有关微乳液体系的配方设计及应用

有关微乳液体系的配方设计及应用
有关微乳液体系的配方设计及应用

农药微乳剂的研究进展.

农药微乳剂型的研究进展 (课程论文 近年来国家加大对农业发展的重视,使得防治农业病、虫、草的重要性尤为突出。农药用量增加,在提高作物产量的同时也给环境带来了负面影响。为适应农业持续发展的要求,微乳剂将成为农药的主导剂型,其对环境污染小,易于操作使用,防治效率高,药效稳定等优点,被人们所接受和认识。 微乳剂是近年来很受欢迎的农药新剂型。农药微乳剂是借助表面活性剂的增溶作用将液体或固体原药均匀分散在水中形成的一种水包油型微乳液。该剂型是指在表面活性剂的增溶作用下,使不溶于或微溶于水的有机化学农药有效成分高度分散在水介质中,自发地形成“胶束”。胶束的表面有一层表面活性剂分子,使之形成稳定的、各向同性的、透明或半透明的均相液体分散体系。由于它具有稳定性、增溶、高的传递效率、安全性、促进向动植物组织内部渗透等特点,因此,较之其他类型的农药有许多优越性。 与水乳剂比较,都是将液体或半固体农药成分分散在水中制得,是一种经时稳定的分散体系。微乳剂与水乳剂不同之处在于分散在水中的有效成分的粒径不同,前者粒子超微细,为0.01~0.1 m,外观透明或接近透明,后者为0.1~50 m,外观为乳白色。配制微乳剂所需乳化剂的用量通常比配制乳油或水乳剂的用量大,成本高。 与乳油相比,微乳剂基本不用或少用有机溶剂。乳油因大量使用甲苯、二甲苯等有机溶剂对环境的污染而受到限制。微乳剂因基本不用或较少使用有机溶剂,贮运安全,无易燃易爆之虑,使用后也不存在环境污染,所以被认为是与环境相容性较好的一种“绿色农药制剂”。而且,田间药效比乳油高5%~10%,刺激性、臭味减轻;贮运稳定性好;没有沉淀、结块以及粘度增大、流动性差的缺点,对作物的安全性也较高,是取代乳油的最佳剂型。 与水剂、可溶性液剂相比,微乳剂适用于很多水溶性低的农药有效成分,水剂只适用于很少一些水溶性高的有效成分。而水溶性高的有效成分更合理的剂型是水溶

Pickering乳液的制备及应用研究

西安科技大学 硕士学位论文Pickering乳液的制备及应用研究 姓名:刘登卫 申请学位级别:硕士 专业:化学工艺 指导教师:贺拥军 2011

论文题目:Pickering乳液的制备及应用研究 专 业:化学工艺 硕 士 生:刘登卫(签名) 指导教师:贺拥军(签名) 摘 要 Pickering乳液是以固体粒子替代传统化学乳化剂制得的热力学和动力学均稳定的分散体系。Pickering乳液由于其成本低、无毒和环保等特性,在食品、医药和化妆品等领域具有重要的应用价值。本文以固体粒子为乳化剂制备了稳定的Pickering乳液,考察了影响Pickering乳液形成和稳定性的因素,并研究了Pickering乳液作为分离介质的应用性能。 采用St?ber法制备了SiO2粒子,用直接沉淀法制备了ZnO粒子和MgO粒子,利用晶相生长逐层包覆的方法制备了SiO2/ZnO复合粒子,讨论了反应物浓度、滴加方式和滴加速度等因素对固体粒子形貌和分散性的影响。SEM测试表明,SiO2粒子分散性良好,平均粒径约为300 nm;ZnO粒子呈针状结构,平均直径为20 nm;ZnO在SiO2表面分布不均,改变锌盐溶液的浓度和滴加速度,可以得到ZnO组分含量不同的SiO2/ZnO复合粒子;MgO粒子有球形和立方晶形结构,平均粒径约为100 nm。FTIR检测表明,SiO2、ZnO、SiO2/ZnO和MgO粒子表面均有大量的羟基。XRD分析证明,MgO结晶度较高。 以SiO2、ZnO、SiO2/ZnO和MgO粒子为乳化剂,制备了O/W型Pickering乳液,考察了固体粒子种类、复合粒子组分含量、油水体积比、连续相中电解质和表面活性剂等因素对乳液稳定性的影响。以三氯甲烷为油相时,基于SiO2和ZnO制备的乳液很不稳定,而SiO2/ZnO和MgO均能得到稳定的乳液,且SiO2/ZnO中ZnO组分含量越高,乳液滴越小。在MgO稳定的三氯甲烷/水乳液中,增加油水体积比,乳液稳定性下降,但没有发生相转变。当连续相中电解质浓度增加时,乳液稳定性下降,且Na2CO3比NaCl 的作用强。给MgO稳定的三氯甲烷/水乳液中加入表面活性剂,乳液滴变小且更稳定;给表面活性剂稳定的三氯甲烷/水乳液中加入固体粒子,乳液滴平均直径增大而稳定性也增加。 以SiO2/ZnO稳定的三氯甲烷-苯乙烯/水乳液为介质,进行了静态和动态分离甲基紫的研究。在静态分离下,Pickering乳液在30 min内就趋于分离饱和,温度对分离效果的影响不大,而增加乳液量和增大甲基紫水溶液浓度可以提高乳液分离能力,分离前后乳液滴的形貌变化不大。在动态分离下,增加Pickering乳液量、降低甲基紫溶液进水

