函数的定义域及函数值

函数的定义域及函数值
函数的定义域及函数值

【教学目的】

1、使学生理解函数的概念,明确决定函数的定义域、值域和对应法则三个要素;

2、理解函数符号的含义,能根据函数表达式求出定义域、值域;

3、使学生能够正确使用“区间”、“无穷大”的记号;

4、使学生明白静与动的辩证关系,激发学生学习数学的兴趣和积极性。

【教学重点】

在对应的基础上理解函数的概念

【教学难点】

函数概念的理解

【教学过程】

一、复习引入

〖提问〗初中学习的(传统)的函数的定义是什么?初中学过哪些函数?

〖回答〗设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数,并将自变量x取值的集合叫做函数的定义域,和自变量x的值对应的y值叫做函数

值,函数值的集合叫做函数的值域,这种用变量叙述的函数定义我们称之为函数的传统定义。

〖讲述〗初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。

〖提问〗问题1:

y=1(x∈R)是函数吗?

问题2:y=x与y=x

x2

是同一函数吗?

〖投影〗观察对应:

〖分析〗观察分析集合A 与B 之间的元素有什么对应关系?

二、讲授新课 函数的概念 (一)函数与映射

〖投影〗函数:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集

合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =)(x f ,

x ∈A 。其中x 叫自变量,x 的取值范围A 叫做函数y =)(x f 的定义域;与x 的值相对应的y 的值叫做函数值,

函数值的集合{)(x f |x ∈A},叫做函数y =)(x f 的值域。

函数符号

y =)(x f 表示“y 是x 的函数”

,有时简记作函数)(x f 。

函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A} 注:只有当这三要素完全相同时,两个函数才能称为同一函数。

映射:设,A B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素

y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射.

如果集合A 中的元素x 对应集合B 中元素y ,那么集合A 中的元素x 叫集合B 中元素y 的原象,集合B 中元素y

叫合A 中的元素x 的象. 映射概念的理解

(1)映射B A f →:包含三个要素:原像集合A,像集合B(或B 的子集)以及从集合A 到集合B 的对应法则f .两个集合A,B 可以是数集,也可以是点集或其他集合.对应法则f 可用文字表述,也可以用符号表示.映射是一种特殊的对应关系,它具有:

(1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的; (2)任意性:集合A 中的任意一个元素都有像,但不要求B 中的每一个元素都有原像; (3)唯一性:集合A 中元素的像是唯一的,即不允许“一对多”,但可以“多对一”.

函数与映射的关系

函数是一种特殊的映射.映射与函数概念间的关系可由下表给出.

映射

B

A

f→

:函数B

y

A

x

x

f

y∈

=,

),

(

集合A,B可为任何集合,其元素可以是物,人,

数等

函数的定义域和值域均为非空的数集

对于集合A中任一元素a,在集合B中都有唯一确定的像对函数的定义域中每一个x,值域中都有唯一确定的值与之对应

对集合B中任一元素b,在集合A中不一定有原像对值域中每一个函数值,在定义域中都有确定的自变量的值与之对应

函数是特殊的映射,映射是函数的推广.

〖注意〗(1)函数实际上就是集合A到集合B的一个特殊对应

f:A→B。这里A,B为非空的数集。

(2)A:定义域,原象的集合;{

)

(x

f|x∈A}:值域,象的集合,其中{)

(x

f|x∈A}?B;f:对应法则,x∈

A,

y∈B

(3)函数符号:y=)

(x

f,y是x的函数,简记)

(x

f

〖回顾〗(二)已学函数的定义域和值域:

1、一次函数

)

(x

f=ax+b(a≠0):定义域R,值域R

2、反比例函数

)

(x

f=x

k

(k≠0):定义域{x|x≠0},值域{y | y≠0}

3、二次函数

)

(x

f=ax2+bx+c(a≠0):定义域R,值域:当a>0时,{y|y≥a

b

ac

4

42

-

};当a<0时,

{y|y≤a

b

ac

4

42

-

}。

(三)函数的值:关于函数值

) (a f

例析:若

)

(x

f=x2+3x+1,求)2(f。

解:

)2(f=22+3×2+1=11

〖注意〗(1)在y=)

(x

f中f表示对应法则,不同的函数其含义不一样;

(2)

)

(x

f不一定是解析式,有时可能是“列表”、“图象”;

(3))(x f 与)(a f 是不同的,前者为变数,后者为常数,)(a f 是)(x f 的一个特殊值。 (四)区间的概念

〖投影〗设a 、b 是两个实数,而且a <b ,我们规定:

