理想气体分子平均平动动能与温度的关系

理想气体分子平均平动动能与温度的关系
理想气体分子平均平动动能与温度的关系

(2)

M m 一 N A 32 10”

6.02 1023

-5.31 10 kg 四、理想气体分子平均平动动能与温度的关系 (可以用一个公式加以概括)

1 ~ 3

;k = mv kT 2 2 1 -2 3

所以:-mv 2 = 3 kT

2 2 这就是理想气体分子的平均平动动能与温度的关系,是气体动理论的另一个基本公式。

它表明分子的平均平动动能与气体的温度成正比。

气体的温度越高,分子的平均平动动能越 大;分子的平均平动动能越大, 分子热运动的程度越剧烈。因此,

温度是表征大量分子热运 动剧烈程度的宏观物理量,是大量分子热运动的集体表现。对个别分子,说它有多少温度, 是没有意义的。

从这个式子中我们可以看出

2.温度的统计意义

该公式把宏观量温度和微观量的统计平均值

(分子的平均平动动能)联系起来,从而揭示

了温度的微观本质。

关于温度的几点说明 ,1 — 3^ _ 1 — 一一 亠

1?由一mv kT 得T =0, ; = — mv 0 ,气体分子的热运动将停止。然而事实上是绝

2 2 2

对零度是不可到达的(热力学第三定律),因而分子的运动是用不停息的。

2.气体分子的平均平动动能是非常小的。

T =300K, .;. =10 ② J

T =108

K,I =10 45J 5

例1. 一容器内贮有氧气,压强为 P=1.013 X 10 Pa ,温度t=27 C ,求(1 )单位体积内的分 子数;(2)氧分子的质量;(3)分子的平均平动动能。 解:(1 )有 P=nkT

2.45 10 m kT 1.38 10寰 27 273 1.简单推导:理想气体的物态方程: PV RT Nm

N A E RT

而 p ,n ^m/丄 mV 2 3 12 丿 3V 12 丿 n=N/V 为单位体积内的分子数,即分子数密度,

k =RN A =1.38 X 10-23J K

-1称为玻尔斯曼常量。 关键:

1) 把m 与M 用单个分子的 质

量表示; 2) 引入分子数密度; 3) 引入Boltzmann 常量

1.013 105

3 3 23 21

(3)「尹 r 1.38 10一(27 273) =6.21 1°一J

例2.利用理想气体的温度公式说明Dalton分压定律。

解:容器内不同气体的温度相同,分子的平均平动动能也相同,即

而分子数密度满足

n八m

故压强为

2一2 —(2 一 [ i 2 —[

P =~n5 =二(为m 人=送—n i 呂k | =送—n i 5 | =》P i

3 3 l3 丿13 丿

即容器中混合气体的压强等于在同样温度、体积条件下组成混合气体的各成分单独存在时的

分压强之和。这就是Dalton分压定律。

例3. 证明Avogadro定律。

由n=P/kT

两边同乘以体积V则

N=PV/RT

结论:在同温同压下,相同体积的任何理想气体所含的分子数相同,这就是Avogadro定律。

课堂练习题:

1. 若在某个过程中,一定量的理想气体的内能E随压

强p的变化关系为一直线(其延长线过E —p图的原点) 则该过程为

(A)等温过程. (E)等压过程.

(C)等容过程. (D)绝热过程.

4.一瓶氦气和一瓶氮气密度相同,分子平均平动

动能相同,而且它们都处于平衡状态,则它们

(A)温度相同、压强相同.

(E)温度、压强都不相同.

(C)温度相同,但氦气的压强大于氮气的压强.

(D)温度相同,但氦气的压强小于氮气的压强

5.若室内生起炉子后温度从15C升高到27C ,而室内气压不变,则此时室内的分子数

减少了

(A) 0.5 :.

(C)9 :.

(B)4 :.

(D) 21 .

Welcome !!! 欢迎您的下载, 资料仅供参考!