2020年橡胶技术网 - 橡胶配方大全参照模板

橡胶配方大全 橡胶配方设计的原则 橡胶配方设计的原则可以概况如下: 1、保证硫化胶具有指定的技术性能,使产品优质; 2、在胶料和产品制造过程中加工工艺性能良好,使产品达到高产; 3、成本低、价格便宜; 4、所用的生胶、聚合物和各种原材料容易得到; 5、劳动生产率高,在加工制造过程中能耗少; 6、符合环境保护及卫生要求; 任何一个橡胶配方都不可能在所有性能指标上达到全优。在许多情况下,配方设计应遵循如下设计原则: ①在不降低质量的情况下,降低胶料的成本; ②在不提高胶料成本的情况下,提高产品质量。要使橡胶制品的性能、成本和加工工艺可行性三方面取得最佳的综合平衡。用最少物质消耗、最短时间、最小工作量,通过科学的配方设计方法,掌握原材料配合的内在规律,设计出实用配方。 橡胶配方的表示形式 天然橡胶(NR)基础配方

注:硫化时间为140℃×10min,20min,40min,80min。NBS为美国国家标准局编写 丁苯橡胶(SBR)基础配方 Phr指每百质量份橡胶的分量数 注:硫化时间为145℃×25min,35min,50min 氯丁橡胶(CR)基础配方 注:硫化时间为150℃×15min,30min,60min 丁基橡胶(IIR)基础配方

注:硫化时间为150℃×20min , 40min ,80min ;150℃×25min ,50min ,100min 丁腈橡胶(NBR )基础配方 注:硫化时间为150℃×10min , 20min ,80min 顺丁橡胶(BR)基础配方 注:硫化时间为145℃×25min ,35min ,50min 异戊橡胶(IR )基础配方

微乳液法制备纳米材料

微乳液法制备纳米材料 仇乐乐 摘要:本文介绍了使用微乳液法制备纳米材料的一些基本理论和应用。从微乳液的定义、形成和稳定性理论方面简单的介绍了微乳液。又从微乳液制备纳米材料的原理和制备出的纳米粒子的特点方面介绍了微乳液法的一些基本知识。接着又着重讲述了从微乳液法制备纳米材料的影响因素和应用。最后对微乳液法制备纳米材料做了总结和展望。 关键词:微乳液,纳米材料,影响因素,应用 一、引言 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等方面得到了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。实验装置简单,操作容易,已引起人们的重视。 二、微乳液内超细颗粒的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合,由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 三、微乳液的形成和稳定性理论 描述微乳液形成的一个简单形式是把分散相部分考虑成很小的液滴构型熵发生变化,ΔS conf 可近似的表示为: 其中n 为分散相的液滴数,k B 为Boltzmann 常数,φ是分散相的体积分数。缔合自由能的改 变可表示为增加的新界面面积所需的自由能ΔA γ12,和构型熵之和: 其中,ΔA 是界面面积A 的改变量 (半径为r 的液滴面积为4πr 2 ),γ12 是在温度T (Kelvin)的1 相和2相(如油相和水相)之间界面张力。 分散时小液滴数增加且ΔS conf 是正值,如果表面活性

2020年(塑料橡胶材料)橡胶配方设计与性能的关系

(塑料橡胶材料)橡胶配方设计与性能的关系

橡胶配方设计和性能的关系 一、橡胶配方设计和硫化橡胶物理性能的关系 (一)拉伸强度 拉伸强度表征硫化橡胶能够抵抗拉伸破坏的极限能力。虽然绝大多数橡胶制品在使用条件下,不会发生比原来长度大几倍的形变,但许多橡胶制品的实际使用寿命和拉伸强度有较好的相关性。 研究高聚物断裂强度的结果表明,大分子的主价健、分子间的作用力(次价健)以及大分子链的柔性、松弛过程等是决定高聚物拉伸强度的内在因素。 下面从各个配合体系来讨论提高拉伸强度的方法。 1.橡胶结构和拉伸强度的关系 相对分子质量为(3.0~3.5)×105的生胶,对保证较高的拉伸强度有利。 主链上有极性取代基时,会使分子间的作用力增加,拉伸强度也随之提高。例如丁腈橡胶随丙烯腈含量增加,拉伸强度随之增大。 随结晶度提高,分子排列会更加紧密有序,使孔隙和微观缺陷减少,分子间作用力增强,大分子链段运动较为困难,从而使拉伸强度提高。橡胶分子链取向后,和分子链平行方向的拉伸强度增加。 2.硫化体系和拉伸强度的关系 欲获得较高的拉伸强度必须使交联密度适度,即交联剂的用量要适宜。 交联键类型和硫化橡胶拉伸强度的关系,按下列顺序递减:离子键>多硫键>双硫键>单硫键>碳-碳键。拉伸强度随交联键键能增加而减小,因为键能较小的弱键,在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网链能均匀地承受较大的应力。 3.补强填充体系和拉伸强度的关系 补强剂的最佳用量和补强剂的性质、胶种以及配方中的其他组分有关:例如炭黑的粒径

越小,表面活性越大,达到最大拉伸强度时的用量趋于减少;软质橡胶的炭黑用量在40~60份时,硫化胶的拉伸强度较好。 4.增塑体系和拉伸强度的关系 总地来说,软化剂用量超过5份时,就会使硫化胶的拉伸强度降低。对非极性的不饱和橡胶(如NR、IR、SBR、BR),芳烃油对其硫化胶的拉伸强度影响较小;石蜡油对它则有不良的影响;环烷油的影响介于俩者之间。对不饱和度很低的非极性橡胶如EPDM、IIR,最好使用不饱和度低的石蜡油和环烷油。对极性不饱和橡胶(如NBR,CR),最好采用酯类和芳烃油软化剂。 为提高硫化胶的拉伸强度,选用古马隆树脂、苯乙烯-茚树脂、高分子低聚物以及高黏度的油更有利壹些。 5.提高硫化胶拉伸强度的其他方法 (1)橡胶和某些树脂共混改性例如NR/PE共混、NBR/PVC共混、EPDM/PP共混等均可提高共混胶的拉伸强度。 (2)橡胶的化学改性通过改性剂在橡胶分子之间或橡胶和填料之间生成化学键和吸附键,以提高硫化胶的拉伸强度。 (3)填料表面改性使用表面活性、偶联剂对填料表面进行处理,以改善填料和橡胶大分子间的界面亲和力,不仅有助于填料的分散,而且能够改善硫化胶的力学性能。 (二)定伸应力和硬度 定伸应力和硬度都是表征硫化橡胶刚度的重要指标,俩者均表征硫化胶产生壹定形变所需要的力。定伸应力和较大的拉伸形变有关,而硬度和较小的压缩形变有关。 1.橡胶分子结构和定伸应力的关系 橡胶分子量越大,游离末端越少,有效链数越多,定伸应力也越大。