(1)满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a ,b ]; (2)满足不等式a <x <b 的实数x 的集合叫做开区间,表示为(a ,b );

(3)满足不等式a ≤x <b 或者a <x ≤b 的实数x 的集合叫做半开半闭区间,表示为),[b a 、],(b a ; (4)实数集R 可以用区间表示为(-∞,+∞);满足不等式x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合可以分别表示为[a ,+∞),(a ,+∞),(-∞,b ],(-∞,b )。

〖注意〗注意集合与区间之间的关系:区间是数集,表示区间端点的两个实数不能相等,但数集中不等式两端的两个实数可以相等,如a ≤x ≤a 。 三、实例提升

〖例析〗例1、设集合M={x |0≤x ≤2},N={

y |0≤y ≤2},从M 到N 有4种对应如下图所示:

其中能表示为M 到N 的函数关系的有 ② ③ 。

〖解析〗根据对应的含义和函数的概念,可以看出②③能表示M 到N 的函数关系。 〖例析〗例2、求下列函数的定义域:

21)(-=

x x f ; ②)(x f =23+x ; ③)(x f =1+x +x -21

〖解析〗函数的定义域通常由问题的实际背景确定,如果只给出解析式y =)(x f ,而没有指明它的定义域,那么

函数的定义域就是指能使这个式子有意义的实数x 的集合。

解:①∵x -2=0,即x =2时,分式21

-x 无意义, 而x ≠2时,分式21

-x 有意义

∴这个函数的定义域是{x |x ≠2}。 ②∵3x +2<0,即x <

32

-

时,根式23+x 无意义 而3x +2≥0,即x ≥

32

-

时,根式23+x 才有意义

∴这个函数的定义域是{x |x ≥32-}。

③∵当x +1≥0且2-x ≠0,

即x ≥-1且x ≠2时,根式1+x 和分式x -21

同时有意义

∴这个函数的定义域是{x |x ≥-1且x ≠2}

另解:要使函数有意义,必须:x +1≥0且2-x ≠0?x ≥-1且x ≠2 ∴这个函数的定义域是:{x |x ≥-1且x ≠2}

〖强调〗解题时要注意书写过程,注意紧扣函数定义域的含义。由本例可知,求函数的定义域就是根据使函数式有意义的条件,布列自变量应满足的不等式或不等式组,解不等式或不等式组就得到所求的函数的定义域。 求函数的定义域的常见类型:

(1)当)(x f 为整式时,定义域为R ;

(2)当)(x f 为分式时,定义域为使分母不为0的x 的集合;

(3)当)(x f 为n 次根式中的偶次根式时,定义域为使被开方式非负的x 的集合; (4)当)(x f 是由几个式子组成时,定义域是使各个式子都有意义的x 的取值的集合。 〖例析〗例3、已知函数)(x f =3x 2-5x +2,求)3(f ,)2(-f ,)1(+a f 。 〖解析〗解:f (3)=3×32-5×3+2=14;

)2(-f =3×(-2)2-5×(-2)+2=8+52;

)1(+a f =3(a +1)2-5(a +1)+2=3a 2+a 。

〖例析〗例4、下列函数中哪个与函数

y =x 是同一个函数?

(1)2)(x y =; (2)3

3x y =; (3)2x y =

〖解析〗解:(1)y =x ,x ≥0,y ≥0,定义域不同且值域不同,不是同一个函数;

(2)

y =x ,x ∈R ,y ∈R ,定义域值域都相同,是同一个函数;

(3)y =|x |=?

?

?<-≥)0()0(x x x x ,y ≥0;值域不同,不是同一个函数。

〖例析〗例5、下列各组中的两个函数是否为相同的函数?

(1)

3

)

5)(3(1+-+=

x x x y 52-=x y (定义域不同)

(2)111-+=

x x y )1)(1(2-+=x x y (定义域不同)

(3)2

1)52()(-=x x f 52)(2-=x x f (定义域、值域都不同)

〖注意〗两个函数相同即它们的定义域和对应法则完全相同。

四、演练反馈

1、函数

)

13lg(13)(2++-=

x x

x x f 的定义域是( )

A .),31(+∞-

B .)1,31(-

C .)31,31(-

D .

