等差数列和等比数列公式

等差数列和等比数列公式

知识回顾

然数,验证)(

1

1---n n

n n a a a a 为同一常数。(2)通项公式法。(3)中项公式法:验证212-++=n n n a a a N n a a a n n n ∈=++)(22

1都成立。

3. 在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足???≤≥+001m m a a 的项数

m 使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0

1m m a a 的项数m 使得m s 取最小值。在解

含绝对值的数列最值问题时,注意转化思想的应用。

等差数列和等比数列的总结与联系

等差数列和等比数列的综合及其联系 课题设计背景: 数列是反映自然规律的基本数学模型之一。而等差数列和等比数列是学生必须掌握的两种基本数学模型,研究等差数列的通项、性质以及求和公式,并用类比的方法对等比数列进行研究是课程标准的教学要求。 课题设计目标: (1)掌握等差数列的通项公式及其前n项和公式; (2)掌握等差数列的通项公式及其前n项和公式;体验用类比的思想方法对等差数列和等比数列进行研究的活动。

例题分析: 1、已知(), f x = 利用课本推导等差数列前n 项和的公式的方法,求和: (5)(4)(3)...(5)f f f f f -+-+-+++的值 2、已知公差不为零的等差数列{n a }中,236,,a a a 组成等比数列的连续三项,求公比q 3、已知等差数列{}n a 的公差和等比数列{}n b 的公比都是11441010,1,,,;d d a b a b a b ≠=== (1)求1a 和d 的值;(2)16b 是不是数列{}n a 中的项,为什么? (二)等差数列和等比数列之间的转化 结论: (1){}n a 成等差数列,则{}(0,1)n a c c c >≠成等比数列; (2)正项数列{}n a 成等比数列,则{}log (0,1)c n a c c >≠成等差数列。类比可结合上述结论将等比数列转化为等差数列,再还原成等比数列写出有关结论。 例题分析: 1、 已知数列)}({* N n a n ∈是一个以(0)q q >为公比,以11(0)a a >为首项的等比数列,求 12lg lg ...lg n a a a +++ 2、 若数列)}({* N n a n ∈是等差数列,则有数列*123......,()n n a a a a b n N n ++++= ∈ 也是等差数列;类比上述性质,相应地:若数列)}({* N n c n ∈是等比数列,且0>n c ,则 有数列*_________________,()n d n N =∈也是等比数列。 3、 设)}({* N n a n ∈是等差数列,12n a n b ?? = ? ?? ,已知123123211 ,,88 b b b b b b ++= =求数列)}({*N n a n ∈的通项公式。 (三)学法总结: (四)课后反思:

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、…… 仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1)1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10) 1(9+=,求数列}{n a 的最大项。

等差、等比数列公式总结

一、等差数列 1.定义:)(1常数d a a n n =-+ 2.通项公式:d n a )1(a 1n -+= 3.变式:d m n a m n )(a -+= m n a a d m n --= 4.前n 项和:2 )(1n a a S n n += 或 d n n n a S n 2)1(1-+= 5.几何意义: ①d dn a d n a a n -+=-+=11)1(即q pn a n += 类似 q px y += ②n d a n d S n )2 (212-+= 即 Bn An S n +=2 类似 Bx Ax y +=2 6.}{n a 等差d a a a a a Bn An S q pn a n n n n n n n =-?+= ?+=?+=?++-11122 7.性质 ① q p n m +=+则 q p n m a a a a +=+ ② p n m 2=+ 则 p n m a a a 2=+ ③ =+=+=+--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等差 ⑤ }{n a 等差,有12+n 项,则 n S S 1n +=偶奇 ⑥ 1212-= -n S a n n 二、等比数列 1.定义:常数)(a 1q a n n =+ 2.通项公式:11a -=n n q a 3.变式: m n m n q a -=a m n m n q a a -= 4. ?????≠--==)1( 1)1()1( 11q q q a q na S n n