微乳液法制备纳米材料的研究进展

微乳液法制备纳米材料的研究进展 201200110038 李吉相 摘要:综述了微乳液法制备纳米材料的基本原理和影响因索,回顾了微乳液在金属、金属卤化物、金属硫化物、金属碳酸盐、金属和非金属氧化物等纳米微粒制备中的应用,展望了这一领域的发展方向。 关键词:微乳液;纳米微粒;制备 纳米材料是指由极细晶粒组成,特征纬度尺寸在纳米数量级(~100nm)的固体材料【1】。其制备方法多种多样【2】,一般来说,制备较大量的纳米晶固体的方法有三种,这些方法简单而又经济,且都保证了粒子的小尺寸和窄的分布。它们是:1) 用脉冲电子沉积法制备金属或合金的纳米晶: 2) 在微乳液中运用沉淀法制备氟化物的纳米晶,如在反相(w /O)微乳液中合成NH.M nF。; 3) 在微乳液中运用溶胶一凝胶水解法制得金属氧化物的纳米晶,其中后两种方法都使用了微乳液制备法。这也说明微乳液法在纳米材料制备科学中占有极为重要的地位。在合成时使用微乳液法,在纳米微粒的表面有一层表面活性剂膜,故在制作电镜样品的抽真空、蒸发溶剂的过程中,纳米微粒保持分散状态而不发生凝聚。微乳液通常是由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质水溶液)组成的透明的、各相同性的热力学稳定体系【3】。微乳液中,微小的“水池”被表面活性剂和助表面活性剂所组成的单分子层界面所包围而形成微乳颗粒,其大小可控制在几十至几百个之间。微小的“水池,尺度小且彼此分离,因而构不成水相【4】,通常称之为“准相”。微乳液是热力学稳定体系,其水核是一个“微型反应器”,这个“微型反应器”拥有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。微乳液的水核尺寸是由增溶水的量决定的,随增溶水量的增加而增大。因此,在水核内进行化学反应制备超细颗粒时,由于反应物被限制在水核内,最终得到的颗粒粒径将受到水核大小的控制。 微乳液用来作为合成纳米微粒的介质,是因为它能提供一个特定的水核,水溶性反应物在水核中发生化学反应可以得到所要制备的纳米微粒。影响纳米微粒制备的因素主要有以下三方面: (1)微乳液组成的影响 纳米微粒的粒径与微乳液的水核半径有关,水核半径是由W一[HzO]/E表面活性剂]决定的。微乳液组成的变化将导致水核的增大或减小,水核的大小直接决定超细颗粒的尺寸。一般说来,超细颗粒的直径要比水核直径稍大,这可能是由于胶团间快速的物质交换而导致不同水核内沉淀物的聚集所致。 (2)反应物浓度的影响 适当调节反应物的浓度,可使制取粒子的大小受到控制。Pileni等在AOT/异辛烷/H O 反胶团体系中制备CdS粒子时,发现超细颗粒的直径受X 一[cd ]/[s 一]的影响,当反应物之一过量时,生成较小的CdS粒子。这是由于当反应物之一过剩时,结晶过程比等量反应要快,生成的超细颗粒粒径也就偏小。 (3)微乳液界面膜的影响 选择合适的表面活性剂是进行超细颗粒合成的第一步。为了保证形成的微乳液颗粒在反应过程中不发生进一步聚集,选择的表面活性剂成膜性能要合适,否则在微乳液颗粒碰撞时表面活性剂所形成的界面膜易被打开,导致不同水核内的固体核或超细颗粒之间的物质交换,这样就难

水乳剂、微乳剂、可溶性液剂和乳油的基本配方及比较

水乳剂、微乳剂、可溶性液剂和乳油的基本配方及比较 标签:基本配方分类:剂型研究2006-09-26 19:19 水乳剂、微乳剂、可溶性液剂和乳油的基本配方及比较 EW 水乳剂 ME 微乳剂 SL可溶性液剂EC乳油 农药原药√√√√ 溶剂油(或甲苯、二甲苯)* ——————√ 极性溶剂————√—— 增溶剂——√√—— 乳化剂√√√√ 微观结构乳化微粒溶胀的胶束分子溶液遇水呈乳化微粒 外观一般牛奶状 透明或 半透明液状 透明液状透明液态 对环境的影响安全较安全严重严重*注:对固体农药在制备ME、EW前需用少量溶剂油配制成药液。 异氟尔酮 1.物质的理化常数 国标编号 ---- CAS号: 78-59-1 中文名称:异佛尔酮 英文名称: Isophorone; 学名: 3,5,5-Trimethyl-2-cyclohexen-1-one 别名:1,1,3-三甲基环己烯酮