)

31,(--∞ 2、下列各组,函数)(x f 与)(x g 表示同一个函数的是( )

A .)(x f =1,)(x g =x 0

B .)(x f =x 0 ,)(x g =x x 2

C .)(x f =x 2, )(x g =4)(x

D .)(x f =x 3,)(x g =93

)(x

3、已知函数)(x f =2x -3,求: (1))0(f ,)2(f ,)5(f ; (2))]([x f f ;

(3)若x ∈{0,1,2,3},求函数的值域。

4、若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个,A 到B 的函数有 个

演练反馈答案:1、B 2、D 3、(1))0(f=-3,)2(f=1,)5(f=7;(2))]

(

[x

f

f=4x-9;

(3)值域为{-3,-1,1,3} 4、81,64,81 五、课堂小结

本节课学习了以下内容:函数是一种特殊的对应f:A→B,其中集合A,B必须是非空的数集;)

(x

f

y 表示y

是x的函数;函数的三要素是定义域、值域和对应法则,定义域和对应法则一经确定,值域随之确定;判断两个

函数是否是同一函数,必须三要素完全一样,才是同一函数;

) (a

f表示)

(x

f在x=a时的函数值,是常量;而)

(x

f

是x的函数,通常是变量。

【教后札记】

本节的教学重点是在对应的基础上来理解函数的概念,主要包括函数的概念、三要素的理解,难点是函数定义和函数符号的认识与使用。由于学生在初中已学习了函数的传统定义,并学习了几类简单的函数,所以在高中重新定义函数时,学生并不陌生,重要的是让学生认识到它的优越性,从根本上揭示了函数的本质——由定义域、值域、对应法则三要素构成的整体,通过例题解析让学生充分理解函数的概念。

〖板书〗函数的概念 (一)函数与映射

函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A} 注:只有当这三要素完全相同时,两个函数才能称为同一函数。 (二)已学函数的定义域和值域:

1、一次函数)(x f =ax +b (a ≠0):定义域R ,值域R

2、反比例函数)(x f =x k

(k ≠0):定义域{x |x ≠0},值域{y | y ≠0}

3、二次函数)(x f =ax 2+bx +c (a ≠0):定义域R ,值域:当a >0时,{y |y ≥a b ac 442

-};当a <0时,{y |y ≤a b ac 442

-}。

〖板书〗(三)函数的值:关于函数值)(a f 例析:若)(x f =x 2+3x +1,求)2(f 。 解:)2(f =22+3×2+1=11

〖板书〗(四)区间的概念

(1)满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a ,b ]; (2)满足不等式a <x <b 的实数x 的集合叫做开区间,表示为(a ,b );

(3)满足不等式a ≤x <b 或者a <x ≤b 的实数x 的集合叫做半开半闭区间,表示为),[b a 、],(b a ; (4)实数集R 可以用区间表示为(-∞,+∞);满足不等式x ≥a ,x >a ,x ≤b ,x <b 的实数x 的集合可以分别表示为[a ,+∞),(a ,+∞),(-∞,b ],(-∞,b )。

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

函数的概念与定义域

函数的概念与定义域

————————————————————————————————作者:————————————————————————————————日期:

一、函数的概念 一、映射 1.映射:设A 、B 是两个非空集合,如果按照某种对应关系f ,对于集合A 中的任意元素,在集合B 中都有惟一元素和它对应,这样的对应叫做集合A 到集合B 的映射,记作:B A f →:; 2.象与原象:如果B A f →:是一个A 到B 的映射,那么和A 中的元素a 对应的元素叫做象, a 叫做原象; 3.映射的性质: ①方向性:集合A 到集合B 的映射与集合B 到集合A 的映射是不同的; ②任意性:集合A 中的任意一个元素在集合B 中都要有象,但不要求B 中的每一个元素在A 中都要有原象; ③惟一性:集合A 中元素的象是惟一的,即“一对一”、“多对一”是允许的,但“一对多”是不允许的. 二、函数 1.定义:设A 、B 是两个非空数集..,B A f →:是从A 到B 的一个映射,则映射B A f →:就叫做A 到B 的函数,记作:()x f y =; 2.函数的三要素为:定义域、值域、对应法则,两个函数当且仅当定义域和对应法则分别相同时,二者才能称为同一函数; 3.函数的表示法有:解析式、列表法、图像法. 例1、(1)给出下列四个对应,是映射的是( ) ① ② ③ ④ A.②④ B.①② C. ②③ D.①④ (2)设{}{}|02,|12,A x x B y y =≤≤=≤≤在下图中,能表示从集合A 到集合B 的映射是 a m b c n A B a m b c p A B n a m b p A B n a m b A B c . A y 1 2 x O 1 2 . B y 1 2 x O 2 1 . D y 1 2 1 2 x O . C y 1 2 1 2 O x