理想气体

1、选择题 题号: 分值:3分 难度系数等级:1 理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动能 (D )气体分子的平均速率 [ ] 答案:( C ) 题号: 分值:3分 难度系数等级:1 温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的关系为 (A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而 ε不相等 (D )ε和k ε都不相等 [ ] 答案:( C ) 题号: 分值:3分 难度系数等级:1 一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为21 1021.6-?J ,则氧气的 温度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ] 答案:( D ) 题号: 分值:3分

难度系数等级:1 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的 (A )动能为 kT i 2 (B )动能为RT i 2 (C )平均平动动能为kT i 2 (D )平均平动动能为kT 2 3 [ ] 答案:( D ) 题号: 分值:3分 难度系数等级:2 一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1212p p T (B )2112p p T (C )121p p T (D )2 11 2p p T [ ] 答案:( A ) 题号: 分值:3分 难度系数等级:2 一个能量为12 100.1?eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。如果宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为 (A )7 1093.1-?K (B )7 1028.1-?K (C )6 1070.7-? K (D )6 1050.5-?K [ ] 答案:( B ) 题号: 分值:3分 难度系数等级:2 设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。从分子运动论的

理想气体分子平均平动动能与温度的关系

四、理想气体分子平均平动动能与温度的关系 (可以用一个公式加以概括) k ε=kT v m 23212= 1.简单推导:理想气体的物态方程:RT m N m N RT M m PV A ' '== 而??? ??=??? ??=2221322132v m V N v m n P n=N/V 为单位体积内的分子数,即分子数密度, k =R /N A =1.38×10-23J ·K -1称为玻尔斯曼常量。 所以:kT v m 2 3212= 这就是理想气体分子的平均平动动能与温度的关系,是气体动理论的另一个基本公式。 它表明分子的平均平动动能与气体的温度成正比。气体的温度越高,分子的平均平动动能越 大;分子的平均平动动能越大,分子热运动的程度越剧烈。因此,温度是表征大量分子热运 动剧烈程度的宏观物理量,是大量分子热运动的集体表现。对个别分子,说它有多少温度, 是没有意义的。 从这个式子中我们可以看出 2.温度的统计意义 该公式把宏观量温度和微观量的统计平均值(分子的平均平动动能)联系起来,从而揭示 了温度的微观本质。 关于温度的几点说明 1.由kT v m 23212=得02 1 02=v m T =,=ε,气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是用不停息的。 2.气体分子的平均平动动能是非常小的。 J K T 2110 ,300-==ε J K T 15 810 ,10-==ε 例1. 一容器内贮有氧气,压强为P=1.013×105Pa ,温度t=27℃,求(1)单位体积内的分 子数;(2)氧分子的质量;(3)分子的平均平动动能。 解:(1)有P=nkT 得 () 325235 1045.2273271038.110013.1--?=+???==m kT P n (2)kg N M m A 26233 1031.510 02.61032--?=??==

高中物理热学 理想气体状态方程 试题及答案

高中物理热学-- 理想气体状态方程 试题及答案 一、单选题 1.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是 A .p 1 =p 2,V 1=2V 2,T 1= 21T 2 B .p 1 =p 2,V 1=21 V 2,T 1= 2T 2 C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2 D .p 1 =2p 2,V 1=V 2,T 1= 2T 2 2.已知理想气体的内能与温度成正比。如图所示的实线为汽缸内一定 质量 的理想气体由状态1到状态2的变化曲线,则在整个过程中汽缸内气体的 内能 A.先增大后减小 B.先减小后增大 C.单调变化 D.保持不变 3.地面附近有一正在上升的空气团,它与外界的热交热忽略不计.已知大气压强随高度增加而降低,则该气团在此上升过程中(不计气团内分子间的势能) A.体积减小,温度降低 B.体积减小,温度不变 C.体积增大,温度降低 D.体积增大,温度不变 4.下列说法正确的是 A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量 C. 气体分子热运动的平均动能减少,气体的压强一定减小 D. 单位面积的气体分子数增加,气体的压强一定增大 5.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的 A .温度和体积 B .体积和压强 C .温度和压强 D .压强和温度 6.带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a ,然后经过过程ab 到达状态b 或进过过程ac 到状态c ,b 、c 状态温度相同,如V-T 图所示。设气体在状态b 和状态c 的压强分别为Pb 、和PC ,在过程ab 和ac 中吸收的热量分别为Qab 和Qac ,则 A. Pb >Pc ,Qab>Qac B. Pb >Pc ,QabQac D. Pb

