高中数学立体几何常考证明题汇总(全)

高中数学立体几何常考证明题汇总(全)
高中数学立体几何常考证明题汇总(全)

新课标立体几何常考证明题汇总

考点:证平行(利用三角形中位线),异面直线所成的角

1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形

(2) 若

BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。

考点:线面垂直,面面垂直的判定

2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE;

(2)平面CDE ⊥平面ABC 。

考点:线面平行的判定

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//AC 平面BDE 。

A

E

D 1

C

B 1

D

C

B

A

A

H

G

F

E

D

C

B A

E

D

B

C

考点:线面垂直的判定

4、已知ABC ?中90ACB ∠= ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .

考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.

求证:(1) C 1O ∥面11AB D ;(2)1

AC ⊥面11AB D .

考点:线面垂直的判定

6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面.

考点:线面平行的判定(利用平行四边形)

7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .

S

D

C

B

A

D 1O

D

B A

C 1

B 1

A 1

C

A

1

N

M

P

C

B

A

考点:线面垂直的判定,三角形中位线,构造直角三角形

8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,

且2

EF AC =

, 90BDC ∠= ,求证:BD ⊥平面ACD

考点:三垂线定理

9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,

3AN NB = (1)求证:MN AB ⊥;(2)当90APB ∠=

,24AB BC ==时,求MN 的长。

考点:线面平行的判定(利用三角形中位线)

10、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点. 求证:平面1D EF ∥平面BDG .

考点:线面平行的判定(利用三角形中位线),面面垂直的判定 11、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//AC 平面BDE ; (2)求证:平面1A AC ⊥平面BDE .

考点:线面垂直的判定,构造直角三角形

12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E

为BC 的中点.

(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.

考点:线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)

13、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .

(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;

(3)求二面角A BC P --的大小.

考点:线面垂直的判定,运用勾股定理寻求线线垂直

14、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1

AO ⊥平面MBD .

考点:线面垂直的判定

15、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,

作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .

考点:线面垂直的判定,三垂线定理

16、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D

A

C

考点:面面垂直的判定(证二面角是直二面角)

17、如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面的所有直线都_____于另一个平面. 二.知识点梳理 要点诠释:定义中“平面的任意一条直线”就是指“平面的所有直线”,这与“无数条直线”不同(线 线垂直线面垂直) Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二 面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)

二面角的平面角的三个特征: ⅰ. 点在棱上 ⅱ. 线在面 ⅲ. 与棱垂直 Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;围:000180θ<<. 知识点四、平面和平面垂直的定义和判定 (垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼) 三.常用证明垂直的方法 立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用直径所对的圆周角是直角 (1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ; (第2题

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

高中数学立体几何证明题汇总

高中数学立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D C B D C B A A H G F E D C B A E D B C S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面垂直的判定 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面 FBD . 考点:线面平行的判定(利用平行四边形) 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点, 且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 考点:线面垂直的判定,三角形中位线,构造直角三角形 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB = (1)求证:MN AB ⊥;(2)当90APB ∠=o ,24AB BC ==时, 求MN 的长。 考点:三垂线定理 10、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、 AD 、11C D 的中点.求证:平面1D EF ∥平面BDG . 考点:线面平行的判定(利用三角形中位线) 11、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . 考点:线面平行的判定(利用三角形中位线),面面垂直的判定 12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点. (1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 考点:线面垂直的判定,构造直角三角形 A 1 A B 1 C 1 D 1 D G E F

(完整版)必修二立体几何11道经典证明题

1.如图,三棱柱 ABC — A i B i C i 中,侧棱垂直底面, 1 / ACB=90 , AC=BC= gAA i , D 是棱 AA i 的中点 (I )证明:平面 BDC i 丄平面BDC (n)平面BDC i 分此棱柱为两部分,求这两部分体积的 比? 2?如图5所示,在四棱锥 P ABCD 中, AB 平面 PAD , AB//CD , PD AD , E 是 1 PB 的中点,F 是CD 上的点且 DF —AB , 2 PH PAD 中AD 边上的高? (1) 证明:PH 平面ABCD ; (2) 若 PH i , AD 2, FC i ,求三 (3)证明:EF 平面PAB . 3.如图,在直三棱柱ABC ABG 中,AB i AC i , D ,E 分 别是棱 BC , CC i 上的点(点D 不同于点C ),且AD DE , F 为B,G 的 中点. 求证:(i )平面ADE 平面BCGB,; (2)直线AF 〃平面ADE . 棱锥E BCF 的体积 ; 妥5小

4. 如图,四棱锥P—ABCD中,ABCD为矩形,△ PAD为等腰直角三角 形,/ APD=90 面PAD丄面ABCD,且AB=1 , AD=2 , E、F分别为 PC和BD的中点. (1) 证明:EF//面PAD ; (2) 证明:面PDC丄面PAD ; (3) 求四棱锥P—ABCD的体积. 5. 在如图所示的几何体中,四边形ABCD是正方形, MA 平面ABCD , PD//MA , E、G、F 分别为MB、PB、 PC 的中点,且AD PD 2MA. (I)求证:平面EFG 平面PDC ; (II )求三棱锥P MAB与四棱锥P ABCD的体积之比. B