函数定义域几种类型及其求法

函数定义域几种类型及其求法 河北省承德县一中 黄淑华 一、已知函数解析式型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1、求函数8315 22-+--=x x x y 的定义域。 解:要使函数有意义,则必须满足?????≠-+≥--0 8301522x x x 即???-≠≠-<>11535x x x x 且或 解得1135-≠-<>x x x 且或 即函数的定义域为{}1135-≠-<>x x x x 且或。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能用常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的定义域,一般有两种情况。 (一)已知)(x f 的定义域,求[])(x g f 的定义域。 其解法是:已知)(x f 的定义域是],[b a 求[])(x g f 的定义域是解b x g a ≤≤)(,即为所求的定义域。 例2、已知)(x f 的定义域为]2,2[-,求)1(2-x f 的定义域。 解:22≤≤-x ,2122≤-≤-∴x ,解得33≤≤- x 即函数)1(2-x f 的定义域为{}33≤≤-x x (二)已知[])(x g f 的定义域,求)(x f 的定义域。 其解法是:已知[])(x g f 的定义域是],[b a 求)(x f 的定义域的方法是:b x a ≤≤,求)(x g 的值域,即所求)(x f 的定义域。 例3、已知)12(+x f 的定义域为]2,1[,求)(x f 的定义域。 解:21≤≤x ,422≤≤∴x ,5123≤+≤∴x 。 即函数)(x f 的定义域是{}53|≤≤x x 。

一函数定义域定义域高考试题汇编[1]

一、定义域问题 1. (陕西文2)函数21lg )(x x f -=的定义域为 (A )[0,1] (B )(-1,1) (C )[-1,1] (D )(-∞,-1)∪(1,+∞) 解析:由1-x 2>0得-1+>-x x x ,故选B. 2. (江西文3)函数1()lg 4 x f x x -=-的定义域为( ) A.(14), B.[14), C.(1)(4)-∞+∞U ,, D.(1](4)-∞+∞U ,, 解析: 10(1)(4)0,1 4.4 x x x x x ->?--<∴<<-选A. 上海理1)函数()()lg 43 x f x x -= -的定义域为_____ 【答案】 {} 34≠??-≠?? {}34≠

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

函数的基本概念与定义域

学生:科目:第阶段第次课教师:课题 函数的基本概念与定义域 教学目标1.了解函数的的基本概念,并能熟练的应用 2.理解函数的三种表示方法,了解分段函数,并能够简单的应用 3.会求函数的定义域 重点、难点函数的定义的理解;求简单函数的定义域 考点及考试要求 1.了解函数的概念; 2.理解函数的三种表示方法; 3.了解简单的分段 函数 教学容 知识框架 知识点一、区间的概念 设b a R b a< ∈且 , , 定义名称符号数轴表示 } | {b x a x≤ ≤闭区间] , [b a } | {b x a x< <开区间) , (b a } | {b x a x< ≤前闭后开区间) , [b a } | {b x a x≤ <前开后闭区间] , (b a 区间是集合的有一种形式.对于区间的理解应注意: (1)区间的左端点必修小于右端点,有时我们将b-a成为区间的长度,对于只有一个元素的集合我们仍然用集合来表示,如{}a; (2)注意开区间) , (b a与点) , (b a在具体情景中的区别.若表示点) , (b a的集合应为{}),(b a;(3)用数轴来表示区间时,要特别注意实心点与空心点的区别; DOC格式.

例5.高为h ,底面半径为R 的圆柱形容器,以单位时间体积为a 的速度灌水.试求水面高y 用时间t 表示的函数式,并求其定义域. 例6.已知函数32341++-= ax ax ax y 的定义域为R ,数a 的取值围. 例7.设}20|{},20|{≤≤=≤≤=y y N x x M ,下图中的四个图形,其中能表示从集合M 到集合N 的函数关系的有( )

函数的定义域及其求法(知识点)(教师版)

