高二数学复数的四则运算1

高中数学复数专题知识点整理

专题二 复数 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解

高中数学复数

第1章:复数与复变函数 §1 复数 1.复数域 形如iy x z +=的数,称为复数,其中y x ,为实数。实数x 和实数y 分别称为复数iy x z +=的实部与虚部。记为 z x Re =, z y Im = 虚部为零的复数可看成实数,虚部不为零的复数称为虚数,实部为零虚部不为零的复数称为纯虚数。复数iy x z -= 和iy x z +=称为互为共轭复数,z 的共轭复数记为z 。 设 ,复数的四则运算定义为 加(减)法: 乘法: 除法: 相等: 当且仅当 复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+ ②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ?=? ④乘法结合律 321321)()(z z z z z z ??=?? ⑤乘法对加法的分配律 3121321)(z z z z z z z ?+?=+? 全体复数在引入相等关系和运算法则以后,称为复数域. 在复数域中,复数没有大小. 正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示。

例 设i 3,i 5221+=-=z z ,求 2 1 z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。 解 为求 2 1 z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=??=z z z z z z z 2.复平面 一个复数iy x z +=本质上由一对有序实数唯一确定。于是能够确定平面上全部的点和全体复数间一一对应的关系。如果把x 和y 当作平面上的点的坐标,复数z 就跟平面上的点一一对应起来,这个平面叫做复数平面或z 平面,x 轴称为实轴,y 轴称为虚轴. 在复平面上,从原点到点 所引的矢量 与复数z 也构成一一对应 关系,且复数的相加、减与矢量相加、减的法则是一致的,即满足平行四边形法则,例如: 这样,构成了复数、点、矢量之间的一一对应关系. 3. 复数的模与辐角 向量 的长度称为复数 的模或绝对值,即:

高二数学复数复习

高二数学复数复习 一、复数的基本概念 1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②21i =-;这样方程 21x =-就有解了,解为x i =或x i =- 2、复数的概念 (1)定义:形如bi a +(R b a ∈,)的数叫做复数,其中i 叫做虚数单位,a 叫做 ,b 叫做 。全体复数所成的集合C 叫做复数集。复数通常用字母z 表示 (2)分类: 例题:当实数m 为何值时,复数226(2)m m z m m i m +-=+-为: (1)实数;(2)虚数;(3)纯虚数. 二、复数相等 ),,,(,R d c b a d b c a di c bi a ∈==?+=+ 也就是说,两个复数相等,充要条件是 注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小 例题:已知21(3),,,x i y y i x y R -+=+-∈其中则x = , y = . 三、共轭复数 bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==?,bi a z +=的共轭复数记作 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做 ,y 轴叫做 。显然,实轴上的点都表示实数;除了 外,虚轴上的点都表示纯虚数。 2、复数的几何意义

复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→ ),(R b a ∈是 关系 例题:复平面内)6,2(=→AB ,已知→→AB CD //,求→ CD 对应的复数。 3、复数的模: 向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z = 若bi a z +=1,di c z +=2,则21z z -表示 之间的,即12z z -=例题:已知i z +=2,求i z +-1的值 五、复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ?êR ①i d b c a di c bi a z z )()(21+++=+++=± ②i ad bc bd ac di c bi a z z )()()()(21++-=+?+=? ③2 221)()()()())(()()(d c i ad bc bd ac di c di c di c bi a di c bi a z z +-++=-?+-+=++= 例题:(1) )35()43i i --++(; (2))45)(3-4i i --(; (3)i i 311++; (4)i i i i +--13222-1 (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行. 如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意 义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→. 例题:ABCD 是复平面内的平行四边形,,,A B C 三点对应的复数分别是i 31+,i -,i +2,则点D 对应的复数为 六、常用结论 (1)i ,12-=i ,i i -=3,14=i =675i (2)自己证明:i i 2)1(2=+,i i 2)1(2-=-,1)2 321(3=±-i ,

复数的四则运算同步练习题(文科)(附答案)