高中数学立体几何专项练习

立体几何简答题练习 1、正方形ABCD 与正方形ABEF 所在平面相交于AB,在AE 、BD 上各有一点P 、Q,且AP=DQ 。求证:PQ ∥平面BCE.(用两种方法证明) 2、如图所示,P 是平行四边形ABCD 所在平面外一点,E 、F 分别在PA 、BD 上,且PE:EA=BF:FD,求证:EF ∥平面PBC. 3、如图,E ,F ,G ,H 分别是正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点。 求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .

4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ; (2)MN 与平面PAD 是否平行?试证明你的结论。 5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。 (1)求证:SB ∥平面ACM ; (2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。 6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD= 2 2 AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC; (3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为3 1 ?说明理由.

必修二立体几何经典证明题

1、垂直于同一条直线的两条直线一定 A 、平行 B 、相交 C 、异面 D 、以上都有可能 2、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b M , a ∥ b ,则a ∥M ;③若a ⊥ c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 3.对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ?α,b ?α B .a ?α,b ∥α C .a ⊥α,b ⊥α D .a ?α,b ⊥α 4.下面四个命题: ①若直线a ,b 异面,b ,c 异面,则a ,c 异面; ②若直线a ,b 相交,b ,c 相交,则a ,c 相交; ③若a ∥b ,则a ,b 与c 所成的角相等; ④若a ⊥b ,b ⊥c ,则a ∥c . 其中真命题的个数为( ) A .4 B .3 C .2 D .1 5.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论: ①EF ⊥AA 1;②EF ∥AC ;③EF 与AC 异面;④EF ∥平面ABCD . 其中一定正确的有( ) A .①② B .②③ C .②④ D .①④ 6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( ) A .若a ,b 与α所成的角相等,则a ∥b B .若a ∥α,b ∥β,α∥β,则a ∥b C .若a ?α,b ?β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 7.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( ) A .A B ∥m B .A C ⊥m C .AB ∥β D .AC ⊥β 1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是 棱AA 1的中点

必修二立体几何常考证明题

必修二立体几何常考证明题 一.证明线线平行,线面平行,面面平行 1.利用三角形中位线 2. 利用平行四边形 考点1:线面平行的判定(利用三角形中位线) 例1:如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点, 求证: 1//AC 平面 BDE 。 考点2:线面平行的判定(利用平行四边形) 例2:已知正方体111 1 ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ; 练习: 1、如图,在底面是矩形的四棱锥ABCD P -中,⊥PA 面ABCD ,E 、F 为别为PD 、 AB 的中点,求证:直线AE ∥平面PFC A E D 1 C B 1 D C B A D 1O D B A C 1 B 1 A 1 C

2正三棱柱ABC -A 1B 1C 1的底面边长为8,侧棱长为6,D 为AC 中点。 (1)求证:直线AB 1∥平面C 1DB ; 3、 如图,已知ABCD PA 矩形 所在平面,N M 、分别为PC AB 、的中点; (Ⅰ)求证:PAD MN 平面//; 4、如图,在三棱锥D-ABC 中,已知△BCD 是正三角形,AB ⊥平面BCD ,AB=BC=a ,E 为 BC 的中点,F 在棱AC 上,且AF=3FC . (1)求三棱锥D-ABC 的表面积;(2)求证AC ⊥平面DEF ; (3)若M 为BD 的中点,问AC 上是否存在一点N ,使MN ∥平面DEF ?若存在,说明点N 的位置;若不存在,试说明理由. A 1 C 1 C B A B 1

考点3:面面平行的判定 例7:如图,在正方体111 1 ABCD A BC D 中,E 、F 、G 分别是AB 、AD 、1 1 C D 的中点. 求证:平面1D EF ∥平面BDG . 5、棱长为a 的正方体AC 1中,设M 、N 、E 、F 分别为棱A 1B 1、A 1D 1、C 1D 1、B 1C 1的中点. (1)求证:E 、F 、B 、D 四点共面; (2)求证:面AMN ∥面EFBD .