函数的定义域及其求法(知识点) 一.定义域 定义域、值域、对应法则合称为函数的三要素.本词条主要介绍函数定义域的概念及其求法. 二.函数定义域的概念 函数的定义域就是指自变量x 的取值范围,它是构成函数的重要组成部分.定义域必须是非空数集,且必须写成区间或集合的形式. 例如:一次函数()(0)f x kx b k =+≠的定义域为 (或写成(,)-∞+∞). 三.函数定义域的求法 在处理函数的相关问题时,首先应明确函数的定义域是什么,求函数定义域主要包括具体函数的定义域、抽象函数的定义域以及实际问题中函数的定义域三种. 四.具体函数的定义域 对于已知解析式的具体函数,如果未加特殊说明,函数的定义域就是指能使表达函数的式子各部分都有意义的所有实数x 的取值集合.常见情形如下: 1. 若函数()f x 为整式,则其定义域为实数集 . 例如,二次函数2()1f x x x =++的定义域为. 2. 若函数()f x 是分式,则其定义域是使分母不为零的全体实数的集合. 例如,函数1()1 f x x =-的定义域为{1}x x ≠. 3. 若函数()f x 是偶次根式,则其定义域是使得根号内的式子大于或等于零的全体实数构成的集合. 例如,函数()f x =[1,)-+∞. 4. 若函数()f x 是由几个部分的数学式子构成的,则函数的定义域是使是使各部分都有意义的实数的集合, 即交集. 例如,函数1()1 f x x =-[1,1)(1,)-+∞. 5. 若函数0()f x x =,则其定义域是{0}x x ∈≠. 注:除了上述情形,还应注意指数函数和对数函数均需满足底数大于零且不等于1,对数函数的真数必须大于零,以及三角函数的定义域,如正切函数的定义域为ππ,2x x k k ??≠+∈???? 例 :求下列函数的定义域:①y = 2310x y x x --;③() f x =. 解:①由80,30,x x +??-?≥≥得83x -≤≤.所以原函数的定义域为[]8,3-. ②由220,3100,x x x +???--≠?? ≥解得()() 2250x x x -???+-≠??≥所以2,2,5,x x x -??≠-≠?≥即25x -<<或5x >.所以原函数的定义域为()()2,55,-+∞.

函数的定义域解析与练习及答案

函数的定义域解析与练 习及答案 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

函数的定义域 1、已知函数式求定义域: 例1、求下列函数的定义域: (1);(2);(3); (4);(5). 解: (1),即;(2),即; (3)且,即. (4)要使函数有意义,应满足,即.∴函数的定义域为. (5)要使函数有意义,应满足,即.∴函数的定义域为 . 点拨:要求使函数表达式有意义的自变量的取值范围,可考虑用到不等式或不等式组,然后借助于数轴进行求解. 2、求抽象函数的定义域

讲解:求解抽象函数的定义域时一定要严格遵循原始函数的定义域,不管 “”中的“x”被什么代换,它们都得首先遵循这一“规则”,在这一“规则”之下再去求解具体的x的范围. 例2、已知的定义域为,求,的定义域. 解: ∵的定义域为,∴,∴,即的定义域为, 由,∴,即的定义域为. 点拨:若的定义域为,则的定义域是的解集. 例3、已知的定义域为,求,的定义域. 解: ∵的定义域为,∴即的定义域为. 又∵的定义域为,∴,∴ 即的定义域为. 点拨:已知的定义域,则当时,y=kx+b的函数值的取值集合就是的定义域. 例4、已知函数的定义域是[a,b],其中a<0b,求函数的定义域.

解答: ∵函数的定义域为[a,b],∴a≤x≤b, 若使有意义,必须有a≤-x≤b即有-b≤x≤-a.∵a<0b,∴a<-b且b<-a. ∴的定义域为. 点拨:若的定义域为及的定义域分别为A、B,则有借助于数轴分析可求得. 3、函数定义域的逆用 讲解:已知函数的定义域求解其中参数的取值范围时,若定义域为R时,可采用判别式法,若定义域为R的一个真子集时,可采用分离变量法. 例5、已知函数的定义域是R,求实数k的取值范围. 解答: ①当k=0时,函数,显然它的定义域是R; ②当k≠0时,由函数y的定义域为R可知,不等式对一切实数x均成立,因此一定有. 解得0

高中数学函数的定义域教案人教版必修一

第二章--------函数的定义域 函数的独立元素:解析式 定义域 值域 性质 一、由函数解析式求定义域 基础练习A: 1.求下列函数的定义域: (1)y=lg(4x+3) (2)y=1/lg(4x+3) (3)y=(5x-4)0 (4)y=x 2/lg(4x+3)+(5x-4)0 2.用长为L 的铁丝弯成下部的矩形,上部分为半圆的框架(如图),若矩形的底边长为2x ,求此框架围成面积y 与x 的函数,写出的定义域。 例1、求下列函数的定义域 变1:使解析式 无意义的x 的取值范围是 变2:已知y 是x 的函数t t t t t t y x -+----+=+=222244,22其中t ∈R ,求 y=f(x)的函数解析式及其定义域 x x y )2lg(1-=、02)45()34lg(2-++=x x x y 、)39lg(|2|713x x y -+--=、3)12(23log )(4-=-x x f x 、x x y cos lg 2552+-=、C B 3442log 22+-+--x x x x