复数的四则运算同步练习题 一、选择题 1. 若复数z 满足z +i -3=3-i ,则z 等于 ( D ) A .0 B .2i C .6 D .6-2i 2. 复数i +i 2在复平面内表示的点在( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 复数z 1=3+i ,z 2=-1-i ,则z 1-z 2等于( C ) A .2 B .2+2i C .4+2i D .4-2i 4. 设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( D ) A .1+i B .2+I C .3 D .-2-i 5. 已知|z |=3,且z +3i 是纯虚数,则z 等于( B ) A .-3i B .3i C .±3i D .4i 6. 复数-i +1i 等于( A ) A .-2i B.12i C .0 D .2i 7. i 为虚数单位,1i +1i 3+1i 5+1 i 7等于( A ) A .0 B .2i C .-2i D .4i 8. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D ) A .a =1,b =1 B .a =-1,b =1 C .a =-1,b =-1 D .a =1,b =-1 9. 在复平面内,复数i 1+i +(1+3i)2对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A ) A.34 B.43 C .-43 D .-34 11. 若z =1+2i i ,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i 12.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 21 21- C .i -1 D .i +1 13.=++-i i i 1) 21)(1(( C ) A .i --2 B .i +-2 C .i -2 D .i +2 14. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A ) A .4+2i B .2+i C .2+2i D .3+i 15. 已知a +2i i =b +i(a ,b ∈R ),其中i 为虚数单位,则a +b 等于( B ) A .-1 B .1 C .2 D .3 16.若x -2+y i 和3x -i 互为共轭复数,则实数x 与y 的值是( D ) A .x =3,y =3 B .x =5,y =1 C .x =-1,y =-1 D .x =-1,y =1 17.在复平面内,复数i 1+i +(1+3i)2对应的点位于( B ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 18.设i 是虚数单位,_ z 是复数z 的共轭复数,若,,则z =( A ) (A )1+i (B )1i - (C )1+i - (D )1-i - 19.若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为( D ) (A)-4 (B )-45 (C )4 (D )45 20.设复数z 满足,2)1(i z i =-则z =( A ) (A )i +-1 (B )i --1 (C )i +1 (D )i -1 21.复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为( D )

(完整word版)高中数学-复数专题

复数专题 一、选择题 1 .(2012年高考(天津理)) i 是虚数单位,复数7= 3i z i -+ ( ) A .2i + B .2i - C .2i -+ D .2i -- 2 .(2012年高考(新课标理))下面是关于复数2 1z i = -+的四 个命题:其中的真命 题为 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1- ( ) A .23,p p B .12,p p C .,p p 24 D .,p p 34 3 .(2012年高考(浙江理))已知i 是虚数单位,则 3+i 1i -= ( ) A .1-2i B .2-i C .2+i D .1+2i 4 .(2012年高考(四川理))复数2(1)2i i -= ( ) A .1 B .1- C . i D .i - 5 .(2012年高考(上海理))若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( ) A .3,2==c b . B .3,2=-=c b . C .1,2-=-=c b . D .1,2-==c b . 6 .(2012年高考(陕西理))设,a b R ∈, 是虚数单位,则“0ab =”是“复数b a i + 为纯虚数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7 .(2012年高考(山东理))若复数z 满足(2)117z i i -=+( i 为虚数单位),则z 为 ( ) A .35i + B .35i - C .35i -+ D .35i -- 8 .(2012年高考(辽宁理))复数 22i i -=+ ( ) A .34i - B .34i + C .41i - D .3 1i +

复数的四则运算教学设计

《复数的四则运算》教学设计 吕叔湘中学 黄国才 【教学目的】1、初步理解复数的加法、减法、乘法的运算法则. 2、会利用加法、减法、乘法、运算法则进行简单的运算。 3、了解复数中共轭复数的概念 【教学重点】:会利用加法、减法、乘法、运算法则进行简单的运算。 【教学难点】:理解复数的加法、减法、乘法的运算法则. 【教学过程】: 一、 问题情景: 问题1: 由初中学习我们可以知道: (2+3x )+(1-4x)=3-x 猜想: (2+3i )+(1-4i)= ? 二、 建构数学 1、复数减法的运算法则 问题 2:用字母表示数,你可以表示复数的运算法则和运算律吗? (1)运算法则:设复数z 1=a+bi,z 2=c+di,(a,b,c,d ∈R )那么: z 1+z 2=(a+bi)+(c+di)=(a+c)+(b+d)i; 显然,两个复数的和仍是一个复数,复数的加法法则类似于多项式的合并同类项法则。 (2)复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C,有: z 1+z 2=z 2+z 1, (z 1+z 2)+z 3=z 1+(z 2+z 3) 2、复数减法的运算法则 定义:把满足(c+di )+(x+yi) = a+bi 的复数x+yi (x,y ∈R ),叫做复数a+bi 减去复数c+di 的差,记作:x+yi =(a+bi )-(c+di) 由复数的加法法则和复数相等定义,有c+x=a , d+y=b 由此,x=a -c , y=b -d ∴ (a+bi )-(c+di) = (a -c) + (b -d)i 显然,两个复数的差仍然是一个复数 由此可见: 两个复数相加(减)就是把实部与实部,