分子式: C9H14O;(H3C)2CCH2COCHCCH3CH2 外观与性状:水白至淡黄色液体,带有薄荷香味 分子量: 138.23 蒸汽压: 0.133kPa/38℃ 闪点:84℃ 熔点: -8.1℃ 沸点:215.2℃ 溶解性:微溶于水,易溶于多数有机溶剂 密度:相对密度(水=1)0.9230;相对密度(空气=1)4.77 稳定性:稳定 危险标记: 主要用途:用作油类、树胶、树脂、漆、硝基纤维的溶剂及化学合成中间体 2.对环境的影响 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:对眼睛、粘膜和皮肤有刺激作用。人接触后有烦躁感觉。本品沸点较高,在生产实际中未见严重中毒或慢性中毒报告。 二、毒理学资料及环境行为 毒性:属低毒类。对粘膜、皮肤刺激性强。 急性毒性:LD502330mg/kg(大鼠经口);2000mg/kg(小鼠经口); 1500mg/kg(兔经皮);人吸入228mg/m3×1小时眼鼻粘膜受损 危险特性:与空气混合能形成爆炸性混合物,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。若遇高热,容器内压增大,有开裂和爆炸的危险。 燃烧(分解)产物:一氧化碳、二氧化碳。 3.现场应急监测方法 4.实验室监测方法

热熔胶配方共混的配方设计

热熔胶配方共混的配方设计 热熔胶是由主体聚合物、增粘树脂、黏度调节剂、填料及抗氧剂等几部分构成的。作为热熔胶主成分的化合物应满足以下要求:加热时能很快熔融;长时间或局部加热不会发生氧化、分解或变质;其熔融黏度的变化应有规律可循;冷却后粘接处应保持足够的柔软性和粘接强度。其中以EV A(乙烯- 醋酸乙烯酯共聚物)为主成分的热熔胶目前市场占有率最大(约50%),其次是以热塑性弹性体中的SBS(苯乙烯- 丁二烯- 苯乙烯嵌段共聚物)、SIS( 苯乙烯- 异戊二烯- 苯乙烯嵌段共聚物)、SEBS(苯乙烯- 乙烯- 丁烯- 苯乙烯嵌段共聚物)、SEPS(苯乙烯- 乙烯- 丙烯- 苯乙嵌段共聚物)等为主成分的热熔胶,约占市场份额的30%。另外还有以热塑性聚酯、聚酰胺、聚氨酯为主成分的热熔胶,它们所占市场比例较小。 近年来热熔胶的发展动向主要是拓宽其应用范围,提高附加值。如开发反应型热熔胶、水溶性热熔胶、溶剂型热熔胶、水敏性热熔胶、可生物降解热熔胶及热熔压敏胶等以满足不同的市场需求。传统的聚合物主体树脂已无法满足这些要求,虽然加入各种助剂可以改善某方面的性能,但同时也会削弱其他性能,所以对基体树脂进行改性就显得尤为必要。由于热熔胶的生产就是一个高分子聚合物调配共混的过程,仅以大量实验为基础获得的配方不一定就是最佳配方,还会耗费大量材料和时间,影响开发进度。因此将聚合物的共混理论应用于热熔胶目前大多数热熔胶的制备是应用物理方法进行熔体共混,即将聚合物加热到其黏流温度以上分解温度以下,使其呈良好的熔融流动状态,通过外力场(主要是剪切力)作用实现共混。但受共混组分各自加工特性限制,如果各组分间黏度、加工温度等相差过大,则难以达到预期效果。现在许多新型热熔胶中普遍采用的是化学共混方法,即在共混过程中使组分间发生化学反应,或者利用组分间化学反应来控制聚合物分散程度,如反应性共混、互穿聚合物网络(IPN)等。 反应性共混是指在共混过程中加入活性单体、催化剂(引发剂)进行原位复合,在共混物组分中形成接枝或嵌段,从而改善其与某些材料之间的亲和性。例如在聚乙烯中引入极性的马来酸酐单进行接枝共聚,可明显改善其粘接性能。 文献报道未接枝聚乙烯热熔胶胶接碳钢的剪切强度为0. 2 MPa,接枝率0. 06%的南京塑泰聚乙烯热熔胶胶接碳钢时,其剪切强度为1. 24 MPa,当接枝

硅丙乳液的合成及应用

硅-丙乳液的合成及应用 摘要 随着社会的不断发展,建筑行业对乳液的性能要求不断提高,合成一种高性能的外墙乳液已成为研究热点。丙烯酸乳液原料来源丰富、成膜性好、粘结性强、强度高,用有机硅改性的丙烯酸乳液,不仅可以解决丙烯酸乳液成膜时热粘冷脆的不足,并且形成的Si-0-Si为大分子的主链,具有无机化合物和有机聚合物优良性能,如耐候性、疏水性、透气性、抗沾污性和耐磨性等。通过有机硅改性丙烯酸乳液,可得到兼有有机硅和丙烯酸的高性能乳液,硅-丙高性能乳胶漆具有优异的耐候性、耐水性、耐碱性、耐沾污性和耐擦洗性等性能。本文综述了乳液合成的进展、特点、机理,并阐述了硅-丙乳液合成方法及应用。 关键词:改性;硅-丙乳液;合成;应用

The Synthesis and Application of Silicone - Acrylic Emulsion Abstract With the development of society, the requirement of emulsion properties was boosting, it has been the focus to compound high-performance exterior emulsion. Acrylic emulsion possesses advantages of much material, good film-forming, strong bonding and high strength. Acrylic emulsion modified by organic silicone can not only solve the shortages of thermo-viscoelasticity and cold brittleness, but also form the Si-O-Si as macromolecular main chain, which has the excellent properties of inorganic compounds and organic polymer, such as weather resistance, hydrophobic, permeability, contamination resistance and wearability. Acrylic emulsion modified by organic silicone has high performance both silicone and acrylic emulsion. Silicone-acrylic emulsion paint has excellent property of weatherability, water resistance, alkali resistance, stain resistance and scrub resistance etc. The mechanism, advantage and study progress of preparing emulsions were reviewed and synthesis method and application of silicone - acrylic emulsion were expounded.