二、由y=f(x)的定义域,求复合函数y=f(g(x))的定义域;或者反过 来。 例2、设函数f(x)的定义域为[-2,9),求下列函数的定义域: (1)f(x+2) (2)f(3x) (3)f(x2) (4)f(lgx+5) (5) g(x)=f(-x)+f(x) 实质:已知中间变量u=g(X)的值域,求x的范围。 变:已知函数f(x)的定义域为[-1,1),则F(x)=f(1―x)+f(1―x2)的定义域为__。 例3、(1) 函数f(3x-2)的定义域是[-2,1),则f(x)的定义域为 (2)函数f(x2)的定义域是[-1,1),则f(x)的定义域为 x)的定义域为 (3)函数f(x2)的定义域是[-1,1],则f(log 2 ______ 例4、已知函数f(x)=1/(x+1),则f[f(x)]的定义域为 实质:由中间变量u=g(x)的值域求f(x)的定义域

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)(最新整理)

2 函数的概念、定义域、值域练习题 班级:高一(3)班 姓名: 得分: 一、选择题(4 分×9=36 分) 1. 集合 A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从 A 到 B 的函数是( ) A .f (x )→y 1 x B .f (x )→y 1 2 x C .f (x )→y = D .f (x )→y = = = x 2 3 3 2. 函数 y = 1-x 2+ x 2-1的定义域是( ) A .[-1,1] B .(-∞,-1]∪[1,+∞) C .[0,1] D .{-1,1} 3. 已知 f (x )的定义域为[-2,2],则 f (x 2-1)的定义域为( ) A .[-1, 3] B .[0, 3] C .[- 3, 3] D .[-4,4] 4. 若函数 y =f (3x -1)的定义域是[1,3],则 y =f (x )的定义域是( ) A .[1,3] B .[2,4] C .[2,8] D .[3,9] 5. 函数 y =f (x )的图象与直线 x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上 1 6. 函数 f (x )= ax 2+4ax +3 的定义域为 R ,则实数 a 的取值范围是( ) 3 3 3 A .{a |a ∈R } B .{a |0≤a ≤ } C .{a |a > } D .{a |0≤a < } 4 4 4 7. 某汽车运输公司购买了一批豪华大客车投入运营.据市 场分析,每辆客车营运的利润 y 与营运年数 x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年. A .4 B .5 C .6 D .7 8.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]= 1-x 2 x 2 (x ≠0),那么f (1 ) 等于( ) A .15 B .1 C .3 D .30 9.函数 f (x )= 2x -1,x ∈{1,2,3},则 f (x )的值域是( ) A .[0,+∞) B .[1,+∞) C .{1,3, 5} D .R 二、填空题 x

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

高一数学知识点总结:函数的定义域

高一数学知识点总结:函数的定义域 导语:高中数学相对于初中来说在学习方法和解题难度上都会有所增加,所以我们要熟悉每个重点知识点,以此来找到更好的学习方法。以下是为大家精心的高一数学知识点总结:函数的定义域,欢迎大家参考! 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法 (1)化归法;(2)图象法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。 “范围”与“值域”相同吗? “范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。

函数的定义域常见求法-含答案

【知识要点】 一、函数的定义域的定义 函数的定义域是指使函数有意义的自变量的取值范围. 二、求函数的定义域的主要依据 1、分式的分母不能为零. 2(2,)n k k N *=∈其中中0,x ≥奇次方根 (21,)n k k N *=+∈其中中,x R ∈. 3、指数函数x y a =的底数a 必须满足01,a a x R >≠∈且. 4、对数函数log a y x =的真数x 必须大于零,底数a 必须满足01a a >≠且. 5、零次幂的底数不能为零,即0x 中0x ≠. 6、正切函数tan y x =的定义域是{|,}2 x x k k z π π≠+∈. 7、复合函数的定义域的求法 (1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域. (2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数 ()g x 的值域,即得原函数()f x 的定义域. 8、求函数()()y f x g x =+的定义域 一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求A B ,则A B 就是所求函数的 定义域. 9、求实际问题中函数的定义域 不仅要考虑解析式有意义,还要保证满足实际意义. 三、函数的定义域的表示 函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上

是集合的一种特殊表示形式. 四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法. 五、函数的问题,必须遵循“定义域优先”的原则. 研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】 【例1】求函数y . 【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域. 【反馈检测1】求函数y =. B ,A B 就是函数 【例2】求函数y =3log cos x 的定义域. 【解析】由题得?? ? ??∈+<<-≤≤-∴???>≥-z k k x k x x x 22225 50cos 0252π πππ ∴}52 3 22235|{≤<<<--<≤-x x x x ππππ或或 所以函数的定义域为}52 3 22235|{≤<<<--<≤-x x x x ππππ或或