高二数学复数知识点总结

导读:本文高二数学复数知识点总结,仅供参考,如果觉得很不错,欢迎点评和分享。 【一】 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模:

复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;当且仅当a=b=0时,z就是实数0。 【二】 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。特殊地,a,b∈R时,a+bi=0 a=0,b=0. 复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

高二数学复数专题训练(一)

复数专题训练(一) 班级________ 姓名__________ 记分___________ 一、选择: 1、设z0=1,z1=2+i Z0顺时针旋转900Z2对 应的复数是() (A)i (B)-1+i (C)1-i (D)2-i 2、非零复数z1、z2为坐标原点),若 ,则() (A)O、Z1、Z2三点共线(B)ΔOZ1Z2是等边三角形 (C)ΔOZ1Z2是直角三角形(D)以上都不对 3、把复数2-i对应的向量,按顺时针方向旋转900,所得向量对应的复数是( ) (A)2+i (B)-2-i (C)-1-2i (D)1+2i 4、复数∈R,b≠0)所表示的图形是( ) (A)直线(B)圆(C)抛物线(D)双曲线 5、若z1、z2、z3是复数,则这三个复数相等是(z1-z2)2+(z2-z3)2=0的( ) (A)充分条件(B)必要条件 (C)不充分又不必要条件(D)充分且必要条件 6、实系数方程x2+ax+b=0有虚根x=1-i是等式a+b2=2成立的( ) (A)充分条件(B)必要条件(C)充要条件(D)既不充分也不必要条件 7、设-1

R. 其中假命题有( ) (A)1个(B)2个(C)3个(D)4个 9、复平面上有点A、B,其所对应的复数分别为-3+i和-1-3i,O为原点, 那么ΔAOB是( ) (A)直角三角形(B)等腰三角形(C)等腰直角三角形(D)等边三角形 10、设复数2-i和3-i的辐角主值分别为α、β则α+β等于( ) (A)135°(B)315°(C)675°(D)585° 11、在复平面上复数i, 1, 4+2i所对应的点分别是A、B、C,则平行四边形ABCD的对角线BD的长为() (A)5 (B)13(C)15(D) 17 12、在复数集中,一个数的平方恰好为这个数的共轭复数,具有这种特性的数一共有() (A)1个(B)2个(C)3个(D)4个

高一数学复数的四则运算知识点分析

高一数学复数的四则运算知识点分析 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复 数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫 做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点 Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原 点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合 是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距 离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1;

(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时, z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 复数集与其它数集之间的关系: 复数的运算: 1、复数z1与z2的和的定义: z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i; 2、复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b- d)i; 3、复数的乘法运算规则:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i,其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中 把i2换成-1,并且把实部与虚部分别合并,两个复数的积仍然是一个复数。 4、复数的除法运算规则: 。 复数加法的几何意义: 设 为邻边画平行四边形

高二数学复数练习试题百度文库

一、复数选择题 1.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ?? ? D .43,55?? - ??? 2.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是1 B .z 的虚部是1 C .z = D .复数z 在复平面内对应的点在第四象限 3.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 4.已知i 是虚数单位,则复数41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.若复数1z i =-,则1z z =-( ) A B .2 C . D .4 6.若 1m i i +-是纯虚数,则实数m 的值为( ). A .1- B .0 C .1 D 7.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④z z ,其结果一定是实数的是( ) A .①② B .②④ C .②③ D .①③ 9.已知复数z 满足2 2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上 C .恒在直线y x =上 D .恒在直线y x =-上 10.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( ) A .4 B .2 C .0 D .1- 11.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