胶配方的设计与运用

胶配方的设计与运用 1. 设计配方应在多个方面综合考滤,1.确保指定的物性。所谓物性大体是在如下几个方面拉伸强度、撕裂强度、定伸应力、硬度、磨耗、疲劳与疲劳破坏、回弹力、扯断伸长率等。 2.胶料加工过程中,性能优良,确保产品高产、省料。 3.成本低价格便宜。 4.所用的原材料很易采购到。 5.生产力高,加工方便,制造过程中能耗少。 6.符合环保及卫生安全要求。 一,.对各种橡胶物性要有充分地了解。 天然胶物性; A. 天然橡胶加热后慢慢软化,到130—140度则完全软化至熔融状态,温度降低至零度时渐变硬,到-70度变成脆性物质。天然胶的回弹率在0-100度内可达50-85%升至130度时仍保持正常的使用性能。伸长率最高可达1000%。天然橡胶是一种结晶性橡胶,自补强性大,具有非常好的机械性能。纯胶的拉伸强度达17—25MPA,补强硫化胶达25—35MPA,曲绕达到20万次以上,这是因为天然胶,滞后损失小,生热低的结果。天橡胶具有较好的汽密性。天然橡胶的老化性能差,不加老防剂的橡胶,在强烈的阳光下曝晒4—7天后即出现龟裂现象。与一定浓度的臭氧在几秒钟内即发生裂口。 天然胶耐碱性好,但不耐强酸。耐极性溶剂,故不耐非极性熔剂,耐油性差。

天然胶的配合,普通硫化体系硫黄用量2.0-2.4 促进剂用量1.2-0.5。半有效硫化体系硫黄1.0-1.7 促进剂2.5-1.2,有效硫化体系硫黄0.4-0.8,促进剂5.0-2.0。普通硫黄体系多硫交联健多,而单硫健少。多硫健能低,稳定性差,耐热、耐老化性差。但综合物理机械性能好。普通硫黄硫化体系,硫黄加多时易喷硫,可用不溶性硫黄替代,不容性硫黄可改善硫化胶料半成品的物理机械性能,解决高温下出现的橡胶返原因题。可以改善拉伸、定伸应力、及弹性,胎面胶使用还可以改善磨耗。但有一个缺点,硫速快易焦烧。 有效硫化体系不发生硫化返原现象,一般用于制造要求低蠕变率、高弹性、生热低的优良制品。硫黄加量一般为0.6—0.7份,氧化锌为3.5-5份,载硫体一般采用TMTD及N,N-二硫化二二吗啡啉硫黄给于体。有效硫化体系的老化性能也大大地得到了改善。 半有效硫化体系,有着硫黄硫化体系的机械物理性能,有效硫化体系的低蠕变、弹性、生热低等物性。硫化返原现象在两者之间。可使用秋兰姆类,但有易喷霜、焦烧等缺点。常用硫黄给予体DTDM二硫代二吗啡啉,在硫化中DTDM可完全替代硫黄时,形成有效硫化体系。它的优点是焦烧时间长、不喷霜不污染,硫化胶的物理机械性能良好。在全天然胶配方中,胶料的耐磨性、动态性能、耐老化性、抗返原性。和曲绕性能都明显提高。DTDM在天然胶中的用量是0.5份相当于1份硫黄。在70/30天然/顺丁中相当于0.6-0.8份硫黄。50/50时相当于0.5份硫黄。DTDM的用量不宜超过1份。

实验方案微乳液法制备 MYb3+,Er3+

微乳液法制备 M:Yb3+,Er3+ (M= BaF2,LaF3,YF3) (BaF2为立方相,其折射率为 1.47) 实验试剂 十六烷基三甲基溴化铵(A.R)中国医药上海化学试剂公司;氟化铵(A.R)中国医药上海化学试剂公司;硝酸钡(A.R)北京红星化工厂生产; 正丁醇(A.R)天津市科密欧化学试剂开发中心;正辛烷(A.R)天津市科密欧化学试剂开发中心;二氯甲烷(A.R)天津市科密欧化学试剂开发中心;甲醇(A.R)长春市试剂厂; La(NO3)3自制,浓度为 0.5mol/L; Yb(NO3)3自制,浓度为 0.5mol/L; Er(NO3)3自制,浓度为 0.5mol/L;

实验方法 1、按质量比为ω(CTAB)=19.04%, ω(正丁醇)=15.24%, ω(正辛烷)=51.40%的比例各取等量有机物两份,将三种有机化合物混合,得到Ⅰ、Ⅱ两体系 2、室温下,进行磁力搅拌 3、按化学计量比配置 C(NH4F)=0.5mol/L、 C(Ba(NO3)2)=0.5mol/L 阴阳离子溶液各 7.8m L(其ω(盐)=14.29%) 4、向阳离子溶液中滴加物质的量之比为1:1 的Yb(NO3)3和Er(NO3)3溶液。 5、待Ⅰ、Ⅱ两体系混合均匀,在搅拌过程中向其中一份逐滴加入阴离子(NH4F),另一份中加入阳离子(Yb(NO3)3和 Er(NO3)3组成的混合液)。 6、Ⅰ、Ⅱ两体系继续搅拌 50min。 7、将ⅠⅡ两体系迅速混合,室温下快速搅拌,反应 70min,反应所得产物以 15000rpm 离心 15min 8、产物再以甲醇和二氯甲烷混合液(体积比 1:1)清洗、离心 5 次,以去除纳米粒子表面残余的有机相和表面活性剂 9、在红外灯下干燥,然后用玛瑙研钵研磨, 10、于 450℃下氮气保护灼烧 30min 以去除残余的水分和其他有机杂质,最后得到白色粉末状样品 11、以同样的方法,Yb3+和 Er3+比例为 3:1,制备 YF3: Yb3+,Er3+纳米粒子。