高中数学立体几何专题证明题训练

A P B C F E D 立体几何专题训练 1.在四棱锥P -ABCD 中,PA =PB .底面ABCD 是菱形, 且∠ ABC =60°.E 在棱PD 上,满足DE =2PE ,M 是AB 的中点. (1)求证:平面PAB ⊥平面PMC ; (2)求证:直线PB ∥平面EMC . 2.如图,正三棱柱ABC —A 1B 1C 1的各棱长都相 等, D 、 E 分别是CC 1和AB 1的中点,点 F 在BC 上且满 足BF ∶FC =1∶3. (1)若M 为AB 中点,求证:BB 1∥平面EFM ; (2)求证:EF ⊥BC 。 3.如图,在长方体1111ABCD A B C D -中,,E P 分别是 11,BC A D 的中点,M 、N 分别是1,AE CD 的中点,1,2AD AA a AB a === (1)求证://MN 面11ADD A (2)求三棱锥P DEN -的体积 4如图1,等腰梯形ABCD 中,AD ∠ο 60⊥⊥⊥ 4a 2a (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. 6如图,等腰梯形ABEF 中,//AB EF ,AB =2, 1AD AF ==,AF BF ⊥,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直. (Ⅰ)求证:AF ⊥平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ; (Ⅲ)求三棱锥C BEF -的体积. 7在直三棱柱111C B A ABC -中,,900=∠ABC E 、F 分别为 11A C 、11B C 的中点,D 为棱1CC 上任一点. (Ⅰ)求证:直线EF ∥平面ABD ;(Ⅱ)求证:平面ABD ⊥平面11BCC B 8已知正六棱柱111111ABCDEF A B C D E F -的所有棱长均为2,G 为 AF 的中点。 (1)求证:1F G ∥平面11BB E E ; (2)求证:平面1F AE ⊥平面11DEE D ; D A B C P E M A B D C E A B C D E P F A B C D E F M O C 1 A B C D E F A 1 B 1

高中数学立体几何常考证明题汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1//,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 A E D 1 C B 1 D C B A A H G F E D C B A E D B C

高中数学立体几何常考证明题汇总97186

立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成 的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =? ?⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC A E D 1 C B 1 D C B A A H G F E D C B A E D B C

又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?= AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面1 11AC B D ⊥即 同理可证 11A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 6、正方体''''ABCD A B C D -中,求证: (1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面垂直的判定 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:(1)由B 1B ∥DD 1,得四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD , S D C B A D 1O D B A C 1 B 1 A 1 C A 1 B 1 C 1 D 1 F

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

高中数学立体几何常考证明题汇总(全)

新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//AC 平面BDE 。 A E D 1 C B 1 D C B A A H G F E D C B A E D B C

考点:线面垂直的判定 4、已知ABC ?中90ACB ∠= ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面垂直的判定 6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . S D C B A D 1O D B A C 1 B 1 A 1 C A 1

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

空间几何所有证明题

空间几何证明 1、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 2、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 3、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面; A E D 1 C B 1 D C B A S D C B A

4、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; 5、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点. 求证:平面1D EF ∥平面BDG . 6、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . A A B 1 C 1 C D 1 D G E F

7、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ;

3. 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE ,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4. 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5. 证明:(1)连结11A C ,设11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证11A C AD ⊥, 又1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 考点:线面垂直的判定

高中立体几何证明题精选

1、已知正方体 1111 ABCD A B C D -,O是底ABCD对角线的交点. 求证:(1) C1O∥面 11 AB D;(2) 1 AC⊥面 11 AB D. 2、正方体'''' ABCD A B C D -中, 求证:(1)'' AC B D DB ⊥平面;(2)'' BD ACB ⊥平面. 3、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C; (2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD. D1 O D B A C1 B1 A1 C A1 A B1 C1 D1 D G E F

4、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC = , 90BDC ∠=,求证:BD ⊥平面ACD 5、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点, 3AN NB = (1)求证:MN AB ⊥; 6、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .

7、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE . 8、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点. 求证:DE ⊥平面PAE ; 9、如图,在四棱锥P ABCD -中,底面ABCD 是0 60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;

新课标立体几何常考平行证明题汇总

新课标立体几何常考平行证明题汇总 立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法: (1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。 3、如图,在体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE ,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 5、已知体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A D 1O D B A C 1 B 1 A 1 C

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

高中数学立体几何常考证明题汇总1

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=23,AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 A H G F E D C B A

证明:(1) BC AC CE AB AE BE =? ?⊥?=? 同理,AD BD DE AB AE BE =??⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//AC 平面 BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1AC 在平面 BDE 外 ∴1//AC 平面 BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠= ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC S A B C ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

高中数学立体几何常考证明题汇总

新课标立体几何常考证明题汇总 令狐采学 1、已知四边形ABCD 是空间四边形, ,,,E F G H 分别是边 ,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的 角和EG 、BD 所成的角。 证明:在ABD ?中, ∵,E H 分别是,AB AD 的中点∴1//,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD = ∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =? ?⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?=∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC ,∴平面CDE ⊥平面ABC A H G F E D C B A E D B C

考点:线面垂直,面面垂直的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证:1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵°BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)C1O∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设11111 A C B D O ?=,连结1AO ∵1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A1C1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O1C1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C1O∥面11AB D (2)1CC ⊥面1111A B C D 11!CC B D ∴⊥ 又1111A C B D ⊥∵, 1111B D AC C ∴⊥面1 11AC B D ⊥即 同理可证11A C AD ⊥, 又1111D B AD D ?= A E D 1 C B 1 D C B A S D C B A D 1 O D B A C 1 B 1 A 1 C

相关文档
最新文档