复数的乘法

高二数学第7课时:复数的乘法 学习目标: 1.复数乘法运算. 2.(a+bi)(a-bi)的结果 3.i 的周期性 新授: 目标一:复数乘法 问:设a ,b ,c ,d ∈R ,则(a +b )(c +d )怎样展开? 设复数z1=a +b i ,z2=c +d i ,其中a ,b ,c ,d ∈R ,则z1z2=(a +b i)(c +d i), 按照上述运算法则将其展开,z1z2等于什么? 注意: 我们比较容易证明这些性质: 1.交换律:z1·z2=z2·z1 2.结合律: (z1·z2) ·z3=z1· (z2·z3) 3.分配律:z1(z2+z3)=z1z2+z1z3 4.正整数指数幂运算律 另外,实数中的完全平方公式,平方差公式,立方差公式,立方和公式在复数中仍适用,请大胆使用. 例 1 已知z1=2+i, z2=3-4i,计算z1·z2. 练习 (1) (7-6i )(-3i ); (2) (3+4i )(-2-3i ); (3) (1+2i )(3-4i )(-2-i ) 第七课时复数的乘法第一页 22(4)(1i). (5)(1i). +-4 (6)(1)i +

目标二: (a+bi)(a-bi) 计算下列各式,你发现其中有什么规律吗? 小结:两个共轭复数的乘积等于这个复数(或其共轭复数)模的平方. 目标三:i 的周期性 你能发现规律吗?有怎样的规律? 课堂小结: 1. 2. 3 课堂小测课本94页:练习A 布置作业同步练习册:A 卷 第七课时复数的乘法第二页 (32)(32) i i +-) 32)(32(i i +---1 ,,1,4 321=-=-==i i i i i i __ ,__,__,__8 765 ====i i i i = n i 4=+1 4n i = +24n i = +3 4n i 2000 90 1928 37)1(,,,,i i i i i +选做题:已知z =x +y i(x , y ∈R)且z =1 z ,(z +1)(z + 1)=x 2+y 2,求复数z .

高二数学复数的知识点归纳

高二数学复数的知识点归纳 高二数学复数的知识点归纳 定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于 0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。 形如z=a+bi的数称为复数(complexnumber),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数 a称为复数z的实部(realpart)记作Rez=a实数b称为复数z的虚 部(imaginarypart)记作Imz=b.已知:当b=0时,z=a,这时复数成 为实数当a=0且b≠0时,z=bi,我们就将其称为纯虚数。 运算法则 加法法则 复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的'虚部是原来两个虚部的和。 两个复数的和依然是复数。 即(a+bi)+(c+di)=(a+c)+(b+d)i. 乘法法则 复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2=1,把实部与虚部分别合并。两个复数的积仍然是一个复数。 即(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 除法法则 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R) 叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以 分母的共轭复数,再用乘法法则运算,

即(a+bi)/(c+di) =[(a+bi)(c-di)]/[(c+di)(c-di)] =[(ac+bd)+(bc-ad)i]/(c^2+d^2). 开方法则 若z^n=r(cosθ+isinθ),则 z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1)

复数的乘法及其几何意义

[文件] sxgdja0012.doc [科目] 数学 [年级] 高中 [章节] [关键词] 复数/乘法/几何意义 [标题] 复数的乘法及其几何意义 [内容] 北京市五中 肖钰 教学目标 1.掌握用复数的三角形式进行乘法运算的法则及其推导过程. 2.掌握复数乘法的几何意义. 3.让学生领悟到“转化”这一重要数学思想方法. 4.培养学生探索问题、分析问题、解决问题的能力. 教学重点与难点 重点:复数的三角形式是本节内容的出发点,复数的乘法运算. 难点:复数乘法运算的几何意义,不易为学生掌握. 教学过程设计 师:前面我们学习了复数的代数形式的运算和复数的三角形式,请大家用5分钟的时间,完 成以下两道题的演算. (利用投影仪出示) 1.(1-2i )(2+i )(4+3i ); 2.化复数- ?? ? ??+3cos 3sin 21ππi 为代数形式和三解形式. (5分钟后) 师:第1题检查了复数乘法运算,答案是25,第2题检查了复数的三角形式概念及复数代数形式与三角形式的互化.答案是:?? ? ??+-- 67sin 67cos 21; 4143ππi i .如果有的同学演算 错了,应想一想怎样错的?错的原因是什么?怎样纠正? 请同学们再考虑下面一个问题: 如果把复数z 1,z 2分别写成 z 1=r 1(cos θ1+sin θ1), z 2=r 2(cos θ2+isin θ2). z1·z2这乘法运算怎样进行呢? 想出算法后,请大家在笔记本上演算,允许同学之间交换意义. (教师在教室里巡视,稍过几分钟,请一位已经做完的同学在黑板上写出推导过程) 学生板演: z1·z2=(cos θ1+isin θ1)·r 2(cos θ2+isin θ2) =(r 1cos θ1+ir1sin θ1)·(r2cos θ2+ir2sin θ2) =(r 1r 2cos θ1cos θ2-r 1r 2sin θ1sin θ2)+i (r 1r 2sin θ1cos θ2+r 1r 2cos θ1sin θ2) =r 1r 2[(cos θ1cos θ2-sin θ1sin θ2)+i (sin θ1cos θ2+cos θ1sin θ2)] =r 1r 2[cos (θ1+θ2)+isin (θ1+θ2)]. 师:很好,你是怎样想出来的?为什么这样想?