理想气体状态方程整理

19.(2015?潍坊二模?37) (2)如图所示,一个粗细均匀的平底网管水平放置,右端用一橡皮塞塞住,气柱长20cm ,此时管内、外压强均为1.0×105Pa ,温度均为27℃;当被封闭气体的温度缓慢降至-3℃时,橡皮塞刚好被推动;继续缓慢降温,直到橡皮塞向内推进5cm .已知圆管的横截面积为4.0.×105-m 2,橡皮与网管间的滑动摩擦力等于最大静摩擦力,大气压强保持不变.求:(i)橡皮与圆管间的最大静摩擦力; (ii)被封闭气体最终的温度. 20. (2015?枣庄八中模拟?14).将如图所示的装置的右端部分气缸B 置于温度始终保持不变的环境中,绝热气缸A 和导热气缸B 均固定在地面上,由刚性杆连接的绝热活塞与两气缸间均无摩擦,开始时两形状相同的长方体气缸内装有理想气体,压强均为P 0、体积均为V 0、温度均为T 0.缓慢加热A 中气体,使气缸A 的温度升高为1.5T 0,稳定后.求: (i )气缸A 中气体的压强P A 以及气缸B 中气体的体积V B ; (ii )此过程中B 中气体吸热还是放热?试分析说明. 21.(2015?陕西三模?14)如图,导热性能极好的气缸,高为L=l.0m ,开口向上固定在水平面上,气缸中有横截面积为S=100cm 2 、质量为m=20kg 的光滑活塞,活塞将一定质量的理想气体封闭在气缸内.当外界温度为t=27℃、大气压为P 0=l.0×l05 Pa 时,气柱高度为l=0.80m ,气缸和活塞的厚度均可忽略不计,取g=10m/s 2 ,求: ①如果气体温度保持不变,将活塞缓慢拉至气缸顶端.在顶端处,竖直拉力F 有多大? ②如果仅因为环境温度缓慢升高导致活塞上升,当活塞上升到气缸顶端时,环境温度为多少摄氏度? 23.(2015?德州二模?37) (2)(8分)如图所示,质量1m kg =的导热气缸倒扣在水平地面上,A 为一T 型活塞,气缸内充有理想气体。气缸的横截面积S=2×10-4m 2 ,当外界温度为t=27℃时,气缸对地面恰好没有压力,此时活塞位于气缸中央。不计气缸壁厚度,内壁光滑,活塞始终在地面上静止不 动,大气压强为52 0110,10/P Pa g m s =?=。求: ①气缸内气体的压强;②环境温度升高时,气缸缓慢上升,温度至少升高到多少时,气缸不再上升。 ③气缸不再上升后,温度继续升高,从微观角度解释压强变化的原因。 24.(2015?吉林三模?33)(2)(10分)如图20所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m 的密闭活塞,活塞A 导热,活塞B 绝热,将缸内理想气体分成Ⅰ、Ⅱ两部分。初状态整个装置静止不动处于平衡,Ⅰ、Ⅱ两部分气体的长度均为l 0,温度为T 0。设外界大气压强为P 0保持不变,活塞横截面积为S ,且mg=P 0S ,环境温度保持不变。求: ①在活塞A 上逐渐添加铁砂,当铁砂质量等于2m ,两活塞在某位置重新处于平衡,活塞B 下降的高度。 ②现只对Ⅱ气体缓慢加热,使活塞A 回到初始位置.此时Ⅱ气体的温度。

