第三章 土壤的孔性、结构性和耕性

第三章土壤的孔性、结构性和耕性

第一节土壤孔性

一、土壤比重和容重

(一)、土壤比重

1、土粒密度

土粒密度指单位容积的固体土粒(不包括粒间孔隙)的干重。单位g/cm3。一般为2.65。

2、土壤比重

土粒密度与水的密度之比。由于水的密度1g/cm3,故土壤比重实质就等于土粒密度。

?(二)、土壤容重

?土壤容重是指单位容积原状土壤(包括

孔隙)的烘干重量。单位g/cm3 、t/m3 。

?土壤容重大小是土壤肥力高低的重要指

标,可以判断土壤的松紧程度、计算土壤重量和各组分的数量。

1、判断土壤的松紧程度

2、计算土壤重量

3、计算土壤各组分的数量

练习:某土壤50cm土层平均含水量(重量%)8%,容重1.2 g/cm3,问此土壤每公顷50cm土层共贮有多少吨水?

二、土壤孔隙性

(一)土壤孔隙度

土壤孔隙是指土壤中大小不等、弯弯曲曲、形状各异的各种孔洞。

土壤孔隙度(%)=土壤孔隙/土壤容积×100%

=(土壤容积-土粒容积)/土壤容积×100%

=(1-容重/比重)×100%

注:比重常以2.65计算

?(二)土壤孔隙比

?土壤孔隙数量也可用土壤孔隙比表示。

土壤孔隙比是指土壤孔隙容积与土粒容积的比值。其值为1或稍大于1为好。

?土壤孔隙比=孔隙度/(1-孔隙度)

(三)土壤孔隙分级

根据孔隙中的土壤水吸力大小或当量孔径大小可将孔隙划分为三种类型:非活性孔隙、毛管孔隙、通气孔隙。

1.非活性孔隙土壤中最细的孔隙,当量孔径小于0.002mm,常被束缚水充满。

非活性孔隙度=非活性孔容积/土壤总容积×100%

2、毛管孔隙

土壤中毛管水所占据的孔隙。当量孔径为0.002mm~0.02mm。

毛管孔隙度=毛管孔隙容积/土壤总容积×100%或毛管孔隙度=(田间持水量-凋萎含水量)*容重

3、通气孔隙

孔隙的当量孔径>0.02mm,是通气的通道,不具备毛管作用。

通气孔隙度=通气孔容积/土壤总容积×100%

练习:某土壤比重为2.7,容重为1.55 g/cm3,若土壤含水量为25%,问此土壤含有空气容积是否适合于一般作物生长的需要?

三、土壤孔隙状况与土壤肥力和作物生长的关系

(一)土壤孔隙状况与土壤肥力的关系

土壤疏松时保水通气能力强,紧实的土壤保水通气能力差。不同孔隙状况,养分有效化和保肥供肥性能有较大差异。

(二)土壤孔隙状况与作物生长的关系

适合作物生长的土壤孔隙状况为“上松下紧”的土体孔隙构形。旱作土壤耕层总孔隙度50%-56%,通气孔不低于10%,较为合适。

四、土壤孔性的影响因素及其调控

1.土壤有机质含量

富含有机质的土壤孔度大,容重小,通气孔较多,土壤的通气透水性好。

2.土壤结构性

结构体内部较紧实,小孔隙多;结构体间则为大孔隙。所以土壤结构性的好坏影响土壤的总孔度、大小孔隙的分配比例及其分布状况。不同结构体类型对孔度的影响不同。

3.土粒的排列方式

4.土壤质地

质地不同,土壤的孔度相差很大。

砂质土孔度小,为33%-45%,孔径均一,通气孔居多。壤质土孔度中,为45%-52%,各类孔隙搭配适宜,水、气较为协调;

粘质土孔度大,为45%-60%,孔径很小,以毛管孔及微孔隙为主,通气不良。

第二节土壤结构性

一、土壤结构体及结构性概念:

1、土壤结构体:在内外力因素的综合作用下,

土壤单粒互相胶结在一起,形成的大小、形状和性质不同的团聚体称为土壤结构体(或称土壤结构)。

2、土壤结构性:土壤颗粒的空间排列方式所呈

现出的稳定程度和孔隙状况称为土壤结构性。或土壤中结构体的大小、形状及其排列情况称为土壤结构性。

?二、土壤结构体的类型及其特征

1)块状结构体

?(

?(2)核状结构体

?(3)片状结构体

(4)柱状结构体

(5)团粒状结构体

?三、土壤结构性的评价

?评价土壤结构性,从两个方面来考虑:?一是土壤结构体的类型、数量和总孔隙度;

?二是团粒和微团粒的数量、稳定性及孔性。?

四、土壤团粒结构体的形成

(一)、土壤团粒结构体形成的机制

第一阶段,由单粒(或粘粒)在胶体凝聚、水膜粘结以及胶结作用下形成初级复粒(或粘团)或致密的小土团(微凝聚体)。一般稳定性差,易分散。

第二阶段,在成型动力作用下,初级复粒进一步相互逐级粘合、胶结、团聚,依次形成第二、第三级……微团聚体,再经多次团聚,使若干微团聚体胶结起来,成为各种大小形状不同的团粒结构体。

(二)、土壤团粒结构体形成的因素

1、需要一定数量和直径足够小的土粒。

2、需要使土粒聚合的阳离子。

3、需要胶结物质。

4、有外力的推动作用。

?五、团粒结构与土壤肥力的关系

①调节土壤水分与空气的矛盾:

?②协调土壤养分的消耗和积累的矛盾:?③稳定土温,调节土壤热状况;

?④改善土壤耕性,有利于作物根系伸展。

六、土壤结构的改良

1)合理的耕作。合理耕作对创造土壤团粒结构尤为重要(宜耕期、耕作方式,耕作次数等)2)合理灌溉:喷灌、滴灌好。避免大水漫灌、太急的喷灌等不良方式。

3)围栏保护,避免人为的践踏。

4)深翻施用有机肥。

5)合理的轮作倒茬,扩种绿肥和牧草。

6)施用石灰及石膏。

7)施用土壤结构改良剂。

土壤全磷测定法

土壤全磷测定法GB 9837—88 1 主题内容与适用范围本标准对土壤全磷测定的原理、仪器、设备、样品制备、操作步骤等做了说明和规定。 本标准适用于测定各类土壤全磷含量。 2 测定原理土壤样品与氢氧化钠熔融,使土壤中含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,用水和稀硫酸溶解熔块,在规定条件下样品溶液与钼锑抗显色剂反应,生成磷钼蓝,用分光光度法定量测定。 3 仪器、设备 3.1 土壤样品粉碎机; 3.2 土壤筛:孔径1mm 和0.149mm; 3.3 分析天平:感量为0.0001g; 3.4镍(或银)坩埚:容量>30mL 3.5高温电炉:温度可调(0?1000C); 3.6分光光度计:要求包括700nm波长; 3.7 容量瓶:50、100、1000mL; 3.8 移液管:5、10、15、20mL; 3.9 漏斗:直径7cm; 3.10 烧杯:150、1000mL; 3.11 玛瑙研钵。 4 试剂所有试剂,除注明者外,皆为分析纯,水均指蒸馏水或去离子水。 4.1 氢氧化钠(GB 629); 4.2 无水乙醇(GB 678); 4.3 10% (M/V)碳酸钠溶液:10g无水碳酸钠(GB 639)溶于水后,稀释至 100mL, 摇匀; 4.4 5%(V/V)硫酸溶液:吸取5mL浓硫酸(GB 625, 9 5.0?98.0%,比重1.84)缓缓加入90mL 水中,冷却后加水至100mL;