前n 项和:n a S n 1= )1(=q 或 q q a S n n --=11() 1 )1(≠q 5.变式:m n m n q q S S --=11 )1(≠q 6.性质: ① r p n m +=+则 r p n m a a a a ?=? ② p n m 2=+ 则 2 p n m a a a =? ③ =?=?=?--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等比 ⑤ }{n a 等比,有12+n 项 偶奇qS a a a a q a a a a S n n +=++++=++++=+1242112531)(a 三、等差与等比的类比 {}n a 等差 {}n b 等差 和 积 差 商 系数 指数 “0” “1” 四、数列求和 1.分组求和 本数列的和公式求和.进行拆分,分别利用基,则可或等比数列的和的形式数列,但通项是由等差通项虽不是等差或等比 项的和: 前如求n n n )}1({+ )2)(1(3 1 )1(21)12)(1(61 )321()321( ) ()22()11(] )1(22222222++=++++=++++++++=++++++=∴+=+n n n n n n n n n n n n S n n n n n 2.裂项相消法. ).11(11}{1 1 11+++-=??n n n n n n n a a d a a a n a a 为等差数列,项和,其中的前项为用于通 从而计算和的方法,适别裂开后,消去一部分把数列和式中的各项分

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

等比数列的通项公式(教案)

等比数列的通项公式(教案) 一、教学目标 1、掌握等比数列的通项公式,并能够用公式解决一些相关问题。 2、掌握由等比数列的通项公式推导出的相关结论。 二、教学重点、难点各种结论的推导、理解、应用。 三、教学过程 1、导入复习等比数列的定义: 通项公式: 用归纳猜测的方法得到,用累积法证明 2、新知探索例1 在等比数列中,(1)已知;(2)已知、,分析(1)根据等比数列的通项公式,得(2)可以根据等比数列的通项公式列出一个二元一次方程组解得所以问:上面的第(2)题中,可以不求而只需求得q就得到吗?分析在归纳猜测等比数列的通项公式时,有这样一系列式子:注意观察等式右边各项的下标与q的次方的和,可以发现,的表达式中,始终满足结论1 数列是等比数列,则有。再来看一下例1中(2)的另一种解法:,所以q=2,所以习题2、3(1) 2、在等比数列中,(1)已知;(2)已知、分析(1)可以根据定义和结论1给出两种解法。方法一方法二,所以q=3,所以。(2),所以例2 在243和3中间插入3个数,使这5个数

成等比数列。分析设此三个数为,公比为q,则由题意得243,,3成等比数列;,所以得故插入的三个数为81,27,9或-81,27,-9、问:观察一下例2中,当时,这5个数分别为243,-81,27,-9,3,可以发现什么规律?答:在等比数列中,当公比小于零时,数列中的奇数项同号,偶数项同号。习题2、3(1) 6、在等比数列中,,,求的值。分析得,同理得例3 已知等比数列的通项公式为,求首项和公比q、分析在例3中,等比数列的通项公式为,是一个常数与指数式的乘积,因为数列是特殊的函数,故表示这个数列的各点均在函数的图像上。问:如果一个数列的通项公式为,其中,都是不为零的常数,那么这个数列一定是等比数列吗?分析,,所以是等比数列。一般可以看作是等比数列通项公式的变形,,其中结论2 等比数列的通项公式均可写成(,为不等于零的常数)的形式。反之成立。习题2、3(1) 5、在等比数列中,(1)是否成立?是否成立?(2) (n>2)是否成立?(3)你能得到更一般的结论吗?分析 (1),所以成立。(2),所以成立。(3)从(1)(2)可以看出,等式两边各项的下表和相等,左边是同一项的平方,如果把左边换成两个不同项的乘积呢?同时,类比等差数列中的一个结论:在等差数列中,当m+n=p+q(m,n,p,q都是正整数)时,有,可以猜测:在等比数列中,当m+n=p+q(m,n,p,q都是正整数)时,有、证,所以、结论3 在等比数列中,当m+n=p+q(m,n,p,q都是