苏教版数学高二-选修2-2导学案 3.2《复数的四则运算》(1)

3.2 复数的四则运算 导学案(1) 教学目标 1、理解复数代数形式的四则运算法则。 2、能运用运算律进行复数的四则运算。 教学习重难点 重点 复数的加、减、乘法运算 难点 复数的加、减、乘法运算 教学过程 一、复习回顾 1.虚数单位i 的引入; 2.复数有关概念: 复数的代数形式: (,)z a bi a R b R =+∈∈ 复数的实部a ,虚部b 。 实数:()0;b a R =∈ 虚数:()0;b a R ≠∈ 纯虚数:0 0a b =??≠? 复数相等a bi c di +=+?a c b d =??=? 特别地,a+bi=0?a=b=0。 问题1:a=0是z=a+bi(a 、b ∈R)为纯虚数的必要不充分条件 问题2:一般地,两个复数只能说相等或不相等,而不能比较大。思考:对于任意的两个复数到底能否比较大小? 当且仅当两个复数都是实数时,才能比较大小。虚数不可以比较大小。 二、问题引入 我们知道实数有加、减、乘等运算,且有运算律: a b b a +=+ ab ba =

()()a b c a b c ++=++ ()()ab c a bc = ()a b c ab ac +=+ 那么复数应怎样进行加、减、乘运算呢?你认为应怎样定义复数的加、减、乘运算呢?运算律仍成立吗? 注意到i =-2 1,虚数单位i 可以和实数进行运算且运算律仍成立,所以复数的加、减、乘运算我们已经是自然而然地在进行着,只要把这些零散的操作整理成法则即可了! 三、知识新授 1、复数加减法的运算法则 (1) 运算法则: 设复数z 1=a+bi,z 2=c+di ,那么:z 1+z 2=(a+c)+(b+d)i; z 1-z 2=(a-c)+(b-d)i 。 即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减)。 (2)复数的加法满足交换律、结合律 即对任何z 1,z 2,z 3∈C ,有:z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。 2、复数的乘法 (1)复数乘法的法则 复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i 2换成-1,并且把实部合并。即:(a+bi)(c+di)=ac+bci+adi+bdi 2=(ac-bd)+(bc+ad)i 。 (2)复数乘法的运算定理 复数的乘法满足交换律、结合律以及乘法对加法的分配律. 即对任何z 1,z 2,z 3有: z 1z 2=z 2z 1;(z 1z 2)z 3=z 1(z 2z 3);z 1(z 2+z 3)=z 1z 2+z 1z 3。 3. 共轭复数的概念、性质 (1)定义:实部相等,虚部互为相反数的两个复数互为共轭复数。复数z=a+bi 的共轭复数记作,=-z z a bi 即。 (2)共轭复数的性质: 思考:设z=a+bi (a,b ∈R ),那么?+=z z ?-=z z 2-2.z z a z z bi +==; 另外不难证明: 12121212,z z z z z z z z +=+-=- 四、例题应用 例1、计算 (56)(2)(34)i i i -+---+