4.5 3mol/L 硫酸溶液:量取168mL 浓硫酸缓缓加入到盛有800mL 左右水的大烧杯中,不断搅拌,冷却后,再加水至1000mL; 4.6 二硝基酚指示剂:称取0.2g 2,6-二硝基酚溶于100mL 水中; 4.7 0.5%酒石酸锑钾溶液:称取化学纯酒石酸锑钾0.5g溶于100mL水中; 4.8硫酸钼锑贮备液:量取126mL浓硫酸,缓缓加入到400mL水中,不断搅拌,冷却。另称取经磨细的钼酸铵(GB 657)10g溶于温度约60°C300mL水中,冷却。 然后将硫酸溶液缓缓倒入钼酸铵溶液中。再加入0.5%酒石酸锑钾溶液( 4.7)100mL,冷却后,加水稀释至1000mL,摇匀,贮于棕色试剂瓶中,此贮备液含钼酸铵1%,硫酸 2.25mol/L ; 4.9钼锑抗显色剂:称取1.5g抗坏血酸(左旋,旋光度+21?22°溶于100mL 钼锑贮备液中。此溶液有效期不长,宜用时现配; 4.10磷标准贮备液:准确称取经105C下烘干2h的磷酸二氢钾(GB 1274,优级纯)0.4390g,用水溶解后,加入5mL浓硫酸,然后加水定容至1000mL。该溶液含磷100mg/L,放入冰箱可供长期使用; 4.11 5mg/L磷标准溶液:吸取5mL磷贮备液(4.10),放入100mL容量瓶中,加 水定容。该溶液用时现配; 4.12 无磷定性滤纸。 5 土壤样品制备 取通过1mm孔径筛的风干土样在牛皮纸上铺成薄层,划分成许多小方格。 用小勺在每个方格中提取出等量土样(总量不少于20g)于玛瑙研钵中进一步研磨,使其全部通过0.149mm孔径筛。混匀后装入磨口瓶中备用。 6 操作步骤 6.1 熔样 准确称取风干样品0.25g,精确到0.0001g,小心放入镍(或银)坩埚(3.4)底部,切勿粘在壁上。加入无水乙醇( 4.2)3?4 滴,润湿样品,在样品上平铺2g 氢氧化钠( 4.1)。将坩埚(处理大批样品时,暂放入大干燥器中以防吸潮)放入高温电炉(3.5),升温。当温度升至400C左右时,切断电源,暂停15min。然后继续升温至720C,并保持15min,取出冷却。加入约80C的水10mL,待熔块溶解后,将溶液无损失地转入100mL 容量瓶( 3.7)内,同时用3mol/L 硫酸溶液

建筑料放射性核素镭、钍、钾模拟试卷(B)

单项选择题 1.B类装修材料外照射指数Ir的限量值为不大于()。 A.1.0 B.1.3 C.1.5 D.1.9 2.无机非金属建筑主体材料(不包括空心率大于25%的建筑主体材料)放射性限量为: ()。 A.I Ra≤ 1.0,Ir≤ 1.0 B.I Ra≤1.0,Ir≤1.3 C.I Ra≤ 1.3,Ir≤ 1.9 D.I Ra≤1.0,Ir≤2.8 3.民用建筑工程中无机非金属建筑主体材料不包括:()。 A.砌块B.瓦C.石膏制品D.砖 4.检测无机建材放射性时,将样品粉碎磨碎至粒径不大于()mm。A.0.12 B.0.16 C.0.20 D.0.25 5.测定建筑材料的放射性,取样时,样品称重应精确到g。 A 0.1 B.0.01 C.1 D.0.001 6.空心率大于()%的建筑材料,其天然放射性核素镭-226、钍-232、 钾-40的放射比活度应同时满足内照射指数IRa 不大于1.0、外照射指数I γ不大于1.3。 A.20 B.25 C.30 D.35 7.民用建筑工程室内饰面采用的天然花岗岩石或瓷质砖使用面积大于() m2时,应对不同产品、不同批次材料分别进行放射性指标复检。 A.200 B.500 C.800 D.1000 8.B类装修材料内照射指数I Ra的限值为不大于()。

A.1.0 B.1.3 C.1.5 D.0.9 9.A类装修材料内照射指数I Ra的限值为不大于()。 A.1.0 B.1.3 C.1.5 D.0.9 10.C类装修材料外照射指数Ir的限值为不大于()。 A.1.0 B.1.3 C.1.5 D.2.8 11.包括空心率大于25%的建筑主体材料放射性限量为()。 A.I Ra≤ 1.0,Ir≤ 1.0 B.I Ra≤1.0,Ir≤1.3 C.I Ra≤1.3,Ir≤1.9 D.Ir ≤2.8 12.放射性材料取样时,随机抽取样品份()。 A,一B.二C.三D.四 13.随机取样时每份不少于()kg。 A.1 B.2 C.3 D.4 14.依据《建筑材料放射性核素限量》GB6566- ()。 A.2010 B.2011 C.2012 D.2013 15.当样品中镭-226,钍-232,钾-40放射性比活度之和大于 37Bq·kg-1 时,本标准规定的试验方法要求测量不确定不大于()%。 A.10 B.20 C.30 D.40 16.下列哪些属于I类民用建筑工程()。 A.医院和学校B.展览馆C.书店D.文化娱乐场所

土壤孔隙度详解

土壤孔隙度详解 一、土壤孔隙度定义 土壤中各种形状地粗细土粒集合和排列成固相骨架。骨架内部有宽狭和形状不同的孔隙,构成复杂的孔隙系统,全部孔隙容积与土体容积的百分率,称为土壤孔隙度。 二、土壤孔隙度分类 1)按大小: 土壤孔隙一般被分为3个等级:大孔隙、中孔隙和微孔隙。直径>100~500μm 的孔隙,即较大的大孔隙,构成了植物根系生长或者蚯蚓活动的自由空间[8]。 直径在15~30μm和100~500μm之间的孔隙被称为小的大孔隙,它们对土壤通气和迅速排水起主要作用。中孔隙的相当直径大约为0.2~30μm,在保存植物生长所需的水方面作用重大。微孔隙是指直径<0.2μm的孔隙,这些孔隙中的水,植物通常不能利用,而且由于其直径较小也限制了微生物的活性[1]。 孔隙度反映土壤孔隙状况和松紧程度:一般粗砂土孔隙度约33—35%,大孔隙较多。粘质土孔隙度约为45—60%小孔隙多。壤土的孔隙度约有55—65%,大、小孔隙比例基本相当。 2)按类别: 土壤孔隙按其直径的大小可分为毛管孔隙和非毛管孔隙。毛管孔隙具有毛细作用,而且孔隙中水的毛管传导率大,易于被植物吸收利用,它的大小反映了土壤保持水分的能力。非毛管孔隙比较粗大,不具毛细作用,其孔隙中的水分,可在重力作用下排出。非毛管孔隙一方面反映土壤通气状况,另一方面在下雨时,通气孔发达的土壤可以快速吸收雨水,使之不致造成地表径流。因此非毛管孔隙的大小反映了土壤的通气性、透水性和涵养水源能力的大小。 三、土壤孔隙度作用 简单讲,就是通气、通水和保水,也可以贮存土壤有机物。 四、土壤孔隙度影响因素 土壤质地、人为干扰(如翻耕、施入有机肥等)、土壤动物。