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2 -8n D .S n =12 n 2 -2n 2.(2019·长郡中学联考)已知数列{a n }满足,a n +1+2a n =0,且a 2 =2,则{a n }前10项的和等于( ) A.1-2103 B .-1-210 3 C .210-1 D .1-210 3.已知等比数列{a n }的首项为1,公比q ≠-1,且a 5+a 4=3(a 3 +a 2),则 9 a 1a 2a 3…a 9等于( ) A .-9 B .9 C .-81 D .81 4.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 5.(2019·山东省实验中学联考)已知等差数列{a n }的公差不为零,S n 为其前n 项和,S 3=9,且a 2-1,a 3-1,a 5-1构成等比数列,则S 5=( ) A .15 B .-15 C .30 D .25 二、填空题 6.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,

等比数列通项公式及性质练习

等比数列通项公式及性 质练习 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

等比数列通项公式及性质 1.若等比数列的首项为98,公比为23,3 1 n a ,则该数列的项数为( ) A .3 B .4 C .5 D .6 2.在等比数列{a n }中,a 2 010=8a 2 007,则公比q 的值为( ) A .2 B .3 C .4 D .8 3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243 4.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1等于( ) D .2 5.已知等比数列{a n },a 4=7,a 6=21,则a 8等于( ) A .35 B .63 C .21 3 D .±21 3 6.在等比数列{a n }中,a 1=1,公比|q |≠1,若a m =a 1a 2a 3a 4a 5,则m =( ) A .9 B .10 C .11 D .12 7.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( ) A .5 2 B .7 C .6 D .4 2 8.等比数列{a n }的各项均为正数,公比为q ,若q 2=4,则a 3+a 4a 4+a 5 的值为( ) B .±12 C .2 D .±2 9.(2012·新课标全国卷)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于 ( ) A .2 B .4 C .8 D .16

等比数列的通项公式基础测试

一、选择题: 1.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 () A .4 B . 2 3 C . 9 16 D .2 2.已知等比数列{}n a 中,公比2q =,且30123302a a a a ????=L ,那么36930a a a a ????L 等于 A .102 B .202 C .162 D .152 二、填空题: 3.等比数列{an}中,a 1=2,a 9=32,则q=. 4.已知一个等比数列的第5项是 94,公比是-31 ,它的第1项是. 5.在等比数列{a n }中,已知a 1=2 3 ,a 4=12,则q =_________,a n =______. 6.在81和3中间插入2个数和,使这4个数成等比数列. 7.在等比数列{a n }中,a n >0,且a n +2=a n +a n +1,则该数列的公比q =____. 8.在等比数列{}n a 中,3620,160a a ==,则n a =. 9.等比数列中,首项为98,末项为13,公比为23 ,则项数n 等于. 10.在等比数列中,n a >0,且21n n n a a a ++=+,则该数列的公比q 等于. 11.等比数列{}n a 中,已知12324a a +=,3436a a +=,则56a a += 12.数列{a n }中,a 1,a 2-a 1,a 3-a 2,…,a n -a n -1…是首项为1、公比为3 1 的等比数列,则a n 等于。 三、解答题: 13.在等比数列{a n }中, (1)已知{}n a 是递增的等比数列,,4,2342=-=a a a 则{}n a 的公比q ,及通项公式n a (2)已知n a a a a a n 求,2 1 ,18,367463= =+=+ 14.已知数列满足a 1=1,a n +1=2a n +1(n ∈N*) (1) 求证数列{a n +1}是等比数列; (2) 求{a n }的通项公式. 15.一个等比数列{}n a 中,701333241=+=+a a a a ,,求这个数列的通项公式。 一、选择题 1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于()