统计规律理想气体的压强和温度

209-统计规律、理想气体的压强和温度 209统计规律、理想气体的压强和温度 1、选择题 1,理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动 能 (D )气体分子的平均速率 [ ] 2,温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的 关系为(A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而ε不相等 (D )ε和k ε都不相等 [ ] 3,一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为?J ,则氧气的温 度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ] 4,理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子 所具有的 (A )动能为 kT i 2 (B )动能为 RT i 2 (C )平均平动动能为kT i 2 (D )平均平动动能为 kT 23 [ ] 5,一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内 氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1 2 12p p T (B )

2 112p p T (C ) 1 21p p T (D ) 2 112p p T [ ] 6,一个能量为12 10 ?eV 宇宙射线粒子射入氖管中,氖管中有氖气 mol 。如果 宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为 (A )7 10 ?K (B )7 10 ?K (C )6 10 ? K (D )6 10 ?K [ ] 7,设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。从分子运动论的观点来看,这个压力施于dA 的压强为 (A )k n p ε3 2= (B )k n p ε3 4= (C )kT p 2 3= (D )kT p 3= [ ]

统计规律、理想气体的压强和温度

统计规律、理想气体的压强和温度 1、选择题 题号:20911001 分值:3分 难度系数等级:1 理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动能 (D )气体分子的平均速率 [ ] 答案:( C ) 题号:20911002 分值:3分 难度系数等级:1 温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的关系为 (A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而 ε不相等 (D )ε和k ε都不相等 [ ] 答案:( C ) 题号:20911003 分值:3分 难度系数等级:1 一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为21 10 21.6-?J ,则氧气的 温度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ] 答案:( D ) 题号:20911004 分值:3分 难度系数等级:1 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的 (A )动能为 kT i 2 (B )动能为RT i 2

(C )平均平动动能为 kT i 2 (D )平均平动动能为kT 2 3 [ ] 答案:( D ) 题号:20912005 分值:3分 难度系数等级:2 一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1212p p T (B )2112p p T (C )121p p T (D )2 11 2p p T [ ] 答案:( A ) 题号:20912006 分值:3分 难度系数等级:2 一个能量为12 100.1?eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。如果宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为(A )71093.1-?K (B )71028.1-?K (C )61070.7-? K (D )6 1050.5-?K [ ] 答案:( B ) 题号:20912007 分值:3分 难度系数等级:2 设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。从分子运动论的观点来看,这个压力施于dA 的压强为 (A )k n p ε32= (B )k n p ε34= (C )kT p 2 3 = (D )kT p 3= [ ] 答案:( A ) 题号:20912008 分值:3分 难度系数等级:2 两瓶不同种类的气体,它们的温度和压强相同,但体积不同,则下列说法正确的是 (A )单位体积内的分子数相同,单位体积内的气体质量也相同 (B )单位体积内的分子数不相同,但单位体积内的气体质量相同 (C )单位体积内的分子数相同,但单位体积内的气体质量不相同 (D )单位体积内的分子数不相同,单位体积内的气体质量也不相同

理想气体分子平均平动动能与温度的关系

(2) M m 一 N A 32 10” 6.02 1023 -5.31 10 kg 四、理想气体分子平均平动动能与温度的关系 (可以用一个公式加以概括) 1 ~ 3 ;k = mv kT 2 2 1 -2 3 所以:-mv 2 = 3 kT 2 2 这就是理想气体分子的平均平动动能与温度的关系,是气体动理论的另一个基本公式。 它表明分子的平均平动动能与气体的温度成正比。 气体的温度越高,分子的平均平动动能越 大;分子的平均平动动能越大, 分子热运动的程度越剧烈。因此, 温度是表征大量分子热运 动剧烈程度的宏观物理量,是大量分子热运动的集体表现。对个别分子,说它有多少温度, 是没有意义的。 从这个式子中我们可以看出 2.温度的统计意义 该公式把宏观量温度和微观量的统计平均值 (分子的平均平动动能)联系起来,从而揭示 了温度的微观本质。 关于温度的几点说明 ,1 — 3^ _ 1 — 一一 亠 1?由一mv kT 得T =0, ; = — mv 0 ,气体分子的热运动将停止。然而事实上是绝 2 2 2 对零度是不可到达的(热力学第三定律),因而分子的运动是用不停息的。 2.气体分子的平均平动动能是非常小的。 T =300K, .;. =10 ② J T =108 K,I =10 45J 5 例1. 一容器内贮有氧气,压强为 P=1.013 X 10 Pa ,温度t=27 C ,求(1 )单位体积内的分 子数;(2)氧分子的质量;(3)分子的平均平动动能。 解:(1 )有 P=nkT 2.45 10 m kT 1.38 10寰 27 273 1.简单推导:理想气体的物态方程: PV RT Nm N A E RT 而 p ,n ^m/丄 mV 2 3 12 丿 3V 12 丿 n=N/V 为单位体积内的分子数,即分子数密度, k =RN A =1.38 X 10-23J K -1称为玻尔斯曼常量。 关键: 1) 把m 与M 用单个分子的 质 量表示; 2) 引入分子数密度; 3) 引入Boltzmann 常量 1.013 105

