题;但如果工件上要去除杂质颗粒非常小,那么无论功率怎么增大,都无法达到清洁的要求。从物理上分析其:原因当液体流过工件表面时,会形成一层粘性膜。低频时该层粘性膜很厚,小颗粒埋藏在里面,无论超声的强度多大,空化气泡都无法与小颗粒接触。 故无法把小颗粒除去:而当超声频率升高时,粘性膜的厚度就会减少,空化泡就可以接触到小颗粒,将他们从工件表面剥落。由此可见,低频的超声清除大颗粒杂质的效果很好,但清除小颗粒杂质效果很差。相对而言,高频超声对清除小颗粒杂质则特别有效。 在精密清洗的应用上,高频超声波清洗已经成为一种标准,所以超声频率的选择对清洗的效果有决定性的影响。

几种常用的医学超声设备

A型超声诊断仪(amplitude) A型显示是一种最基本的显示方式,示波管上的横坐标表示超声波的传播时间,即探测深度;纵坐标则表示回波脉冲的幅度(amplitude),故称为A型。 用A型诊断仪可以测量人体内各器官的位置、尺寸和组织的声学特性,并用于疾病诊断。 M型超声诊断仪(motion) 它在A型超声诊断仪基础上发展来的一种最基本的超声诊断设备。 显像管上的亮度表示回波幅度,由A型回波幅度加到显像管Z轴亮度调制极上所控制;其纵轴表示超声脉冲的传播时间,即探测深度;显像管水平偏转板加一慢时间扫描电压。这样在做人体探查时,就构成一幅各回波目标的活动曲线图。 其在检查心脏时具有一系列优点,如对心血管各个部分大小、厚度、瓣膜运动的测量,以及研究心脏的各部分运动与心电图、心音图及脉搏之间的关系等,所以也称超声心动仪。 此外它还可以研究其他各运动界面的情况,并通过与慢时间扫描同步移动探头,做一些简单的人体断层图。 B型超声诊断仪(brightness) 其也称B型超声切面显像仪。它用回波脉冲的幅度调制显示器亮度,而显示器的横轴和纵轴则与声速扫描的位置一一对应,从而形成一幅亮度调制的超声切面图像。 D型超声多普勒诊断仪 它利用超声波传播过程中与应用目标之间的相对运动所产生的多普勒效应来探测运动目标,主要包括多普勒血流测量和血流成像两种。 目前的彩色血流成像(color flow imaging CFI)则是在实时B型超声图像中,以伪彩色表示心脏或血管中的血液流动。它是利用多次脉冲回波相关处理技术来取得血流运动信息,故常称为彩色多普勒血流成像(color Doppler flow imaging, CDFI)。 经颅多普勒(transcranial Doppler,TCD)诊断仪应用低频多普勒超声,通过颞部、枕部、框部及颈部等透声窗,可以显示颅内脑动脉的血流动力学状况。 C型和F型超声成像设备 它是在B型超声诊断仪的基础上发展起来的,主要用来获取与声束方向垂直或呈一定夹角的平面和曲线上的回波信息并成像。透射式C型成像类似普通X射线成像,反映了声束路径上所有组织总的超声特性,可分别利用总的超声衰减和传播时间进行C型成像。C型和F型扫描成像能提供一些B型超声成像不能获得的信息。 超声外科设备 超声外科学是继超声治疗和诊断之后出现的一个医用超声领域。它用较强的超声波粉碎眼部、肾部的病变组织并排出,如超声乳化白内障摘除等,以达到实施超声外科手术的目的。其优点是降低患者痛苦,缩短手术时间。 超声治疗设备 它主要利用组织吸收超声波能量等特性,即温热效应、机械效应和化学效应,达到治疗目的,目前超声加温治疗癌症是一个重要课题,利用环形相控换能器可方便的使声束聚焦于病变部位,使病变部位温度升高。相对于电磁波而言,超声治疗设备的声束方向与聚焦位置及声功率分布模式更便于控制。

超声波纸浆特性及其抄造性能的研究

超声波纸浆特性及其抄造性能的研究 超声波制浆技术是一种新型的制浆技术,其生产工序简短,节能减排明显,生产的纸浆得率高、物理性能良好。为了推广超声波制浆技术的应用,本文对超声波麦草浆纤维素和残留木质素进行分析,并研究超声波麦草浆性能特点及其配抄文化用纸的适应性。研究结果如下:超声波麦草浆光学与物理性能较好,白度77.8%ISO,纤维平均长度0.754mm,纤维平均宽度29.5 μ m,耐破指数 3.08kPa·m2/g,撕裂度3.98mN · m2/g,抗张指数30.49N·m/g,耐折度29次,与漂白碱法草浆近似,优于杨木APMP化机浆。 超声波麦草浆残余木质素的羰基含量远低于烧碱蒽醌法麦草浆,所以超声波麦草浆白度较好。原因是超声波制浆过程中的中性和温和的反应环境,减少了酚羟基和醌基的形成。超声波纸浆残余木质素中的总酚羟基含量远低于烧碱蒽醌法麦草浆木质素。 与超声波制浆技术相比,烧碱蒽醌法制浆破坏性更大,引起更多的芳基醚键和甲氧基断裂,进而形成更多的酚羟基。另外,超声波纸浆中的羧基含量(0.52 mmol/g)多于未漂白化学浆(0.3 mmol/g)本文对利用超声波麦草浆和杨木化学浆进行了双胶纸和新闻纸配抄实验研究,研究结果如下:双胶纸配抄比例为超声波纸浆:杨木化学浆=50:50,AKD施胶量为0.8%,CPAM添加量为0.2%,碳酸钙添加量为8.0%~12.0%,表面施胶选用CS-1表面施胶剂、硫酸铝(浓度30%,用量2kg/t)和氧化淀粉(浓度10%,用量1.5g/m2)配合进行,表面施胶剂最佳添加量为 0.14g/m2。根据优化工艺配抄的双胶纸经过压光,其吸水性为34.02g/m2,白度为80.9%ISO,不透明度为93%,印刷适应性为2.8m/s,平滑度为38.56s,抗张指数为36.3N · m/g,耐折度18次。

相关文档
最新文档