复数的三角形式及乘除运算

复数的三角形式及乘除运算 一、主要内容: 复数的三角形式,模与辐角的概念及几何意义,用三角形式进行复数乘除运算及几何意义. 二、学习要求: 1.熟练进行复数的代数形式与三角形式的互化,会求复数的模、辐角及辐角主值. 2.深刻理解复数三角形式的结构特征,熟练运用有关三角公式化复数为三角形式. 3.能够利用复数模及辐角主值的几何意义求它们的范围(最值). 4.利用复数三角形式熟练进行复数乘除运算,并能根据乘除运算的几何意义解决相关问题. 5.注意多种解题方法的灵活运用,体会数形结合、分类讨论等数学思想方法. 三、重点: 复数的代数形式向三角形式的转换,复数模及复数乘除运算几何意义的综合运用. 四、学习建议: 1.复数的三角形式是彻底解决复数乘、除、乘方和开方问题的桥梁,相比之下,代数形式在这些方面显得有点力不从心,因此,做好代数形式向三角形式的转化是非常有必要的. 前面已经学习过了复数的另两种表示.一是代数表示,即Z=a+bi(a,b ∈R).二是几何表示,复数Z 既可以用复平面上的点Z(a,b)表示,也可以用复平面上的向量 来表示.现在需要学习复数的三角表示.既用复数Z 的 模和辐角来表示,设其模为r ,辐角为θ,则Z=r(cosθ+isinθ)(r≥0). 既然这三种方式都可以表示同一个复数,它们之间一定有内在的联系并能够进行互化. 代数形式r= 三角形式 Z=a+bi(a,b ∈R) Z=r(cosθ+isinθ)(r≥0) 复数三角形式的结构特征是:模非负,角相同,余弦前,加号连.否则不是三角形式.三角形式中θ应是复数Z 的一个辐角,不一定是辐角主值. 五、基础知识 1)复数的三角形式 ①定义:复数z=a+bi (a,b ∈R )表示成r (cos θ+ i sin θ)的形式叫复数z 的三角形式。即z=r (cos θ + i sin θ) 其中z r = θ为复数z 的辐角。 ②非零复数z 辐角θ的多值性。 始边,向量oz → 所在的射线为终边的角θ叫复数z=a+bi 的辐角 以ox 轴正半轴为因此复数z 的辐角是θ+2k π(k ∈z ) ③辐角主值 表示法;用arg z 表示复数z 的辐角主值。 2π)的角θ叫辐角主值 02≤

高中数学复数教案

高中数学复数教案 教学目标:(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。(2)正确对复数进行分类, 掌握数集之间的从属关系;(3)理解复数的几何意义,初步掌握复数集C和 复平面内所有的点所成的集合之间的一一对应关系。(4)培养学生数形结合的数 学思想,训练学生条理的逻辑思维能力. 教学重点难点:复数的概念,复数相等的充要条件.用复平面内的点表示复数M. 以及复数的运算法则 教学过程:一、复习提问: 1.复数的定义。 2.虚数单位。 二、讲授新课 1.复数的实部和虚部: 复数z=a+bi中中的a与b分别叫做复数的实部和虚部 2.复数相等 如果两个复数的实部与虚部分别相等,就说这两个复数相等。 3.用复平面(高斯平面)内的点表示复数 复平面的定义:立了直角坐标系表示复数的平面,叫做复平面. 复数可用点来表示.其中x轴叫实轴,y轴除去原点的部分叫虚轴,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。原点只在实轴x上,不在虚轴上. 4.复数的几何意义: 复数集c和复平面所有的点的集合是一一对应的. 5.共轭复数 (1)复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。(虚部不为零也叫做互为共轭复数)

(2)a的共轭复数仍是a本身,纯虚数的共轭复数是它的相反数.(3复平面内表示两个共轭复数的点z与关于实轴对称. 6.复数的四则运算:加减乘除的运算法则。 小结: 1.在理解复数的有关概念时应注意: (1)明确什么是复数的实部与虚部; (2)弄清实数、虚数、纯虚数分别对实部与虚部的要求; (3)弄清复平面与复数的几何意义; (4)两个复数不全是实数就不能比较大小。 2.复数集与复平面上的点注意事项: (1)复数中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写。 (2)复平面内的点Z的坐标是(a,b),而不是(a,bi),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是i。 (3)表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。 (4)复数集C和复平面内所有的点组成的集合一一对应: 3复数的四则运算的规律和方法。