理想气体计算题

1.如图所示,一定质量的理想气体从状态 A 变化到 状态 B ,再由状态 B 变化到状态 C .已知状态 A 的温度为 300 K . (i )求气体在状态 B 的温度; (ii )由状态 B 变化到状态 C 的过程中,气体是吸热还是放热?简要说明理由. 2.一圆柱形汽缸,内部截面积为S ,其活塞可在汽缸内无摩擦地滑动,汽缸内密封有理想气体,外部大气压强为0p ,当汽缸卧放在水平面上时,活塞距缸底为0L ,如图所示.当汽缸竖直放置开口向上时,活塞距缸底为0L 5 4 .求活塞的质量 3.如图所示是一个右端开口圆筒形汽缸,活塞可以在汽缸内自由滑动.活塞将一定量的理想气体封闭在汽缸内,此时气体的温度为27℃.若给汽缸加热,使气体温度升高,让气体推动活塞从MN 缓慢地移到M ′N ′.已知大气压强p 0=1×105Pa ,求: ①当活塞到达M ′N ′后气体的温度; ②把活塞锁定在M ′N ′位置上,让气体的温度缓慢地变回到27℃,此时气体的压强是多少? 4.如图,一定质量的理想气体被不计质量的活塞封闭在可导热的气缸内,活塞距底部的高度为h ,可沿气缸无摩擦地滑动。取一小盒沙子缓慢地倒在活塞的上表面上,沙子倒完时,活塞下降了h /5。再取相同质量的一小盒沙子缓慢地倒在活塞的上表面上。外界大气的压强和温度始终保持不变,已知大气压为p 0,活塞横截面积为S ,重力加速度为g ,求:

(1)一小盒沙子的质量; (2)沙子再次倒完时活塞距气缸底部的高度。 5.一气缸质量为M=60kg(气缸的厚度忽略不计且透热性良好),开口向上放在水平面上,气缸中有横截面积为S=100cm2的光滑活塞,活塞质量m=10kg.气缸内封闭了一定质量的理想气体,此时气柱长度为L1=0.4 m.已知大气压为p o=1×105Pa.现用力缓慢向上拉动活塞,若使气缸能离开地面,气缸的高度至少是多少?(取重力加速度g=l0m/s2。) 6.如图所示,一导热性能良好、内壁光滑的气缸竖直放置,在距气缸底部l=36cm处有一与气缸固定连接的卡环,活塞与气缸底部之间封闭了一定质量的气体.当气体的温度T0=300K、大气压强p0=1.0×105Pa时,活塞与气缸底部之间的距离l0=30cm,不计活塞的质量和厚度.现对气缸加热,使活塞缓慢上升,求:(1)刚到卡环处时封闭气体的温度T1. (2)气体温度升高到T2=540K时的压强p2. 7.如图所示,将导热气缸开口向上放置在水平平台上,活塞质量m=10kg,横截面积S=50cm2,厚度d=1cm,气缸的内筒深度H=21cm,气缸质量M=20kg,大气压强为P0=1×105Pa,当温度为T1=300K时,气缸内活塞封闭的气柱长为L1=10cm。若将气缸缓慢倒过来开口向下放置在平台上,活塞下方的空气能通过平台上