土壤全磷测定

土壤全磷测定 氢氧化钠熔融——钼锑抗比色法 1 方法提要 土壤样品与氢氧化钠熔融,使土壤中含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,用水和稀硫酸溶解熔块,在规定条件下样品溶液中的磷酸根与钼锑抗显色剂反应,生成磷钼蓝,其颜色的深浅与磷的含量成正比,通过分光光度法定量测定。 2 适用范围 本方法适用于各类土壤全磷含量的测定。 3 主要仪器设备 3.1 分光光度计或紫外-可见分光光度计; 3.2 高温电炉:可升温至1200℃,温度可调; 3.3 镍(或银)坩埚:容量≥30mL ; 3.4 具塞三角瓶:50mL 。 4 试剂 4.1 氢氧化钠; 4.2 无水乙醇; 4.3 碳酸钠[ρ(Na 2CO 3)=100g ·L -1]溶液:称取10.0g 无水碳酸钠溶于水,稀释至100mL ; 4.4 5%硫酸溶液:吸取5mL 浓硫酸缓缓加入90mL 水中,冷却后加水至100mL ; 4.5 硫酸溶液[c (2 1H 2SO 4)=3mol ·L -1]:量取168mL 浓硫酸缓缓加入到盛有约800mL 水的大烧杯中,不断搅拌,冷却后,稀释至1L ; 4.6 二硝基酚指示剂:称取0.2g 2,6-二硝基酚溶于100mL 水中; 4.7酒石酸锑钾溶液[ρ(K(SbO)C 4H 4O 6·2 1H 2O )=5g ·L -1]:称取酒石酸锑钾0.5g 溶于100mL 水中; 4.8 硫酸钼锑贮备液:量取153mL 浓硫酸,缓缓加入到400mL 水中,不断搅拌,冷却。另称取钼酸铵[(NH 4)6Mo 7O 24·4H 2O ]10.0g 溶于温度约60℃的300mL 水中,冷却。然后将硫酸溶液缓缓倒入钼酸铵溶液中。再加入5g ·L -1酒石酸锑钾溶液100mL ,冷却后,加水稀释至1L ,摇匀,贮于棕色瓶中;

土壤中全磷的测定-样本

土壤中全磷的测定 本文拟采用磷钼蓝分光光度法测定土壤中的全磷。(或本文拟比较A 法,B法对C的测定) 测定原理 土壤样品与氢氧化钠熔融,使土壤中含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,用水和稀硫酸溶解熔块,在规定条件下样品溶液与钼锑抗显色剂反应,生成磷钼蓝,用分光光度法定量测定。仪器、设备 1.筛:孔径1mm和0.149mm;(一套) 2. 分析天平:感量为0.0001g;(一台) 3. 镍(或银)坩埚:容量≥30mL;(两个) 4.马弗炉:温度可调(0~1000℃);(一台) 5.分光光度计:要求包括700nm波长;(一台) 6 容量瓶:50mL(8个)、100mL(3个) 7 移液管:1、5mL;(各2支) 8 漏斗:直径7cm;(一个)

9 烧杯:100mL(两个)、250mL (两个) 500mL(一个); 10细口试剂瓶:100mL (5)个, 200mL(1个) 11.棕色试剂瓶:500 mL 一个 12 玛瑙研钵。(一套) 试剂 所有试剂,除注明者外,皆为分析纯,水均指蒸馏水或去离子水。 1. 氢氧化钠;4克 2. 无水乙醇;10mL 3. 10%(M/V)碳酸钠溶液:10g无水碳酸钠溶于水后,稀释至100mL,摇匀; 4. 5%(V/V)硫酸溶液:吸取5mL浓硫酸缓缓加入90mL水中,冷却后加水至100mL; 5. 3mol/L硫酸溶液:量取34mL浓硫酸缓缓加入到盛有160mL左右水的大烧杯中,不断搅拌,冷却后使用,再加水至200mL; 6. 二硝基酚指示剂:称取0.2g 2,6-二硝基酚溶于100mL水中; 7. 0.5%酒石酸锑钾溶液:称取化学纯酒石酸锑钾0.5g溶于100mL 水中;

土壤全磷测定1.0

实验报告 课程名称: 土壤学实验 指导老师: 廖敏 成绩:__________________ 实验名称: 土壤全磷测定 同组学生姓名: 张逸涵 一、实验目的和要求 二、实验内容和原理 三、实验材料与试剂 四、实验器材与仪器 五、操作方法和实验步骤 六、实验数据记录和处理 七、实验结果与分析 八、讨论、心得 一、 实验目的和要求 1. 掌握土壤全磷的测定方法及其原理; 2. 了解土壤磷在作物生长中的作用,对土壤磷肥力营养状况评价及合理施肥。 二、 实验内容和原理 1. 土壤全磷(P ) 是指土壤中各种形态磷素的总和。土壤全磷含量的高低,受土壤母质、成土作用和耕作施肥的影响[1]。土壤中的磷可以分为无机磷和有机磷:无机磷以吸附态和钙、铁、铝等的磷酸盐为主,有机磷组成和结构较为复杂,尚不可知,但大多数以高分子形态存在。 2. 土壤样品的分解(HClO 4—H 2SO 4消煮法) 利用HClO 4分解样品,其为强酸和强氧化剂,能氧化有机质,分解矿物质。利用H 2SO 4提高反应温度,防止消化过程中溶液蒸干。 本法用于一般土壤样品分解率达97%~98%,但对红壤性土壤样品分解率只有95%左右。 3. 溶液中磷的测定(钼锑抗-硫酸比色法) 1) 原理 采用钼锑抗-硫酸体系测定。一定酸度下,正磷酸与钼酸盐络合形成磷钼酸多杂物,反