实验一 微乳剂的配制及质量检测

实验一微乳剂的配制及质量检测 一、实验目的 掌握微乳剂的室内配制及质量检测的方法。 二、实验原理 农药原药用合适的溶剂溶解,加入一定量的乳化剂,混合均匀后,加入一定量的水,即为微乳剂。 三、主要仪器及试材 托盘天平,玻璃棒,10 mL量筒,100 mL具塞量筒,250 mL烧杯,5 mL 移液管,洗耳球,电热恒温水浴锅,恒温箱,烘箱、研钵,杀虫剂原药(阿维菌素),标准硬水,冰,乳化剂,环己酮,甲醇,N,N-二甲基甲酰胺。 四、实验方法与步骤 4.1微乳剂的配制 室温下,将0.2 g阿维菌素用4 g环己酮溶解,加入表面活性剂600-2# 1 g,500#0.4 g,再混合均匀,得到透明澄清溶液,边搅拌边滴加水至20 g,使体系逐渐由油包水相转化为水包油相,得到微乳剂。 4.2微乳剂的质量检测 4.2.1 乳液稳定性 用342 mg/L标准硬水,将0.5 mL微乳剂样品稀释200倍于30 ℃(室温)下静置30 min,保持透明状态,上无浮油,下无沉淀,并能与水以任何比例混合,视为合格。 4.2.2透明温度范围 由于非离子表面活性剂对温度的敏感性很大,因而微乳剂只能在一定温度范围内保持稳定透明。为使微乳剂产品有一定适用性,在配方研究中,必须利用各种方法扩大这个温度范围,一般要求0-40 ℃。保持透明不变,好的可达到-5-60 ℃。 取10 mL样品于25 mL试管中,用搅拌捧上下搅动,于冰浴上渐渐降温至出现浑浊或冻结为止,记录此转折点的温度,作为透明温度下限T1,再将试管置于水浴中,以2 ℃/min的速度慢慢加温,记录出现浑浊时温度T2,即为温度上限,则透明温度范围为T1-T2。

聚氨酯胶的配方设计

聚氨酯胶的配方设计 胶粘剂的设计是以获得最终使用性能为目的,对聚氨酯胶粘剂进行配方设计,要考虑到所制成的胶粘剂的施工性(可操作性),固化条件及粘接强度,耐热性,耐化学品性,耐久性等性能要求。 1.聚氨酯分子设计——结构与性能聚氨酯由于其原料品种及组成的多样性,因而可合成各种各样性能的高分子材料,例如从其本体材料(即不含溶剂)的外观性严主讲,可得到由柔软至坚硬的弹性体,泡沫材料,聚氨酯从其本体性质(或者说其固化物)而言,基本上届弹性体性质,它的一些物理化学性质如粘接强度,机械性能,耐久性,耐低温性,耐药品性,主要取决于所生成的聚氨酯固化物的化学结构,所以,要对聚氨酯胶粘剂进行配方设计,首先要进行分子设计,即从化学结构及组成对性能的影响来认识,有关聚氨酯原料品种及化学结构与性能的关系。 2. 从原料角度对PU胶粘剂制备进行设计聚氨酯胶粘剂配方中一般用到三类原料:一类为NCO类原料(即二异氰酸酯或其改性物、多异氰酸酯),一类为oH类原料(即含羟基的低聚物多元醇、扩链剂等,广义地说,是含活性氢的化合物,故也包括多元胺、水等),另有一类为溶剂和催化剂等添加剂,从原料的角度对聚氨酯胶粘剂进行配方设计,其方法有下述两种。 (1).由上述原料直接配制最简单的聚氨酯胶粘剂配制法是0H类原料和NCO类原料(或及添加剂)简单地混合,直接使用,这种方法在聚氨酯胶粘剂配方设计中不常采用,原因是大多数低聚物多元醇分子量较低(通常聚醚Mr<6000,聚酯Mr<3000),因而所配制的胶粘剂组合物粘度小,初粘力小,有时即使添加催化剂,固化速度仍较慢,并且固化物强度低, 实用价值不大,并且未改性的TDI蒸气压较高,气味大,挥发毒性大,而MDI常温下为固态,使用不方便,只有少数几种商品化多异氰酸酯如PAPlDesmodur RDesmodur RFCoronate L等可用作异氰酸酯原料。不过,有几种情况可用上述方法配成聚氨酯胶粘剂例如 1)由高分子量聚酯(Mr5000-50000)的有机溶液与多异氰酸酯溶液(如Coronate L)组成的双组分聚氨酯胶粘剂,可用于复合层压薄膜等用途,性能较好,这是因为其主成分高分子量聚酯本身就有较高的初始粘接力,组成的胶粘剂内聚强度大; (2)由聚醚(或聚酯)或及水,多异氰酸酯,催化剂等配成的组合物,作为发泡型聚氨酯胶粘剂,粘合剂,用于保温材料等的粘接制造等,有一定的实用价值。 (2).NCO类及OH类原料预先氨酯化改性如上所述,由于大多数低聚物多元醇的分子量较低,并且TDI挥发毒性大,MDI常温下为固态,直接配成胶一般性能较差,故为了提高胶粘剂的初始粘度,缩短产生一定粘接强度所需的时间,通常把聚醚或聚酯多元醇