高中数学函数的定义域测试题含答案

高中数学函数的定义域测试题(含答案) 高二数学函数的定义域与值域、单调性与奇偶性苏教版【本讲教育信息】 一. 教学内容: 函数的定义域与值域、单调性与奇偶性 二. 教学目标: 理解函数的性质,能够运用函数的性质解决问题。 三. 教学重点:函数性质的运用. 四. 教学难点:函数性质的理解。 [学习过程] 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法(注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的

实际意义。 页 1 第 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况: ①若f(x)是整式,则函数的定义域是实数集R; ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集; ③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数);(3)不等式法(利用基本不等式,尤其注意形如型的函数)(4)函数的单调性:特别关注的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数)

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈ 其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ; (2)二次函数2 y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a ﹤0时,值域244ac b B y y a ??-??=≤?????? 。 (3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。 (二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+, (1) 求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。 (四)课堂练习: 1. 用区间表示下列集合: {}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或 2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3. 课本P 19练习2。

高级中学考试数学函数的定义域和值域复习试题含答案.doc

高考数学函数的定义域和值域复习试题(含 答案) 高考数学函数的定义域和值域复习试题(含答案) 高考数学函数的定义域和值域复习试题及答案解析 一、选择题 1.(2013 陕西高考)设全集为R,函数f(x)=1-x的定义域为M,则为( ) A.(-,1) B.(1,+ ) C.(-,1] D.[1,+) B [要使f(x)=1-x有意义,须使1-x 0,即x1. M=(-,1],=(1,+ ).] 2.函数y=13x-2+lg(2x-1)的定义域是() A.23,+B.12,+ C.23,+ D.12,23 C[由3x-2 0,2x-1 0得x 23.] 3.下列图形中可以表示以M={x|0x 1}为定义域,以N={y|0y1}为值域的函数的图象是( ) C [由题意知,自变量的取值范围是[0,1],函数值的取值范围也是[0,1],故可排除A、B;再结合函数的定义,可知对于集合M中的任意x,N中都有唯一的元素与之对应,故排除D.] 4.(2014长沙模拟)下列函数中,值域是(0,+ )的是( ) A.y=x2-2x+1B.y=x+2x+1(x(0,+ ))

C.y=1x2+2x+1(x N)D.y=1|x+1| D [选项A中y可等于零;选项B中y显然大于1;选项C 中xN,值域不是(0,+ );选项D中|x+1|0,故y 0.] 5.已知等腰△ABC周长为10,则底边长y关于腰长x的函数关系为y=10-2x,则函数的定义域为() A.R B.{x|x0} C.{x|0 x5} D.x|52 x 5 D[由题意知x0,10-2x0,2x 10-2x即52 x 5.] 6.函数y=2x-1的定义域是(-,1) [2,5),则其值域是( ) A.(- ,0) 12,2 B.(- ,2] C.- ,12 [2,+ ) D.(0,+) A[∵x (- ,1)[2,5), 故x-1(- ,0) [1,4), 2x-1 (- ,0)12,2.] 7.若函数f(x)=1log3(2x+c)的定义域为12,1(1,+),则实数c的值等于( ) A.1B.-1 C.-2 D.-12 B [由2x+c 0且log3(2x+c)0, 得x-c2且x 1-c2. 又f(x)的定义域为12,1(1,+), 1-c2=1.c=-1.]

高中数学函数定义域值域求法总结

函数定义域、值域求法总结 一。求函数得定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式得被开方数非负。 (3)对数中得真数部分大于0。 (4)指数、对数得底数大于0,且不等于1 (5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。 ( 6 )中x 二、值域就是函数y=f(x)中y得取值范围。 常用得求值域得方法: (1)直接法(2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学得始终。 定义域得求法 1、直接定义域问题 例1 求下列函数得定义域: ①;②;③ 解:①∵x—2=0,即x=2时,分式无意义, 而时,分式有意义,∴这个函数得定义域就是、 ②∵3x+2〈0,即x<-时,根式无意义, 而,即时,根式才有意义, ∴这个函数得定义域就是{|}. ③∵当,即且时,根式与分式同时有意义, ∴这个函数得定义域就是{|且} 另解:要使函数有意义,必须: 例2 求下列函数得定义域: ①② ③④ ⑤ 解:①要使函数有意义,必须: 即: ∴函数得定义域为: []