等差数列与等比数列

等差数列与等比数列 一.选择题 (1)在等差数列{a n }中, a 7=9, a 13=-2, 则a 25= ( ) A -22 B -24 C 60 D 64 (2) 在等比数列{a n }中, 存在正整数m, 有a m =3, a m+5=24, 则, a m+15= ( ) A 864 B 1176 C 1440 D 1536 (3)已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( ) A –4 B –6 C –8 D –10 (4)设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列{}n a 的前n 项和,则 ( ) A S 4+><,则使前n 项和0n S >成 立的最大自然数n 是: ( ) A .4005 B .4006 C .4007 D .4008 (7) 数列{a n }的前n 项和S n =3n -c, 则c=1是数列{a n }为等比数列的 ( ) A 充分非必要条件 B 必要非充分条件 C 充分必要条件 D 既非充分又非必要条件 (8) 在等比数列{a n }中, a 1<0, 若对正整数n 都有a n 1 B 0

等差数列与等比数列的类比练习题(带答案)

等差数列与等比数列的类比 一、选择题(本大题共1小题,共5.0分) 1.记等差数列{a n}的前n项和为S n,利用倒序求和的方法得S n=n(a1+a n) 2 ; 类似地,记等比数列{b n}的前n项积为T n,且b n>0(n∈N?),类比等差数列求和的方法,可将T n表示成关于首项b1,末项b n与项数n的关系式为( ) A. (b1b n)n B. nb1b n 2C. nb1b n D. nb1b n 2 1. A 二、填空题(本大题共9小题,共45.0分) 2.在公差为d的等差数列{a n}中有:a n=a m+(n?m)d(m、n∈N+), 类比到公比为q的等比数列{b n}中有:______ . 2. b n=b m?q n?m(m,n∈N?) 3.数列{a n}是正项等差数列,若b n=a1+2a2+3a3+?+na n 1+2+3+?+n ,则数列{b n}也为等差数列,类比上述结论,写出正项等比数列{c n},若d n=______ 则数列{d n}也为等比数列. 3. (c 1 c22c33…c n n)1 4.等差数列{a n}中,有a1+a2+?+a2n+1=(2n+1)a n+1,类比以上性 质,在等比数列{b n}中,有等式______ 成立. 4. b1b2…b2n+1=b n+1 2n+1 5.若等比数列{a n}的前n项之积为T n,则有T3n=(T2n T n )3;类比可得到以下正确结论:若等差数列的前n项之和为S n,则有______ . 5. S3n=3(S2n?S n) 6.已知在等差数列{a n}中,a11+a12+?+a20 10=a1+a2+?a30 30 ,则在等比数列{b n} 中,类似的结论为______ 10b11?b12?…?b20=30b1?b2?b3?…?b30 7.在等比数列{a n}中,若a9=1,则有a1?a2…a n=a1?a2…a17?n(n< 17,且n∈N?)成立,类比上述性质,在等差数列{b n}中,若b7=0,则有______ . b1+b2+?+b n=b1+b2+?+b13?n(n<13,且n∈N?)

高中数学 数列 版块三 等比数列 等比数列的通项公式与求和完整讲义(学生版)

学而思高中完整讲义:数列.版块三.等比数列-等比数列的通项公式 与求和.学生版 【例1】 在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和 n S =_______. 【例2】 等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 【例3】 设等比数列{}n a 的前n 项和为n S ,若 63 3S S =,则96=S S ( ) A .2 B . 7 3 C .83 D .3 【例4】 设{}n a 是公比为q 的等比数列,1>q ,令1(12)=+=L n n b a n ,,,若数列{}n b 有 连续四项在集合{}5323193782--, ,,,中,则6=q . 【例5】 等比数列{}n a 的首项11a =-,前n 项和为n S ,公比1q ≠,若 105S S =3132 ,则105a a 等于 . 【例6】 等比数列{}n a 中,1512a =,公比1 2 q =-,用n ∏表示它前n 项的积:12...n n a a a ∏=, 则1∏,2∏,…,n ∏中最大的是_______. 【例7】 已知数列{}n a 的前n 项和为n S ,1 (1)()3 N n n S a n *=-∈. ⑴求1a ,2a ,3a 的值; 典例分析