微乳液法制备纳米微粒

纳米材料 ——微乳液法制备纳米微粒 微乳液法的概述: 微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,从乳液中析出固相从而制备出一定粒径的纳米粉体。但相对于细乳液和普通乳液而言的,微乳液颗粒直径约为l0~lOOnm,细乳液颗粒直径约为lO0~400nm,普通乳液颗粒直径一般在几百纳米到上千纳米。一般情况下,将两种互补相溶的液体在表面活性剂作用下所形成的热力学稳定、各项同性、外观透明或半透明、粒径l~lOOnm 的分散体系称为微乳液。相应的把制备微乳液的技术称为微乳化技术(MET)。1982年Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合肼或者氢气还原在w/0型微乳液水合中的贵金属盐,得到了分散的Pt、Pd、Ru、Ir 金属颗粒(3~40nm)。从此以后,微乳液理论的研究获得了飞速发展,尤其是2O世纪9O年代以来,微乳液应用研究更快,在许多领域如3次采油、污水治理、萃取分离、催化、食品、生物医药、化妆品、材料制备、化学反应介质,涂料等领域均具有潜在的应用前景。微乳液法是一种简单易行而又具有智能化特点的新方法,是目前研究的热点。运用微乳液法制备纳米粉体是一个非常重要的领域。运用微乳液法制备的纳米颗粒主要有以下几类。:(1)金属,如Pt、Pd、Rh、Ir、Au、Ag、Cu等;(2)硫化物CdS、PbS、CuS等;(3)Ni、Co、Fe等与B的化合物;(4)氯化物AgC1、AuC1 等;(5)碱土金属碳酸盐,如CaCO3、BaCO3、Sr—CO3;(6)氧化物Eu2O 、Fe2O。、Bi2O 及氢氧化物如Al(0H)3 等。 1 微乳反应器原理 在微乳体系中,用来制备纳米粒子的一般都是W/O型体系,该体系一般由有机溶剂、水溶液、活性剂,助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般为A0T(2一乙基己基磺基琥珀酸钠)、SDS(十二烷基硫酸钠)阴离子表面活性剂、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。微乳液中,微小的“水池”为由表面活性剂和助表面活性剂所构成的单分子层包围成的微乳颗粒,其大小在几至几十个纳米间,这些微小的“水池”彼此分离,就是“微反应器”,它拥有很大的界面,有利于化学反应。与其它化学法相比,微乳液法制备的离子不易聚结,大小可控,分散性好。 W/O型微乳液中的水核可以看作微型反应器(Microreactir)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接的关系,若令W=[H2O/表面活性剂],则由微乳液制备的纳米粒子的尺寸将会受到w 的影响。 一般地,将两种反应物分别溶于组成完全相同的两份微乳液中,然后在一定条件下混合。两种反应物通过物质交换而发生反应,当微乳液界面强度较大时,反应物的生长受到限制。如微乳液颗粒大小控制在几个纳米,则反应物以纳米颗粒的形式分散在不同的微乳液中。研究表明:纳米颗粒可在微乳液中稳定存在,通过超速离心或将水和丙酮的混合物加入反应后生成的微乳液中使纳米颗粒与微乳液分离,用有机溶剂清洗以去除附着在微粒表面的油和表面活性剂,最后在一定温度下进行干燥,即可得到纳米颗粒。 2 微乳液的形成和结构 与普通乳液相比,尽管在分散类型方面微乳液和普通乳液有相似之处,即有o/w 和w/o型,其中w/O可以作为纳米粒子制备的反应器,但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴颗粒可控,实验装

微乳液的性质与应用

微乳液的性质与应用 应化1008 马亚强 2010016218 Abstract:I n this article , the conception , structure , properties and preparation of microemulsion have been summarized .In addition,the application of microemulsions in tertiary oil recovery,pharmaceutical, porous materials and cosmetics have been introduced. Keywords:microemulsion ; surfactant ; cosurfactant ; surface tension ; HLB value 前言: 微乳液自1943年由Hour和Schulmant 发现以来,其理论和应用研究取得了很大进展,20世纪70年代发生世界石油危机后,由于微乳体系在3次采油技术中显示出巨大潜力而迎来了发展高潮。特别是20世纪90年代以来,微乳液的应用领域迅速拓展,除了3次采油技术外,目前已渗透到日用化工、精细化工、生物技术、环境科学和分析化学等领域;而且,现代高新技术和新型功能材料,如纳米材料、气敏材料、多孔材料等的制备与应用中,都与微乳液有密切关系。微乳液已成为当今国际上热门的具有巨大潜力的研究领域。 1.微乳液的性质和组成 1.1 微乳液的性质:微乳液明确定义是由水、油、表面活性剂及助表面活性剂四组份, 在适当比例下, 自发形成的透明或半透明的热力学稳定体系。分散相粒径在0.1μm以下。而普通乳状液分散相颗粒在0.2

微乳液法制备纳米粒子_徐冬梅

文章编号:1004-1656(2002)05-0501-06 微乳液法制备纳米粒子 徐冬梅,张可达,王 平,朱秀林 (苏州大学化学化工系,江苏苏州 215006) 摘要:介绍了W /O 型微乳液内超细颗粒的形成机理、制备的技术关键,综述了近年来国内外微乳法制备纳米粒子的最新进展。引用文献37篇。 关键词:W /O 型微乳液;纳米粒子;形成机理;制备中图分类号:O648.23 文献标识码:A 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等 [1~5] 方面得到 了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级(20~50nm )的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。微乳液制备超细颗粒的特点在于:粒子表面包有一层表面活性剂分子,使粒子间不易聚结;通过选择不同的表面活性剂分子可对粒子表面进行修饰,并控制微粒的大小。实验装置简单,操作容易,已引起人们的重视。本文对W /O 微乳液内超细颗粒的形成机理、制备的技术关键以及近年来国内外利用微乳法制备纳米粒子的最新进展进行了综述。 1 W /O (油包水)微乳液内超细颗粒 的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合, 由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 2 实验制备的技术关键 2.1 选择一个适当的微乳体系 首先要选定用来制备超细颗粒的化学反应,然后选择一个能够增溶有关试剂的微乳体系,该体系对有关试剂的增溶能力越大越好,这样可期望获得较高收率。另外构成微乳体系的组分(油相、表面活性剂和助表面活性剂)应该不和试剂发生反应,也不应抑制所选定的化学反应。2.2 分析影响生成超细微粒的各种因素以获得 分散性好,粒度均匀的超细微粒 选定微乳体系后,就要研究影响生成超细微 第14卷第5期2002年10月 化学研究与应用Chemical Research and Application Vol .14,No .5Oct .,2002 收稿日期:2001-08-03;修回日期:2001-10-24 基金项目:江苏省苏州大学薄膜材料重点实验室开放课题(T2108057)