理想气体

理想气体

1、选择题 题号:20911001 分值:3分 难度系数等级:1 理想气体中仅由温度决定其大小的物理量是 (A)气体的压强(B)气体的内能 (C)气体分子的平均平动动能(D)气体分子的平均速率 [ ] 答案:( C ) 题号:20911002 分值:3分 难度系数等级:1 温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能 ε的关系为 k (A)ε和 ε都相等(B)ε相等, k 而 ε不相等 k

(A )动能为kT i 2 (B )动能为RT i 2 (C )平均平动动能为 kT i 2 (D )平均平动动能为kT 2 3 [ ] 答案:( D ) 题号:20912005 分值:3分 难度系数等级:2 一氧气瓶的容积为V ,充了气未使用时的压 强为1p ,温度为1 T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2 p ,则此时瓶内氧气的温度2 T 为 (A )1212p p T (B )2 1 12p p T (C )12 1p p T (D )2 11 2p p T [ ]

答案:( A ) 题号:20912006 分值:3分 难度系数等级:2 一个能量为12 100.1?eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。如果宇宙射线粒 子的能量全部被氖气分子所吸收而变为分子热 运动能量,则氖气升高的温度为 (A )71093.1-?K (B )71028.1-?K (C )6 1070.7-? K (D )6 1050.5-?K [ ] 答案:( B ) 题号:20912007 分值:3分 难度系数等级:2 设想在理想气体内部取一小截面dA ,则两边 气体通过dA 互施压力。从分子运动论的观点来 看,这个压力施于dA 的压强为 (A )k n p ε32= (B )k n p ε34= (C )kT p 23=

理想气体状态方程练习题

选修3-3理想气体状态方程练习题 学号班级姓名 1.关于理想气体,下列说法正确的是( ) A.理想气体能严格遵守气体实验定律 B.实际气体在温度不太高、压强不太大的情况下,可看成理想气体 C.实际气体在温度不太低、压强不太大的情况下,可看成理想气体 D.所有的实际气体任何情况下,都可以看成理想气体 2.一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p1、V1、T1,在另一平衡状态下的压强、体积和温度分别为p2、V2、T2,下列关系正确的是( ) A.p1=p2,V1=2V2,T1=1 2 T2 B.p1=p2,V1= 1 2 V2,T1=2T2 C.p1=2p2,V1=2V2,T1=2T2 D.p1=2p2,V1=V2,T1=2T2 3.一定质量的理想气体,经历一膨胀过程,这一过程可以用下图上 的直线ABC来表示,在A、B、C三个状态上,气体的温度T A、T B、T C相比 较,大小关系为( ) A.T B=T A=T C B.T A>T B>T C C.T B>T A=T C D.T B

5 有两个容积相等的容器,里面盛有同种气体,用一段水平玻璃管把它们连接起来。在玻璃管的正中央有一段水银柱,当一个容器中气体的温度是0℃,另一个容器中气体的温度是20℃时,水银柱保持静止。如果使两容器中气体的温度都升高10℃,管中的水银柱会不会移动?如果移动的话,向哪个方向移动? 6一艘位于水面下200m 深处的潜水艇,艇上有一个容积为3 2m 的贮气筒,筒内贮有压缩空气,将筒内一部分空气压入水箱(水箱有排水孔和海水相连),排出海水3 10m ,此时筒内剩余气体的压强是95atm 。设在排水过程中温度不变,求贮气钢筒里原来压缩空气的压强。(计算时 可取Pa atm 5 101=,海水密度2 3 3 /10,/10s m g m kg ==ρ)