应式如下: H 3PO 4+12H 2MoO 4→H 3[PMo 12O 40]+12H 2O 此体系试剂成分为H 2SO 4为5.5mol·L -1(H +),钼酸铵为10 g·L -1,酒石酸氧锑钾为0.5 g·L -1,抗坏血酸为1.5 g·L -1。在磷较少的情况下,一般都用更灵敏的钼蓝法,即在适宜试剂浓度下,加入适当的还原剂,使磷钼酸中的一部分Mo 6+离子被还原为Mo 5+,生成钼蓝,这是钼蓝比色法的基础。蓝色产生的速度、强度、稳定性等与还原剂的种类、试剂的适宜浓度特别是酸度以及干扰离子等有关。 抗坏血酸之所以作为还原剂,是因其能与Fe 3络合,保持溶液的氧化还原势。添加的催化剂酒石酸氧锑钾能在常温下加速显色,提高反应灵敏度,简化操作手续,使该方法有利于大批量样品分析。 2)配置 A 溶液(5 g·L -1酒石酸氧锑钾溶液):取酒石酸氧锑钾[K(SbO)C 4H 4O 6]0.5g ,溶解于100mL 水中。 B 溶液(钼酸铵—硫酸溶液):取钼酸铵[(NH 4)6Mo 7O 24·4H 2O]10g ,溶于450mL 水中,缓慢加入153mL 浓H 2SO 4,边加边搅。再将上述A 溶液加入到B 溶液中,最后加水至1L 。充分摇匀,贮于棕色瓶中,此为钼锑混合液。临用前(当天),称取抗坏血酸( C 6H 8O 5,化学纯)1.5g ,溶于100mL 钼锑混合液中,混匀,此即钼锑抗试剂。 4. 土壤全磷计算公式 土壤全磷(P )(g·kg -1)= 31 2 10-??? V V m V ρ 式中:ρ——待测液中磷的质量浓度(g·kg -1); V ——样品制备溶液的mL 数; m ——烘干土质量(g );

土壤全磷测定

1、测定意义: 磷的贮量及供给状况反映土壤肥力,指导施肥;为磷在土壤中的吸附、固定、转化提供定量数据;磷作为生态环境重要因素,其迁移、富集过程是以土壤为介质,可以为研究磷的面源污染提供基础。 全磷大部分呈无机矿物态,而有机磷在短时间内是相对无效的,只有少量无机矿物态磷对作物有效 不同地区全磷含量 我国土壤中一般含量为: -1.0g 南方酸性低于: 0.56g.kg-1 黄土母质: -0.7g 新疆栗钙土高于: 2.0g.kg-1 酸性黄、红壤: 0.4g.kg-1 2、方法及原理 方法:硫酸、高氯酸酸溶-钼锑抗比色法 原理:在高温条件下,土壤中含磷矿物及有机磷化合物与H2SO4 、HClO4 强氧化剂作用下,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用钼锑抗比色法测定。 高氯酸作用,氧化有机质,分解矿物质,有助于胶状硅脱水,络合三价铁离子,抑制硅铁干扰。 主要仪器 紫外可见分光光度计、消煮炉、万分之一天平、百分之一天平 试剂

(1) H2SO4:硫酸( H2SO4,密度1.84g/ml,分析纯) (2) HClO4:高氯酸(HClO4,60~70%,分析纯) (3) 4 mol L-1NaOH溶液:氢氧化钠溶于蒸馏水中,用水定容至100ml。(4) L-1 H2SO4溶液:吸取浓硫酸,缓缓注入水中,并用水定容至1l。 (5) 2,4-二硝基酚指示剂:2,4-二硝基酚0.2g于100 mL 水中。 此指示剂的变色点约为PH3,酸性时无色,碱性时呈黄色。(6)钼锑抗试剂: A 5 g?L-1酒石酸氧锑钾: 取酒石酸氧锑钾 0.5g 溶于100mL水中 B钼酸铵-硫酸溶液:称取钼酸铵10 g, 溶于 450 mL水中,缓慢加入153mL浓H2SO4,边加边搅。 C将A 加入到B 溶液中,最后加水至1L,充分摇匀,贮于棕色瓶中,此为钼锑混和液。 (7)钼锑显色剂: 临用前(当天),称取1.5克抗坏血酸(C6H8O5, 分析纯),溶于100ml 钼锑抗混合液中,混匀,此即为钼锑抗试剂。有效期24小时,如藏于冰箱中则有效期较长。此试剂中H2SO4为l,钼酸铵为10g/l,酒石酸锑钾为0.5g/l,抗坏血酸15g/l。(此液应现用现配) (8)5ug/ml磷(p)标准液 磷标准溶液:准确称取在105℃烘箱中烘干的KH2PO4(分析纯)g,溶解在400mL水中,加浓H2SO45 mL(加H2SO4防长霉菌,可使溶液长期保存),转入1 L容量瓶中,加水至刻度。此溶液为50 μg·mL-1P

土壤全磷的测定方法

土壤全磷的测定方法(高氯酸-硫酸法) 方法原理:在高温条件下,土壤中含磷矿物及有机磷化合物与高沸点的硫酸和强氧化剂高氯酸作用,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用钼锑抗比色法测定。 操作步骤: 1.在分析天平上准确称取通过100目筛(孔径为0.25mm)的土壤样品1g(精确到0.0001)置于50ml三角瓶中,以少量水湿润,并加入浓H2SO48ml,摇动后(最好放置过夜)再加入70—72%的高氯酸(HClO4)10滴摇匀。 2.于瓶口上放一小漏斗,置于电炉上加热消煮至瓶内溶液开始转白后,继续消煮20分钟,全部消煮时间约为45—60分钟。 3.将冷却后的消煮液用水小心地洗入100ml容量瓶中,冲冼时用水应少量多次。轻轻摇动容量瓶,待完全冷却后,用水定容,用干燥漏斗和无磷滤纸将溶液滤入干燥的100ml三角瓶中。同时做空白试验。 4.吸取滤液2—10ml于50ml容量瓶中,用水稀释至30ml,加二硝基酚指示剂2滴,用稀氢氧化钠(NaOH)溶液和稀硫酸(H2SO4)溶液调节pH至溶液刚呈微黄色。 5.加入钼锑抗显色剂5ml,摇匀,用水定容至刻度。 6.在室温高于15℃的条件下放置30分钟后,在分光光度计上以700nm的波长比色,以空白试验溶液为参比液调零点,读取吸收值,在工作曲线上查出显色液的P—mg/L数。 7.工作曲线的绘制。分别吸取5mg/L标准溶液0,1,2,3,4,5,6ml于50ml容量瓶中,加水稀释至30ml,加入钼锑抗显色剂5ml,摇匀定容。即得0,0.1,0.2,0.3,0.4,0.5,0.6mg/LP标准系列溶液,与待测溶液同时比色,读取吸收值。在方格坐标纸上以吸收值为纵坐标,Pmg/L数为横坐标,绘制成工作曲线。 结果计算 全P%=显色液mg/L×显色液体积×分取倍数/(W×106)×100 式中:显色液Pmg/L—从工作曲线上查得的Pmg/L; 显色液体积—本操作中为50ml; 分取倍数—消煮溶液定容体积/吸取消煮溶液体积; 106—将ug换算成g W—土样重(g)。 两次平行测定结果允许误差为0.005%。 仪器、试剂 1.主要仪器: 分析天平、小漏斗、大漏斗、三角瓶(50ml和100ml)、容量瓶(50ml和100ml)、移液管(5ml 和10ml)、电炉、分光光度计。 2.试剂: (1)0.5mol/L碳酸氢钠浸提液。称取化学纯碳酸氢钠42.0g溶于800ml水中,以0.5mol/L 氢氧化钠调节pH至8.5,洗入1000ml容量瓶中,定容至刻度,贮存于试剂瓶中。此溶液贮存于塑料瓶中比在玻璃瓶中容易保存,若贮存超过1个月,应检查pH值是否改变。 (2)无磷活性炭。活性碳常常含有磷,应做空白试验,检查有无磷存在。如含磷较多,须先用2mol/L盐酸浸泡过夜,用蒸馏水冲洗多次后,再用0.5mol/L碳酸氢钠浸泡过夜,在平瓷漏斗上抽气过滤,每次用少量蒸馏水淋洗多次,并检查到无磷为止。如含磷较少,则直接用碳酸氢钠处理即可。 (3)磷(P)标准溶液。准确称取45℃烘干4—8小时的分析纯磷酸二氢钾0.2197g于小烧杯中,以少量水溶解,将溶液全部洗入1000ml容量瓶中,用水定容至刻度,充分摇匀,此溶液即为含50mg/L的磷基准溶液。吸取50ml此溶液稀释至500ml,即为5mg/L的磷标准溶液(此