复数的乘法及其几何意义

复数的乘法及其几何意义教案1 教学目标 1.掌握用复数的三角形式进行乘法运算的法则及其推导过程. 2.掌握复数乘法的几何意义. 3.让学生领悟到“转化”这一重要数学思想方法. 4.培养学生探索问题、分析问题、解决问题的能力. 教学重点与难点 重点:复数的三角形式是本节内容的出发点,复数的乘法运算. 难点:复数乘法运算的几何意义,不易为学生掌握. 教学过程设计 师:前面我们学习了复数的代数形式的运算和复数的三角形式,请大家用5分钟的时间,完成以下两道题的演算. (利用投影仪出示) 1.(1-2i)(2+i)(4+3i); (5分钟后) 师:第1题检查了复数乘法运算,答案是25,第2题检查了复数的三角形式概 请同学们再考虑下面一个问题: 如果把复数z1,z2分别写成

想出算法后,请大家在笔记本上演算,允许同学之间交换意见. (教师在教室里巡视,稍过几分钟,请一位已经做完的同学在黑板上写出推导过程) 学生板演: 师:很好,你是怎样想出来的?为什么这样想? 生:我们已经学过复数的代数形式运算,因此把三角形式化为代数形式,按着代数形式的乘法运算法则就可以完成运算.根据数学求简的原则,运用三角公式把结果化简. 在已知的基础上发展和探索未知的东西,解题时,把未知转化成已知,这是重要的思想方法.我是根据这个思想才想出来的. 师:观察这个问题的已知和结论,同学们能发现有什么规律吗? 生:两个复数相乘,积的模等于各复数模的积,积的复角等于各复数的辐角的和. 师:利用这个结论,请同学们计算: 大家把计算过程写在笔记本上. (教师请一位同学在黑板上板演)

教师提示:由于复数定义是形如a+bi(a,b∈R)的数,如果辐角是特殊角或特殊角的终边相同角,要化成代数形式.即 师:同学们已经发现,复数的三角形式的乘法运算若用 r1(cosθ1+isinθ1)·r2(cosθ2+isinθ2)=r1r2[cos(θ1+θ2)+isin(θ1+θ2)] 计算,简便得多. 这就是复数的三角形式乘法运算公式. 三角形式是由模和辐角两个量确定的,进行乘法运算时要清楚模怎样算?辐角怎样算? 使用复数的三角形式进行运算的条件是复数必须是三角形式的标准式,辐角不要求一定是主值. 同学们已经了解,复数通过几何表示,把复数与复平面内的点或从原点出发的向量建立起一一对应后,复数不仅取得了实际的解释,而且确实逐步展示了它的广泛应用.我们已经研究了复数加、减法的几何意义,并感觉到了它的用途,请大家讨论一下,学习了复数的三角形式运算对复数乘法的几何意义有什么启发呢? (同学分组讨论,请小组代表发言.如果条件允许,在学生发言同时,用多媒体辅助教学,演示模伸缩情况,辐角终边的旋转) 生:复数的乘法对应的向量,就是由对应于被乘数所对应的向量按逆时针方向旋转一个角θ2(θ2>0,如果θ2<0,按顺时针方向旋转一个角|θ2|,再把其模变为原来的r2倍(r2>1,应伸长;0<r2<1,应缩短;r2=1,模长不变),所得的向量就表示积z1·z2.这是复数乘法的几何意义.

高中数学复数专题知识点整理和总结人教版

【1】复数的基本概念 (1)形如a + bi 的数叫做复数(其中);复数的单位为i,它的平方等于-1,即.其中a 叫做复数的实部,b叫做虚部 实数:当b = 0时复数a + bi 为实数 虚数:当时的复数a + b i 为虚数; 纯虚数:当a = 0且时的复数a + bi为纯虚数 (2)两个复数相等的定义: (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+ ,把z = 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22 ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi += ?≠+,当c d a b =时z 为实数;当z 为纯虚数是z可设为c di z xi a bi +==+进一步建立方程求解 【例4】 若复数()312a i z a R i +=∈-(i 为虚数单位), R b a ∈,1i 2-=0≠b 0≠b 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且

相关文档
最新文档