②要使函数有意义,必须: ∴定义域为:{ x|} ③要使函数有意义,必须: ? ∴函数得定义域为: ④要使函数有意义,必须: ∴定义域为: ⑤要使函数有意义,必须: 即 x< 或 x〉∴定义域为: 2定义域得逆向问题 例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题) 解:∵定义域就是R,∴ ∴ 练习: 定义域就是一切实数,则m得取值范围; 3复合函数定义域得求法 例4 若函数得定义域为[-1,1],求函数得定义域 解:要使函数有意义,必须: ∴函数得定义域为: 例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。 分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。 (注意:f(x)中得x与f(2x-1)中得x不就是同一个x,即它们意义不同。) 解:∵f(x)得定义域为[—1,1], ∴—1≤2x-1≤1,解之0≤x≤1, ∴f(2x-1)得定义域为[0,1]。 例6已知已知f(x)得定义域为[-1,1],求f(x2)得定义域。 答案:—1≤x2≤1 x2≤1-1≤x≤1 练习:设得定义域就是[-3,],求函数得定义域 解:要使函数有意义,必须: 得: ∵≥0 ∴ ∴函数得定域义为: 例7 已知f(2x-1)得定义域为[0,1],求f(x)得定义域 因为2x-1就是R上得单调递增函数,因此由2x-1, x∈[0,1]求得得值域[-1,1]就是f(x)得定义域、 练习: 1已知f(3x-1)得定义域为[—1,2),求f(2x+1)得定义域。) (提示:定义域就是自变量x得取值范围) 2已知f(x2)得定义域为[-1,1],求f(x)得定义域

函数的概念及其定义域

2.1 函数概念 1.对于函数y =f (x ),以下说法正确的有( ) ①y 是x 的函数; ②对于不同的x ,y 的值也不同; ③f (a )表示当x =a 时函数f (x )的值,是一个常量; ④f (x )一定可以用一个具体的式子表示出来. A .1个 B .2个 C .3个 D .4个 2.区间(0,1)等于( ) A .{0,1} B .{(0,1)} C .{x |0

2.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1 B .y =x 0和y =1 C .f (x )=x 2和g (x )=(x +1)2 D .f (x )=(x )2x 和g (x )=x (x )2 3.函数y =21-1-x 的定义域为( ) A .(-∞,1) B .(-∞,0)∪(0,1] C .(-∞,0)∪(0,1) D .[1,+∞) 4.已知f (x )=π(x ∈R ),则f (π2)的值是( ) A .π2 B .Π C.π D .不确定 5.已知函数f (x )的定义域A ={x |0≤x ≤2},值域B ={y |1≤y ≤2},下列选项中,能表示f (x )的图像的只可能是( ) 6.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=??? c x ,x

高中函数定义域的求法

例1,求下列分式的定义域。 2 求函数y =23-x +30323-+x x ) (的定义域 解:(1)依题意可得,须是分母不能为零并且该根式也必须有意义,则 解得 x ≥3或x <2 因此函数的定义域为{X ︱x ≥3或x <2}。 (2) 要使函数有意义,则?????≠+≠-≥-. 03032023x x x ,,所以原函数的定义域为{x|x ≥32,且x ≠32}. 评注:对待此类有关于分式、根式的问题,切记关注函数的分母与被开方数即可,两者要同时考虑,所求“交集”即为所求的定义域。 例2,求下列关于对数函数的定义域 例1 函数x x y --=312log 2的定义域为 。 分析:对数式的真数大于零。 解:依题意知:0312>--x x 即0)3)(12(>--x x 解之,得321<--x x 已包含03≠-x 的情况,因此不再列出。 例3、⑴已知f(x)的定义域为[-1,1],求f(2x-1)的定义域。 (2)已知f(x)的定义域为[0,2],求函数f(2x-1)的定义域。 (3)已知f(x)的定义域为[0,2],求f(x 的平方)的定义域。 (4)已知f(2x-1)的定义域为(-1,5],求函数f(x)的定义域。 (5)已知f(2x-5)的定义域为(-1,5],求函数f(2-5x)的定义域。 例4,将长为a 的铁丝折成矩形,求矩形的面积y 关于一边长x 的函数解析式,并求函数的定义域。 总的来说,中学阶段研究的函数都还只是函数领域中的皮毛而已。但是不要因为这样,就高兴的太早了。毕竟还有很多同学对这方面一窍不通。对于每一个确定的函数,,其定义域是确定的,为了更明确、更深刻地揭示函数的本质,就产生了求函数定义域的问题。要全面认识定义域,深刻理解定义域,在实际寻求函数的定义域时,应当遵守下列规则: (1) 分式的分母不能为零; (2) 偶次方根的被开方数应该为非负数; (3) 有限个函数的四则运算得到新函数其定义域是这有限个函数的定义域交集(作 除法时还要去掉使除式为零的x 值); 的定义域求函数265)(:12-+-= x x x x f 020652≠-≥+-x x x

相关文档
最新文档