土壤全磷的测定流动注射-钼酸铵分光光度法-黑龙江质量技术

__________________________________________________ ICS :01.140.30 Z 16 DB23 《土壤 全磷的测定 流动注射-钼酸铵分光光度法》 地方标准送审稿 (送审稿) 黑龙江省质量技术监督局 发

目次 前言 (Ⅱ) 1适用范围 (1) 2规范性引用文件 (1) 3方法原理 (1) 4试剂和材料 (1) 5干扰及消除 (2) 6仪器和设备 (2) 7样品 (2) 8分析步骤 (3) 9结果计算与表示 (3) 10精密度和准确度 (4) 11质量保证和质量控制 (4)

本标准依据GB/T 1.1-2009标准化工作导则编写。 本标准由黑龙江省环境保护厅提出并归口。 本标准起草单位:黑龙江省环境监测中心站。 本标准验证单位:哈尔滨市环境监测中心站、齐齐哈尔市环境监测中心站、佳木斯市环保监测中心站、黑河市环境监测中心站、伊春市环境监测站和黑龙江省质量监督检测研究院。 本标准起草人:刘蕊、陈威、冯磊、马玉坤、刘立雪、张万峰、孟庆庆、邢延峰、张立臣、刘秀芝、姜景阳、王远、赵立富、胡本涛、曹胜

土壤全磷的测定流动注射-钼酸铵分光光度法 1 范围 本标准规定了测定土壤中全磷的流动注射-钼酸铵分光光度法。 本标准适用于土壤中全磷的测定。 当试样量为0.2500g,本方法的检出限为9.2mg/kg,测定下限为36.8mg/kg。 2 规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 11893 水质总磷的测定钼酸铵分光光度法 HJ/T 166 土壤环境监测技术规范 HJ 168 HJ 613 土壤干物质和水分的测定重量法 HJ 632 土壤总磷的测定碱熔-钼锑抗分光光度法 HJ 671 水质总磷的测定流动注射-钼酸铵分光光度法 3 方法原理 土壤样品经氢氧化钠熔融,一定体积的试样注入连续流动的载液中,与过硫酸钾溶液混合进行紫外消解,土壤样品中的含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,试样和试剂在化学反应模块中按特定的顺序和比例混合、反应,在非完全反应的条件下,进入流动检测池在波长880 nm处进行光度检测。 4 试剂和材料 4.1 无水乙醇:ρ(CH3CH2OH)=0.789 g/ml 。 4.2 硫酸溶液:c(H2SO4)=3 mol/L 于800ml 水中,在不断搅拌下缓慢加入168ml 浓硫酸(分析纯,ρ=1.84 g/ml ),待溶液冷却后加水至1000ml ,混匀。 4.3 过硫酸钾消解溶液 将26.0g 过硫酸钾(分析纯,K2S2O8)加至800ml水中,溶解后用水稀释至1000ml 并混匀。该溶液室温避光保存,可稳定1个月。 4.4 钼酸铵溶液 称取40.0g 钼酸铵[分析纯,(NH4) 6Mo7O24·4H2O]溶于800ml 水中,溶解后用水稀释至1000 ml 并混匀,贮存于聚乙烯瓶中。该溶液在4℃下保存,可稳定2个月。 4.5 酒石酸锑钾溶液 称取3.0g 酒石酸锑钾[分析纯,K(SbO) C4H4O6·?H20]溶于800ml 水中,溶解后用水稀释至1000ml 并混匀,该溶液在4℃下保存,可稳定2个月。 4.6 显色剂 将213ml 钼酸铵溶液(4.4)和72ml 酒石酸锑钾溶液(4.5)加入约500ml 水中,再加入22.8g

土壤中磷的测定(全磷、速效磷)

1土壤全磷的测定(硫酸一高氯酸消煮法) 方法原理 在高温条件下,土壤中含磷矿物及有机磷化合物与高沸点的硫酸和强氧化剂高氯酸作用,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用钼锑抗比色法测定。 操作步骤 1.在分析天平上准确称取通过100目筛(孔径为0.25mm)的土壤样品1g(精确到0.0001)置于50ml三角瓶中,以少量水湿润,并加入浓H2SO48ml,摇动后(最好放置过夜)再加入70—72%的高氯酸(HClO4)10滴摇匀。 2.于瓶口上放一小漏斗,置于电炉上加热消煮至瓶内溶液开始转白后,继续消煮20分钟,全部消煮时间约为45—60分钟。 3.将冷却后的消煮液用水小心地洗入100ml容量瓶中,冲冼时用水应少量多次。轻轻摇动容量瓶,待完全冷却后,用水定容,用干燥漏斗和无磷滤纸将溶液滤入干燥的100ml三角瓶中。同时做空白试验。 4.吸取滤液2—10ml于50ml容量瓶中,用水稀释至30ml,加二硝基酚指示剂2滴,用稀氢氧化钠(NaOH)溶液和稀硫酸(H2SO4)溶液调节pH至溶液刚呈微黄色。 5.加入钼锑抗显色剂5ml,摇匀,用水定容至刻度。 6.在室温高于15℃的条件下放置30分钟后,在分光光度计上以700nm的波长比色,以空白试验溶液为参比液调零点,读取吸收值,在工作曲线上查出显色液的P—mg/L数。 7.工作曲线的绘制。分别吸取5mg/L标准溶液0,1,2,3,4,5,6ml于50ml 容量瓶中,加水稀释至约30ml,加入钼锑抗显色剂5ml,摇匀定容。即得0,0.1,0.2,0.3,0.4,0.5,0.6,mg/LP标准系列溶液,与待测溶液同时比色,读取吸收值。在方格坐标纸上以吸收值为纵坐标,Pmg/L数为横坐标,绘制成工作曲线。 结果计算 全P %=显色液mg/L×显色液体积×分取倍数/(W×106)×100 式中: 显色液Pmg/L—从工作曲线上查得的Pmg/L; 显色液体积—本操作中为50ml;

(完整word版)土壤孔隙度的测定(精)