(完整版)理想气体状态方程练习题答案详解

i a h i 7.(2014 海南卷)(2)一竖直放置、缸壁光滑且导热的柱形气缸内盛有一定量的氮气,被活塞分隔成Ⅰ、Ⅱ两部分;达到平衡时,这两部分气体的体积相等,上部气体的压强为P Ⅰ0,如图(a )所示,若将气缸缓慢倒置,再次达到平衡时,上下两部分气体的体积之比为3:1,如图(b )所示。设外界温度不变,已知活塞面积为S ,重力加速度大小为g ,求活塞的质量。g S p m 5410 12.(2014年 全国卷2)(2) ( 10分)如图,两气缸A 、B 粗细均匀、等高且内壁光滑。其下部由体积可忽略的细管连通;A 的直径是B 的2倍,A 上端封闭,B 上端与大气连通;两气缸除A 顶部导热外,其余部分均绝热。两气缸中各有一厚度可忽略的绝热轻活塞a 、b ,活塞下方充由氮气,活塞a 上方充有氧气。当大气压为P 0,外界和气 缸内气体温度均为7℃且平衡时,活塞a 离气缸顶的距离是气缸高度的 1 4 ,活塞b 在气缸正中间。 (i )现通过电阻丝缓慢加热氮气,当活塞b 恰好升至顶部时,求氮气的温度; (ii )继续缓慢加热,使活塞 a 上升,当活塞a 上升的距离是气缸高度的 1 16 时,求氧气的压强。【答案】(i )320K (ii )4P 0/3 21.(2014上海卷)30.(10分)如图,一端封闭、粗细均匀的 U 形玻璃管开口向上竖直放置,管内用水银将一段气 体封闭在管中。当温度为280K 时,被封闭的气柱长L =22cm ,两边水银柱高度差h =16cm ,大气压强p o =76cmHg 。 (1)为使左端水银面下降3cm ,封闭气体温度应变为多少? (2)封闭气体的温度重新回到280K 后,为使封闭气柱长度变为20cm,需向开口端注入的水银柱长度为多少? 【答案】(1)350K ;(2)10cm 2013海南卷(2)(8分)如图,一带有活塞的气缸通过底部的水平细管与一个上端开口的竖直管相连,气缸与竖直管的横截面面积之比为3:1,初始时,该装置的底部盛有水银;活塞与水银面之间有一定量的气体,气柱高度为l (以cm 为单位);竖直管内的水银面比气缸内的水银面高出3l /8。现使活塞缓慢向上移动11l /32,这时气缸和竖直管内的水银面位于同一水平面上,求初始时气缸内气体的压强(以cmHg 为单位)

209-理想气体的压强和温度

绍兴文理学院 学校 209 条目的4类题型式样及交稿 式样(统计规律、理想气体的压强和温度) 1、选择题 题号:20911001 分值:3分 难度系数等级:1 理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动能 (D )气体分子的平均速率 [ ] 答案:( C ) 题号:20911002 分值:3分 难度系数等级:1 温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的关系为 (A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而 ε不相等 (D )ε和k ε都不相等 [ ] 答案:( C ) 题号:20911003 分值:3分 难度系数等级:1 一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为21 1021.6-?J ,则氧气的 温度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ]

答案:( D ) 题号:20911004 分值:3分 难度系数等级:1 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的 (A )动能为 kT i 2 (B )动能为RT i 2 (C )平均平动动能为kT i 2 (D )平均平动动能为kT 2 3 [ ] 答案:( D ) 题号:20912005 分值:3分 难度系数等级:2 一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1212p p T (B )2112p p T (C )1 21p p T (D )2112p p T [ ] 答案:( A ) 题号:20912006 分值:3分 难度系数等级:2 一个能量为12 100.1?eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。如果宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为 (A )7 1093.1-?K (B )7 1028.1-?K (C )6 1070.7-? K (D )6 1050.5-?K [ ] 答案:( B )