⑵求n a 的通项公式及10S . 【例8】 在等比数列{}n a 中,12327a a a ??=,2430a a += 试求:⑴1a 和公比q ;⑵前6项的和6S . 【例9】 在等比数列{}n a 中,已知对任意正整数n ,有21n n S =-,则 222 12n a a a +++=L ________. 【例10】 求和:2(1)(2)(),(0)n a a a n a -+-++-≠L . 【例11】 在等比数列{}n a 中,423a = ,35209a a +=.若数列{}n a 的公比大于1,且3log 2 n n a b =,求数列{}n b 的前n 项和n S . 【例12】 在各项均为正数的等比数列{}n b 中,若783b b ?=,则3132log log b b ++ (314) log b +等于( ) A .5 B .6 C .7 D .8 【例13】 等比数列}{n a 中,已知对任意自然数n ,=+?+++n a a a a 32121n -, 则222 12n a a a ++???+=( ) A .()221n - B .()1213n - C .41n - D .()1 413 n -

(完整版)高考等差等比数列知识点总结

高考数列知识点 等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:* 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212 n n n n a a S n a +++++= = + 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数) 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列 7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值 法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性 *n N ∈。 法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由?? ?≤≥+0 1n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

等差数列与等比数列十大例题

等差数列与等比数列十大例题 例1、已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 1 1 n a -(n ∈N *),求数列{}n b 的前n 项和n T . 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有 11 27 21026a d a d +=?? +=?,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1) 3n+22 ?=2n +2n 。 (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n = 2 1 1n a -=21=2n+1)1-(114n(n+1)?=111(-)4n n+1 ?, 所以n T = 111111(1-+++-)4223n n+1?- =11(1-)=4n+1?n 4(n+1) , 即数列{}n b 的前n 项和n T = n 4(n+1) 。 【命题意图】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。 例2、 设n S 为数列{}n a 的前n 项和,2n S kn n =+,* n N ∈,其中k 是常数. (I ) 求1a 及n a ; (II )若对于任意的* m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值. 解(Ⅰ)当1,111+===k S a n , 12)]1()1([,2221+-=-+--+=-=≥-k kn n n k n kn S S a n n n n (*) 经验,,1=n (*)式成立, 12+-=∴k kn a n (Ⅱ)m m m a a a 42,, 成等比数列,m m m a a a 42 2.=∴, 即)18)(12()14(2 +-+-=+-k km k km k km ,整理得:0)1(=-k mk ,

等差数列与等比数列的基本运算

一.课题:等差数列与等比数列的基本运算 二.教学目标:掌握等差数列和等比数列的定义,通项公式和前n 项和的公式,并能利用这些知识 解决有关问题,培养学生的化归能力. 三.教学重点:对等差数列和等比数列的判断,通项公式和前n 项和的公式的应用. 四.教学过程: (一)主要知识: 1.等差数列的概念及其通项公式,等差数列前n 项和公式; 2.等比数列的概念及其通项公式,等比数列前n 项和公式; 3.等差中项和等比中项的概念. (二)主要方法: 1.涉及等差(比)数列的基本概念的问题,常用基本量1,()a d q 来处理; 2.使用等比数列前n 项和公式时,必须弄清公比q 是否可能等于1还是必不等于1,如果不能确定则需要讨论; 3.若奇数个成等差数列且和为定值时,可设中间三项为,,a d a a d -+;若偶数个成等差数列且和为定值时,可设中间两项为,a d a d -+,其余各项再根据等差数列的定义进行对称设元.若干个数个成等比数列且积为定值时,设元方法与等差数列类似. 4.在求解数列问题时要注意运用函数思想,方程思想和整体消元思想,设而不求. (三)例题分析: 例1.(1)设数列{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 . (2)已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a a a a a ++++=1316 . 例2.有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个书的和是12,求这四个数. 解:设这四个数为:2 (),,,a d a d a a d a +-+,则2 ()16212a d a d a a d ?+-+=???+=? 解得:48a d =??=?或96a d =??=-?,所以所求的四个数为:4,4,12,36-;或15,9,3,1. 例3.由正数组成的等比数列{}n a ,若前2n 项之和等于它前2n 项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{}n a 的通项公式. 解:当1q =时,得11211na na =不成立,∴1q ≠, ∴221122331111 (1)11(1)1111n n a q a q q q q a q a q a q a q ?--=?--??+=?? 由①得110 q =,代入②得110a =, ∴21()10 n n a -=. 说明:用等比数列前n 项和公式时,一定要注意讨论公比是否为1. 例4.已知等差数列110,116,122,, ① ②