土壤的孔隙度试验方法: 分别选择土壤为沙土、壤土和黏土的田地各100m2进行田间持水量试样,把100m2等分两块,一块用1.3kg的液体肥与水一起冲施,一块用水灌溉。一周后,同时在施肥田地与不施肥的田地采取土壤并编上编号作试验。试验步骤如下: 1、孔隙度,%=(1-土壤容重/土壤比重*100 2、土壤容重的测定 先用铁铲刨平耕层的土面,将环刀托套在环刀无刃的一端,环刀刃朝下,用力均衡地压环刀托把,将环刀垂直压入土中。如土壤较硬,环刀不易插入土中时,可用土锤轻轻敲打环刀托把,待整个环刀全部压入土中,且土面即将触及环刀托的顶部(可由环刀托盖上之小孔窥见时,停止下压。用铁铲把环刀周围土壤挖去,在环刀下方切断,并使其下方留有一些多余的土壤。取出环刀。将其翻转过来,刃口朝上,用削土刀迅速刮去黏附在环刀外壁上的土壤,然后从边缘向中部用削土刀削平土面,使之与刃口齐平。盖上环刀顶盖,再次翻转环刀,使已盖上顶盖的刃口一端朝下,取下环刀托。同样削平无刃口端的土面并盖好底盖。将装有土样的环刀迅速装入木箱带回室内,在天平上称取环刀及湿土质量,将称重后的环刀和土壤在105℃烘箱中烘至恒重,称量。 计算:土壤容重,g/cm3=烘干土样质量(g/环刀容积(cm3 3,、土壤比重的测定 取通过2mm孔径筛的风干试样约10g,经小漏斗装入已知质量的比重瓶中,称取瓶加风干试样质量。另称取5g左右试样按3.1方法测定水分含量。 向装有样品的比重瓶中缓缓注入水,至水和土的体积约占比重瓶的1/3~1/2为宜。缓缓摇动比重瓶,使土粒充分浸润,将比重瓶放在电砂浴上加热,沸腾后保持微沸1h,煮沸过程中应经常摇动比重瓶,驱除土壤中的空气。煮沸完毕,将冷却的无CO2水沿瓶壁徐徐加入比重瓶至瓶颈,用手指轻轻敲打瓶壁,使残留土中的空气逸尽,粘附在瓶壁上的土粒沉入瓶底。静止冷却,澄清后测量瓶内水温。加水至瓶口,塞上毛细管塞,瓶中多余的水即从塞上毛细管孔中溢出,用滤纸擦干后称取瓶+水+土质量。

土壤孔隙度的测定

土壤的孔隙度试验方法: 分别选择土壤为沙土、壤土和黏土的田地各100m2进行田间持水量试样,把100m2等分两块,一块用1.3kg的液体肥与水一起冲施,一块用水灌溉。一周后,同时在施肥田地与不施肥的田地采取土壤并编上编号作试验。试验步骤如下: 1、孔隙度,%=(1-土壤容重/土壤比重)*100 2、土壤容重的测定 先用铁铲刨平耕层的土面,将环刀托套在环刀无刃的一端,环刀刃朝下,用力均衡地压环刀托把,将环刀垂直压入土中。如土壤较硬,环刀不易插入土中时,可用土锤轻轻敲打环刀托把,待整个环刀全部压入土中,且土面即将触及环刀托的顶部(可由环刀托盖上之小孔窥见)时,停止下压。用铁铲把环刀周围土壤挖去,在环刀下方切断,并使其下方留有一些多余的土壤。取出环刀。将其翻转过来,刃口朝上,用削土刀迅速刮去黏附在环刀外壁上的土壤,然后从边缘向中部用削土刀削平土面,使之与刃口齐平。盖上环刀顶盖,再次翻转环刀,使已盖上顶盖的刃口一端朝下,取下环刀托。同样削平无刃口端的土面并盖好底盖。将装有土样的环刀迅速装入木箱带回室内,在天平上称取环刀及湿土质量,将称重后的环刀和土壤在105℃烘箱中烘至恒重,称量。 计算:土壤容重,g/cm3=烘干土样质量(g)/环刀容积(cm3 3,、土壤比重的测定

取通过2mm孔径筛的风干试样约10g,经小漏斗装入已知质量的比重瓶中,称取瓶加风干试样质量。另称取5g左右试样按3.1方法测定水分含量。 向装有样品的比重瓶中缓缓注入水,至水和土的体积约占比重瓶的1/3~1/2为宜。缓缓摇动比重瓶,使土粒充分浸润,将比重瓶放在电砂浴上加热,沸腾后保持微沸1h,煮沸过程中应经常摇动比重瓶,驱除土壤中的空气。煮沸完毕,将冷却的无CO2水沿瓶壁徐徐加入比重瓶至瓶颈,用手指轻轻敲打瓶壁,使残留土中的空气逸尽,粘附在瓶壁上的土粒沉入瓶底。静止冷却,澄清后测量瓶内水温。加水至瓶口,塞上毛细管塞,瓶中多余的水即从塞上毛细管孔中溢出,用滤纸擦干后称取瓶+水+土质量。 将比重瓶中土液倒出,洗净比重瓶,注满冷却的无CO2水,测量瓶内水温,加水至瓶口,塞上毛细管塞,擦干瓶外壁,称取瓶+水质量。若每只比重瓶事先都经过校正,在测定时便可省去此步骤。 测定的土壤含水溶盐或较多的活性胶体时,土样应先在105烘干,并用非极性液体代替水,用真空抽气法驱逐土样及液体中的空气。抽气过程要保持接近一个大气压的负压,经常摇动比重瓶,直至无气泡逸出为止。其余步骤同上。

土壤检测标准

土壤检测标准 NY/T 1121-2006 土壤检测系列标准: NY/T 土壤检测第1部分:土壤样品的采集、处理和贮存NY/T 土壤检测第2部分:土壤pH的测定 NY/T 土壤检测第3部分:土壤机械组成的测定 NY/T 土壤检测第4部分:土壤容重的测定 NY/T 土壤检测第5部分:石灰性土壤阳离子交换量的测定NY/T 土壤检测第6部分:土壤有机质的测定 NY/土壤检测第7部分:酸性土壤有效磷的测定 NY/土壤检测第8部分:土壤有效硼的测定 NY/土壤检测第9部分:土壤有效钼的测定 NY/T 土壤检测第10部分:土壤总汞的测定 NY/T 土壤检测第11部分:土壤总砷的测定 NY/T 土壤检测第12部分:土壤总铬的测定 NY/T 土壤检测第13部分:土壤交换性钙和镁的测定 NY/T 土壤检测第14部分:土壤有效硫的测定 NY/T 土壤检测第15部分:土壤有效硅的测定 NY/T 土壤检测第16部分:土壤水溶性盐总量的测定 NY/T 土壤检测第17部分:土壤氯离子含量的测定 NY/T 土壤检测第18部分:土壤硫酸根离子含量的测定NY/T 1119-2006 土壤监测规程 NY/T 52-1987 土壤水分测定法 NY/T 53-1987 土壤全氮测定法(半微量开氏法) NY/T 88-1988 土壤全磷测定法 NY/T 87-1988 土壤全钾测定法 NY/T 86-1988 土壤碳酸盐测定法 NY/T 1104-2006 土壤中全硒的测定 NY/T 296-1995 土壤全量钙、镁、钠的测定 NY/T 295-1995 中性土壤阳离子交换量和交换性盐基的测定NY/T 889-2004 土壤速效钾和缓效钾