理想气体和真实气体

第二节理想气体和真实气体 在空分装置中,其工质为气态物质,分子在不断地作热运动:移动、转动和振动,分子的数量是巨大的,运动是不规则的。因此,气体的性质是很复杂,很难找出其运动规律。为了便于分析,提出了理想气体这一概念。 凡能满足以下三个条件的气体称为理想气体: 1. 分子本身的体积忽略不计; 2. 分子相互没有作用力; 3. 分子间不发生化学反应。 理想气体虽然是一种实际上不存在的假想气体,但是在上述假设条件下,气体分子运动的规律就可大大简化,能得出简单的数学关系式。为区别理想气体把自然界中的实际气体叫做真实气体。真实气体 在通常压力下,大多数符合理想气体的假设条件。例如O 2.N 2 .H 2 等气体均符合上述条件。 1.2.1 气体的基本状态参数 描写物质的每一聚集状态下的特性的物理量,称为物质的状态参数。物质的每一状态都有确定数值的状态参数与其对应,只要有一个状态参数发生变化,就表示物质状态在改变。描写气体状态的基本参数是温度、压强和比容。 1.温度,它表示物体冷热的程度。从分子运动论的观点看,温度是分子热运动平均动能的量度,温度愈高,分子的热运动平均动能就愈大,为了具体地确定分子运动的数值,在工程上常用的测温标尺有摄氏温标和热力学温标。 摄氏温标规定在一个标准大气压下,冰的熔点为0度,水的沸点为100度,将它分成100等分,每一等分1度。用摄氏温度表示的温度叫做摄氏温度,量的符号t,单位名称摄氏度,单位符号℃,低于冰点温度,用负值表示,例如在6at下,空气液化温度为-173℃。 实践证明,-273℃是实际能够接近而不可能达到的最低温度。如果-273℃作为温度的起算点,就不为出现负温度值,把-273℃叫做绝对零度。从绝对零度起算,温度测度与摄氏温度相同,这种计算温度的标尺叫热力学温标,也称绝对温标。热力学温度量的符号T,单位名称开尔文,单位符号K。 两种温标的关糸是; T=273.15+(K) ,通常简化为T=273+t(K) t=T-273.15(℃)通常简化为t=T-273(℃) 例如,在标准大气压下,冰的熔点为0℃即273Κ。 测量温度的仪器有水银温度计、铂电阻温度计、热电偶温度计等。仪表指示的温度常用℃,而工程计算中常用K,为此应熟悉这两种温标的换算。由于摄氏温度和绝对温度所示的温标每一个刻度值大小一样,不论是采用那种温标,它们的数值是相同的。 2. 压强(压力),分子运动论把气体的压力看作是气体分子撞击容器壁的宏观表现。物体单位面积上所承受的垂直作用力称为压强,使用习惯称为“压力”。

209-统计规律、理想气体的压强和温度

209统计规律、理想气体的压强和温度 1、选择题 1,理想气体中仅由温度决定其大小的物理量是 (A )气体的压强 (B )气体的内能 (C )气体分子的平均平动动能 (D )气体分子的平均速率 [ ] 2,温度、压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε的关系为 (A )ε和k ε都相等 (B )ε相等,而k ε不相等 (C )k ε相等,而 ε不相等 (D )ε和k ε都不相等 [ ] 3,一瓶氢气和一瓶氧气温度相同,若氢气分子的平均平动动能为211021.6-?J ,则氧气的温度为 (A )100 K (B )200 K (C )273 K (D )300 K [ ] 4,理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的 (A )动能为 kT i 2 (B )动能为 RT i 2 (C )平均平动动能为kT i 2 (D )平均平动动能为 kT 23 [ ] 5,一氧气瓶的容积为V ,充了气未使用时的压强为1p ,温度为1T ,使用后瓶内氧气的质量减少为原来的一半,其压强降为2p ,则此时瓶内氧气的温度2T 为 (A ) 1 2 12p p T (B ) 2 112p p T (C ) 1 21p p T (D ) 2 112p p T [ ] 6,一个能量为12 10 0.1?eV 宇宙射线粒子射入氖管中,氖管中有氖气0.1 mol 。如果 宇宙射线粒子的能量全部被氖气分子所吸收而变为分子热运动能量,则氖气升高的温度为 (A )7 10 93.1-?K (B )7 10 28.1-?K (C )6 10 70.7-? K (D )6 10 50.5-?K [ ] 7,设想在理想气体内部取一小截面dA ,则两边气体通过dA 互施压力。从分子运动论的观点来看,这个压力施于dA 的压强为

相关文档
最新文档