等差等比数列知识点梳理及经典例题

A 、等差数列知识点及经典例题 一、数列 由n a 与n S 的关系求n a 由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段 函数的形式表示为1 1(1)(2)n n n S n a S S n -=?=?-≥?。 〖例〗根据下列条件,确定数列{}n a 的通项公式。 分析:(1)可用构造等比数列法求解; (2)可转化后利用累乘法求解; (3)将无理问题有理化,而后利用n a 与n S 的关系求解。 解答:(1) (2) …… 累乘可得, 故 (3)

二、等差数列及其前n 项和 (一)等差数列的判定 1、等差数列的判定通常有两种方法: 第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。 2、解选择题、填空题时,亦可用通项或前n 项和直接判断。 (1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列; (2)前n 项和法:若数列{n a }的前n 项和n S 是2 n S An Bn =+的形式(A ,B 是常数),则{n a }是等差 数列。 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。 〖例〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2 n n n n S S S S n a ---+=≥=g (1)求证:{ 1 n S }是等差数列; (2)求n a 的表达式。 分析:(1)1120n n n n S S S S ---+=g → 1n S 与1 1n S -的关系→结论; (2)由 1 n S 的关系式→n S 的关系式→n a

等比数列的通项公式

等比数列的通项公式 教学重难点: 1、等比数列的概念和性质 2、如何判断一个等比数列 3、构造辅助数列转化为等比数列 授课内容: 一、 知识点 1、 等比数列的概念 (1) 文字语言:如果一个数列从第二项起,每一项与它前面相邻的一项之 比为常数,则这个数列为等比数列 (2) 数列{}n a 中,1n n a q a +=(常数),则称n a 为等比数列 注:等比数列中不能出现0 2、 通项公式 (1) 通项公式:11n n m n m a a q a q --== (2) 等比中项:a,G,b 成等比数列,则G 叫做a 与b 的等比中项,此时 G= 注意:①在a,b 同号时,a,b 的等比中项有两个;异号时,没有等比中 项 ②在一个等比数列中,从第2项起,每一项(有穷数列的末项) 都是它的前一项与后一项的等比中项 ③ “a,G,b 成等比数列” ? “2(,0)G ab a b =均不为”,可以 用它来判断或证明三数成等比数列 (3) 通项公式的应用: 32324123112-1 +++++n n n n a a a a a a a q a a a a a a a -+??====??==?? 例1、 已知等比数列{}n a 中,5a =7,8a =56,求数列{}n a 的通项公式n a

例2、在等比数列{}n a 中,已知36471+=36+=18=2 n a a a a a ,,,求n 3、 性质 (1)若(,,,),n m p q m n p q m n p q N a a a a *+=+∈?=?则 (2)若等比数列{}n a 的公比为q,则11q n a ?????? 是以为公比的等比数列 (3)一组等比数列{}n a 中,下标称等差数列的向成等比数列 (4)若{}n a 与{}n b 均为等比数列,则{}n n a b 也为等比数列 (5)从数列的分类来说: {}110,10,01n a q a q a ?????当或时的数列的递增数列 {}110,010,1n a q a q a ?????当或时的数列的递减数列 当q=1时,数列{}n a 为常数数列 当q ?0时,数列{}n a 为摆动数列 例、实数等比数列{}n a 中,37112712++=28=512n a a a a a a a ,,求

(完整版)等差等比数列知识点总结

1.等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即 d a a n n =--1(d 为常数)(2≥n );. 2.等差中项: (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 ( 2 ) 等 差 中 项 : 数 列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 3.等差数列的通项公式: 一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为: ()d n a a n 11-+= 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