土壤放射性核素的来源与迁移

土壤放射性核素的来源与迁移 放射性是某些元素原子核裂变是发生的能量以电磁放射或快速粒子形式进行的释放过程,而元素的同位素物质可散发射线的称为放射性核素。自然环境中存在许多放射性核素,包括天然放射性核素(40K、238U和232Th等)和人为放射性核素(主要有137Cs、134Cs、 90Sr、240Pu、131I 等)。天然放射性核素所造成的人体内照射剂量和外照射剂量都很低,它们不影响人类的正常生活。可是,随着核技术尤其是核电站的迅猛发展,不可避免地产生了大量放射性废物,这些废物中的核素衰变引起电离辐射造成了人体多种疾病,对人类的危害极大。 目前,核废物处置方法主要是深度地质处置,即将放射性废物处置库建造在深度地质层中,使用工程的和天然的多层屏障将废物隔离起来[1] 。可是,随着时间的推移,多层屏障必将遭到破坏,废物中的各种放射性核素就会或多或少地随着地下水流或岩石裂隙从地下废物库中扩散、迁移到岩层或土层中。土壤作为环境的重要组成部分,其中的放射性核素的迁移大大影响到其他圈层中核素的含量与分布。因此,了解土壤中放射性核素的来源以及其迁移规律对指导放射性污染的治理有重要意义。 1土壤放射性核素的来源 1.1成土母质“原生放射性核素”指的是在地球形成期间出现的原 子序

数大于83 的放射性核素,这些放射性核素一般分为铀系、钍系 和锕系三个系列,它们通过放射性衰变,产生大量a、B和丫 射线,对地球环境产生强烈的影响。其中具有足够长半衰期,以致至今仍能探测到,并意义重大的有40K、238U和232Th。铀和 钍还能通过衰变产生一系列的放射性子代系列。这些放射性核素广泛地存在于自然界中,并主要贮存于岩石圈中。研究表明地壳中的岩石大部分都含有铀和钍[2],238U、232Th含量以岩浆岩最高,变质岩次之,沉积岩最低;40K含量也以岩浆岩为最高, 但以变质岩最低。其中花岗岩中238U、232Th含量较高,而我国花岗岩出露广泛,这是我国土壤中天然放射性核素含量较高的原因之一。 1.2核能利用 1.2.1 核爆炸核爆炸所产生的放射性落下灰是迄今土壤环境的主要放射性污染源,对生物圈影响深远。核爆炸时大约有170 种放射性同位素被带到对流层中,其中主要是U和Pu的裂变产物⑶。它们首先会对其爆炸中心周围的土壤产生较大影响,进而在风和降水的作用下在全球范围内重新分布,沉积到土壤环境中造成放射性污染。 1.2.2核工业核能生产包括铀矿开采、矿石加工、铀燃料生产、反 应堆动 力生产、放射性物质的运输和废物处置等一系列工业流程,所有这些环节都有可能造成环境的放射性污染。 1.3 磷钾肥的使用化肥中的磷肥和钾肥都不同程度的含有放射性核素,因此,施用化肥可能会引起环境放射性增加。尽管如此,许多研

土壤容重孔隙度含水率等测定方法

土壤容重孔隙度含水率等 测定方法 Newly compiled on November 23, 2020

1.土壤含水量(含水率)测定 采用酒精燃烧法测定。 操作步聚: (1)取小铝盒若干,洗净后烘干,用天平称出每—铝盒重量(逐一标量记录) (2)在标准地内挖土壤剖面,分20cm 一层。在分层的土壤剖面上用铝盒自下而上刮一层土(约半盒、注意避开根系和石砾等杂物),马上称重(得出湿土重十铝盒重) (3)倒入酒精8-12ml ,振荡铝盒使与土壤混合均匀(如土壤很湿要用小刀拌匀成泥 浆),点燃酒精,在火焰将熄灭时,用小刀轻拔土壤,使其充分燃烧,烧完后再加入3~4ml 进行第二次燃烧(如土壤粘重、含水量较大,再加入2~3ml 酒精进行第三次燃烧)。 冷却后,马上称出重量(得干土重十盒重)。每层重复三次。 (4)土壤含水量及现有贮水量计算 ①土壤含水量(重量)=%重 (干土重+盒重)-盒干土重+盒重)(湿土重+盒重)-(100? =水分重/干土重×l00% ②土壤含水量(体积)=)()容重(土壤含水量(重量%)33 g/cm 1g/cm ? =%土壤体积 水分体积100? (注:水的容重一般取lg /cm 3) 2.土壤物理性质测定 采用环刀法 操作步聚: (1)首先量取环刀的高度和内径,计算出其容积(标记、做好记录): V =πr 2H 式中:V —环刀体积(cm 3)

R —环刀内半径(cm) H —环刀高度(cm) 将环刀在天平上称重(做好标记、记录)。 (2)选择标准地,在测定地点做一平台(山地),挖土壤剖面,分层取样测定(按20cm —层),每层设三个重复。 (3)打入环刀(一定要垂直打入,且不能晃动),待土壤至环刀下沿齐平时,在环刀上垫—滤纸层后把盖盖好,挖出环刀,用刀削平底部土壤,垫好滤纸,盖好下盖。迅速称重(得:自然土重十环刀重) (注:第(3)步测完后马上测定该层土壤含水量,见土壤含水量测定)可测出土壤容重。 (4) 将环刀样品带回室内,拿掉上盖(保留滤纸)。将环刀放入盛水的容器中(2—3mm 水层,随水减少,逐渐加水,保持此水层)。大约2小时左右(人不能离开)至土层滤纸一湿,取出环刀(用滤纸吸干)盖好上盖马上称重(得:经浸水2小时左右带土环刀重)。然后放回原处,每隔l 小时取出反复称重,直到恒重,可测出土壤毛管孔隙度。 (5)将环刀土样继续放入盛水容器中,往容器加水至水面与环刀上层齐平。净置6小时后取出环刀。稍置10秒钟。使多余水流出,用干布将环刀擦干后称重。(得:浸水6小时带土环刀重),然后再将环刀放回容器中,放置4~5小时后,再次称重,直到恒重。可测得土壤总孔隙度。 (6)土壤物理性质指标的计算 ①环刀内干土重(g)=1 g +土壤含水量(重量%))-环刀重((自然土重+环刀重) ②土壤容重(g/cm 3)=) 环刀容积()环刀内干土重( 3cm g ③土壤毛管孔隙度(容积) =%)环刀容积())-环刀内干土重()-环刀重(小时左右带土环刀重(吸水100cm g g g 23