微乳的制备

微乳的制备 低毒药用微乳的研制 摘要:由花生油、水、吐温-80组成三相(油相、水相、乳化剂),再分别加辅助剂和不加辅助剂制备O/W型微乳;通过采用改良三角相图法,比较各处方中乳化剂和辅助剂的使用量(B)。结果表明单独以乳化剂吐温-80制备微乳,消耗的乳化剂量较大;而加入辅助剂制备微乳,能明显降低B值,其中以加入平平加O为辅助剂的B值最小。该结果对寻找低毒性的药用微乳有积极的指导意义。关键词:低毒微乳改良三角相图 微乳是呈透明或半透明的油水混合溶液,是热力学及动力学稳定体系。其制法简便,粒径小且均匀,作为药物载体有缓释和靶向作用[1,2]。微乳作为一种新型药物载体,已越来越受到人们的关注[3]。微乳通常是由乳化剂、辅助乳化剂、油相及水相组成,其制备需足够的乳化剂,一般占体系的10-30%,但大量乳化剂和助乳化剂的使用增加了微乳的毒性,从而限制了微乳的应用。本实验通过建立改良三角相图[4],采用不加辅助剂和加辅助剂(分别为PEG-400、OP、平平加O)制备微乳,比较各处方的B值,寻求用最小量的乳化剂和辅助剂制备微乳,其结果对低毒药用微乳的研制有一定的指导意义。 1仪器与材料 1.1仪器TN型托盘式扭力天平(上海第二天平仪器厂);78-1型磁力加热搅拌器(上海面汇电讯器材厂);LXJ-Ⅱ型离心沉淀机(上海医用分析仪器厂)。 1.2材料吐温Tween-80(清明化工厂);聚乙二醇-400(PEG-400,上海浦东南化工厂);聚乙二醇辛基苯基醚(乳化剂OP,无锡市科技实验二厂);平平加O(进口分装);其他均为分析纯。 2方法与结果 2.1微乳的制备 2.1.1花生油、吐温-80和辅助剂制备O/W型微乳称取花生油-辅助剂(PEG-400,平平加O,乳化剂OP)按比值O/A=1:9混匀,总量为1g,再按1:1.6,1:1.5,1:1.2,1:1.1,1:1,1:0.9,1:0.8,1:0.7,1:0.6,1:0.5比例与吐温-80混合,在约45℃下,边搅拌边滴加蒸馏水,直至微乳形成,记录消耗水的体积。取固定的O/A作微乳的改良三角相图,所得结果见下图1-3。由三相图可知处方中各组分所占百分比例如表1-3所示。表1油+PEG400:吐温-80 花生油(%) PEG400(%) 吐温-80(%) 水(%) 1:1.6 1.18 10.59 18.81 69.41 1:1.5 1.54 13.85 23.08 61.54 1:1.2 1.28 11.54 15.38 71.79 1:1.1 1.69 15.20 18.58 64.53 1:1.0 1.03 9.28 10.31 79.38 1:0.9 2.27 20.41 20.41 56.92 表2油+平平加O:吐温-80 花生油(% ) 平平加O(% ) 吐温-80(% ) 水(%) 1:1.61:1.51:1.21:1.11:1.01:0.91:0.8 1.141.131.111.161.151.121.14 10.2210.1710.0010.4010.3410.0510.22 18.1816.9513.3312. 7211.4910.059.09 70.4571.7575.5675.5277.0178.7779.55 表3油+OP:吐温-80 花生油(%) OP(%) 吐温-80(%) 水(%) 1:1.61:1.51:1.21:1.11:1.01:0.9 1.201.251.391.351.301.52 10.8211.2512.5012.1611.6913.64 19.2318.7516.6714.8612.9913.64 68.7568.7569.4471.6274.0371.21 2.1.2花生油、吐温-80、制备O/W型微乳按2.1.1方法制备微乳可得到花生油/吐温-80/水的经典三角相图,结果见表4,图1-4。表4油:吐温-80 花生油(%) 吐温-80(% ) 水(%) 0.1:1.60.1:1.50.1:1.20.1:1.10.1:1.00.1:0.9 1.692.002.923.083.132.86 27.1230.0034.9833.8431.2525.71 71.1968.0062.1063.086 5.6271.43 2.2微乳及其类型的鉴别方法[3]微乳的鉴别方法采用染色法和离心法。离心法采用1500-2000r/min离心10min,观察其是否分层及是否维持澄明,如仍维持澄明可判为微乳。染色法是利用油溶性染料苏丹红和水溶性染料亚甲兰在微乳中红色或蓝色的扩散快慢来判断微乳的类型,若红色扩散快速于蓝色则为W/O型微乳;反之为O/W型。 3结论 3.1本实验中所制微乳经离心后,溶液均无分层,维持澄明,可判为微乳;经染色法观察均是蓝色扩散快于红色,固判之为O/W型。 3.2通过上述图表可知,单独使用乳化剂吐温-80制备微乳,需消耗大量的乳化剂25.71 ~34.98%,而加入辅助剂制备微乳相对消耗的量B较小,加辅助剂PEG-400、平平加O、OP,消耗乳化剂和助乳的量B分别为19.59% ~40.82%,19.31% ~28.40%,24.68% ~30.05%。4讨论 4.1 实验中,微乳的制备采用了改良三角相图法即固定水相和辅助剂的比值(W/A)或油相和辅助剂的比值(O/A),其与经典三角相图法即固定乳化剂与辅助剂的比值(Km)相比,所消耗乳化剂和辅助剂的量较少[4]。 4.2通过预实

相关文档
最新文档