高中数学必修5:等差数列与等比数列知识对比表

高中数学必修5:等差数列与等比数列知识比较一览表等差数列等比数列 定义一般地,如果一个数列{} n a从第2项起,每一项与它 的前一项的差等于同一个常数d,那么这个数列就叫 做等差数列.这个常数d叫公差. 等差数列的单调性: 数列{} n a为等差数列,则 当公差0 d>,则为递增等差数列, 当公差0 d<,则为递减等差数列, 当公差0 d=,则为常数列. 一般地,如果一个数列{} n a从第2项起,每一项 与它的前一项的比等于同一个常数q,那么这个数 列就叫等比数列.这个常数q叫公比. 等比数列的单调性: 数列{} n a为等比数列,则 当1 q>时,1 1 0{} 0{} {n n a a a a > < ,则为递增数列 ,则为递减数列; 当1 q< 0<时,1 1 0{} 0{} {n n a a a a > < ,则为递减数列 ,则为递增数列 当q=1时,该数列为常数列,也为等差数列; 当q<0时,该数列为摆动数列. 判定方法等差数列的判定方法 (1)定义法:若d a a n n = - -1 或 d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. (2)等差中项:数列{}n a是等差数列 )2 ( 2 1 1- ≥ + = ? + n a a a n n n2 1 2 + + + = ? n n n a a a (3)通项公式:b kn a n + =(b k,是常数) ?数列{}n a是等差数列 (4)前n项和公式:数列{}n a是等差数列 ?2 n S An Bn =+,(其中A、B是常数)。 等比数列的判定方法 (1)用定义:对任意n,都有 1 1 (0) n n n n n a a qa q q a a + + ==≠ 或为常数, ?{} n a为等比数列 (2)等比中项:2 11 n n n a a a +- =( 11 n n a a +- ≠0) ?{} n a为等比数列 (3)通项公式:()0 n n a A B A B =??≠ ?{} n a为等比数列 (4)前n项和公式: () '',,',' n n n n S A A B S A B A A B A B =-?=- 或为常数 ?{} n a为等比数列 证明方法等差数列的证明方法:只能依据定义: 定义法:若d a a n n = - -1 或d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. 等比数列的证明方法:只能依据定义: 若()()* 1 2, n n a q q n n N a - =≠≥∈ 0且或1 n n a qa + = ?{} n a为等比数列 递推关系① 121 n n a a a a + -=-(* n N ∈) ② 1 n n a a d + -=(* n N ∈) ③ 11 n n n n a a a a +- -=-(* 2, n n N ≥∈) ①12 1 n n a a a a +=( * n N ∈) ②1n n a q a +=(* 0, q n N ≠∈) ③1 1 n n n n a a a a + - =(* 2, n n N ≥∈) 通项公式① 11 (1) n a a n d dn a d =+-=+-=b kn+ 推广:()d m n a a m n - + =(m、* n N ∈) 特别的,当m=1时,便得到等差数列的通项公式. 此公式比等差数列的通项公式更具有一般性. m n a a d m n - - =, 1 1 - - = n a a d n,()d n a a n 1 1 - - = ② n a pn q =+(* ,, p q n N ∈ 为常数) 是关于n的一次函数,且斜率为公差d ③由 n S的定义, n a= ? ? ? ≥ - = - )2 ( )1 ( 1 1 n S S n S n n (* n N ∈) ①() 11 1 n n n n a a a q q A B A B q - ===??≠ 推广:m n m n q a a- ? =(m、* n N ∈) 特别的,当m=1时,便得到等比数列的通项公式., 此公式比等比数列的通项公式更具有一般性. n m n m a q a -=, 1 1 a a q n n= -,n n q a a- ? =1 1 ②n n q p a? =(* ,,0,0, p q q p n N ≠≠∈ 是常数) ③由 n S的定义, () () ? ? ? ? ? ≥ = = - 2 1 1 1 n S S n S a n n n (* n N ∈)

相关文档
最新文档