土壤中有机磷农药的测定

第8章土壤中有机磷农药的测定 8.1概述 长期以来,大面积使用化学农药严重破坏环境和生态,而我国化学农药的使用量是世界平均用量的2.5倍,高毒农药使用量占我国农药使用量的30%[1]。 有机磷农药是上世纪三十年代德国G.Schradev首先发现的,有机磷农药是作为取代有机氯农药而发展起来的新型农药,这种农药较有机氯农药容易降解,对自然环境的污染和生态系统的危害、残留没有有机氯农药普遍和持久。但事实上,有机磷农药并不是理想高效、低毒、低残留农药,其在环境中的残留也不容忽视[2],并在动物体内富集[3]。 有机磷农药一般为硫代磷酸酯类或磷酸酯类化合物,大多呈结晶状或油状,工业品呈棕色或淡黄色,除敌敌畏和敌百虫之外,大多有蒜臭味。这类农药除敌百虫、磷胺、甲胺磷、乙酰甲胺磷等易溶于水,其它不溶于水,易溶于有机溶剂如苯、丙酮、乙醚、三氯甲烷及油类。有机磷农药分子结构一般具有容易断裂的化学键,在酸性和中性溶液中较稳定,遇碱易分解破坏,对光、热、氧均较稳定,略具挥发性,遇高热可异构化,加热遇碱可以加速分解。 有机磷农药是一种神经毒物,作用机制是抑制生物体内的乙酰胆碱酯酶,引起神经系统紊乱,并造成中毒。另外,有机磷农药迟发性毒性还会对生殖系统造成损害。 印度北部Kanpur市,地表水中马拉硫磷含量达2.618mg/L,地下水含量高达29.835mg/L[4]。 近年来,我国农药工业迅速发展,农药年产量居世界第二位。其中,有机磷农药产量占全世界总量的1/3,占全国农药总量的50%以上[5]。 我国近年来用量最大的农药主要是甲拌磷、特丁硫磷、甲胺膦、氧乐果、丙溴磷、乐果、水胺硫磷、杀螟硫磷、辛硫磷、异稻瘟净、马拉硫磷、乙酰甲胺磷、甲基毒死蜱、毒死蜱、三唑磷、敌百虫、敌敌畏、草甘膦等有机磷农药产品年产量约占我国有机磷类农药总产量的90%以上[6]。 8.2相关环保标准和工作需要 8.2.1 国内相关标准 目前我国的各类环境质量标准和污染物排放标准中,除了危险废物毒性标准中有四种有机磷的排放限值,还没有土壤和沉积物中有机磷的相关质量和排放标准,详见表1。 表1 有机磷相关环境质量或排放标准 环境质量或排放标准标准号排放限值浓度单位 土壤环境质量标准GB15618-1995 无相关排放标准 危险废物毒性标准浸出毒性鉴别GB5085.3-2007 乐 果 对硫 磷 甲基对 硫磷 马拉硫磷浸出液 8 0.3 0.2 5.0 mg/L 生活垃圾填埋污染控 制标准 GB16889-2008 无相关排放标准展览馆用地土壤环境 质量标准 HJ350-2007 无相关排放标准

土壤耕性教学设计

《土壤耕性》教学设计 高一农林郭东攀 教学内容: 高教版中职教材《植物生产与环境》第三章第二节P123-125(土壤耕性) 教学重点: 1、旱地土壤的剖面构造及特点 2、土壤耕性的表现 3、土壤耕性的改良措施 教学难点: 1、旱地土壤与水田土壤剖面的不同点 2、土壤宜耕期的确定方法及土壤耕性改良的措施 教学方法: 自主学习 教学过程: 一、明确目标: 1、能认识不同类型土壤的剖面构造 2、能说出旱地土壤剖面各层的性质与作用 3、能说出土壤耕性的含义及表现 4、能掌握生产上确定宜耕期的方法 5、能掌握土壤耕性调节的方法措施 二、温故入新: 1、土壤的形成过程 2、不同质地土壤的生产特性 三、自主学习; 1、什么是土壤剖面? 2、自然土壤剖面有哪几个结构层次? 3、旱地土壤的结构层次及各层的性质特点。 4、水田土壤的结构层次。 5、土壤耕性的含义及表现 6、确定土壤宜耕期的方法 7、土壤耕性的影响因素及改良措施。

四、释疑解惑 五、信息反馈 1、()是土壤内部性质的外在表现。 A、土壤质地 B、土壤耕性 C、土壤结构 D、土壤剖面形态 2、旱地土壤中,()是保水保肥也是作物后期供应水肥的主要层次。 A、耕作层 B、犁底层 C、心土层 D、底土层\ 3、()是土壤耕性的主要影响因素。 A、土壤结持性 B、土壤结构性 C、土壤质地 D、土壤水分 4、一般水田土壤可分为、、、 、、等层次。 5、在农业生产上确定宜耕期的具体方法有、、 等三种。 6、识图: 8、旱地土壤的剖面结构及在生产上的作用 9、生产上改良土壤耕性的措施有哪些? 六、确定任务: 1、识记教材理论知识点 2、实地观察旱地土壤的剖面结构 3、实地确定宜耕期,掌握宜耕期的确定方法 4、对当地土壤的宜耕性及耕性改良的措施进行调研 5、自主预习土壤酸碱性和缓冲性的内容

土壤容重及孔隙度的测定

实训五土壤容重及孔隙度的测定 一、实训目标: 通过本次实训,能够掌握土壤容重及孔隙度的测定方法,测定步骤流程,以及土壤容重的计算方法,并最终利用测得的土壤容重值判断土壤松紧度。 二、实训用品: 环刀(包括底盖、上盖、环刀柄)、小铁锹、小刀、铝盒、电子天平、卷尺、土壤样品、酒精、石棉网、牛角勺、坩埚钳、普通花盆2个(盛土用)。 三、实训步骤: 1.先称环刀(加盖)重量,记为X g,再称铝盒重量,标为X 。 2.选点: 先将3cm厚度的土壤表层刮去,再将环刀垂直钻入土样,直到环刀手柄平面与土壤表面相平,用小铁锹把周围土去掉。 取出环刀,削去环刀两端多余的土壤,立即将环刀两端加盖,若在野外则需贴标签装袋。 3.称重: 环刀(加盖)+土样 4.测定土壤含水量: 从称重后的环刀筒中取土约20g,放入已知重量的铝盒中,利用酒精燃烧法测定土壤含水量,并记录好结果。 5.土壤容重及孔隙度的计算:

(1)环刀容积的计算 V(环刀容积)=πr2h 利用卷尺量出数据 式中:π=3.14 r=环刀半径 h=环刀高度(去掉底盖和上盖) (2)土壤容重的计算 土壤容重=(M-G)×100 / V(100+W) 式中:M=(环刀+湿土)重量(g) G=环刀(底盖+上盖)重量(g) V=环刀容积(cm3) W=土壤含水量(%) (3)土壤孔隙度的计算 土壤孔隙度=(1-土壤容重/土壤密度)×100% 式中:土壤密度采用密度值2.65g/cm3 6.判断土壤松紧度: 四、小结:指出并纠正实训中存在的问题。

实训四土壤有机质含量的测定 一、实训目标: 土壤有机质含量是衡量土壤肥力的重要指标,对了解土壤肥力状况,进行培肥、改土有一定的指导意义。通过实训,了解土壤有机质含量测定原理,初步掌握测定有机质含量的方法及注意事项,能够比较准确的测出土壤有机质含量。 二、方法原理: 在加热条件下,用稍过量的标准重铬酸钾-硫酸溶液氧化土壤有机碳,剩余的重铬酸钾用标准硫酸亚铁溶液滴定,由所消耗的标准硫酸亚铁的量计算出有机碳含量,从而推算出有机质的含量。 三、实训材料: 1.仪器用具:烧杯 三角烧瓶(250mL) 量筒(10mL) 酒精灯(三脚架及石棉网) 电子天平 移液管(10mL) 酸式滴定管 2.试剂:0.8N K2Gr2O7(棕红色)邻啡罗啉指示剂 0.2N FeSO4(淡青色)浓H2SO 蒸馏水

相关文档
最新文档