midasCivil斜拉桥专题培训例题集

midasCivil斜拉桥专题培训例题集
midasCivil斜拉桥专题培训例题集

midas Civil 培训例题集斜拉桥专题

目录

一.斜拉桥概述.............................................................................................................................................................................................. - 1 -

1.1 斜拉桥跨径布置 .................................................................................................................................................................................. - 1 -

1.2 斜拉桥拉索布置 .................................................................................................................................................................................. - 1 -

1.3 斜拉桥索塔布置 .................................................................................................................................................................................. - 2 -

1.4 斜拉桥主梁布置 .................................................................................................................................................................................. - 2 -

二.斜拉桥调索理论 ...................................................................................................................................................................................... - 3 -

三.midas Civil中的斜拉桥功能..................................................................................................................................................................... - 3 -

3.1 拉索单元模拟...................................................................................................................................................................................... - 4 -

3.2 未知荷载系数法功能........................................................................................................................................................................... - 5 -

3.3 索力调整功能...................................................................................................................................................................................... - 6 -

3.4 未闭合配合力功能............................................................................................................................................................................... - 7 -

四.斜拉桥分析例题 ...................................................................................................................................................................................... - 8 -

4.1 斜拉桥概况.......................................................................................................................................................................................... - 8 -

4.2 斜拉桥成桥分析 ................................................................................................................................................................................ - 10 -

4.3 斜拉桥倒拆分析 ................................................................................................................................................................................ - 14 -

4.4 斜拉桥正装分析 ................................................................................................................................................................................ - 15 -

一. 斜拉桥概述

斜拉桥是一种用斜拉索悬吊桥面的桥梁。最早的这种桥梁,其承重索是用藤罗或竹材编制而成,它们可以说是现代斜拉桥的雏形。

1956年,瑞典建成的Stroemsund 桥拉开了现代斜拉桥建设的序幕。随后斜拉桥建设如雨后春笋般蓬勃发展,其跨径已经进入以前悬索桥适用的特大跨径范围。

斜拉桥的上部结构是由梁、索、塔三个主要部分组成,它是一种桥面体系以加劲梁受压(密索)或受弯(稀索)为主,支承体系以斜索受拉及桥塔受压为主的桥梁。用若干高强的拉索将主梁斜拉在塔柱上,由于拉索的拉力,使主梁受到一个压力和一个向上的弹性支承的反力,这就使得桥梁的跨越能力大大增强,斜拉桥构造如图1.1所示。

图1.1 斜拉桥示意图

斜拉桥的优点是:梁体尺寸较小,桥梁的跨越能力较大;受桥下净空和桥面标高的限制少;抗风稳定性比悬索桥好;不需悬索桥那样的集中锚碇构造;便于悬臂施工等。不足之处是,其属于多次超静定结构,设计计算复杂;拉索与梁、塔的连接构造比较复杂;施工中高空作业较多,且施工控制等技术要求严格。

斜拉桥是半个多世纪以来最富于想象力和构思内涵最丰富而引人注目的桥型,它具有广泛的适应性。一般来说,对于跨度从200m 至700m 左右的桥梁,斜拉桥在技术上和经济上都具有相当优越的竞争能力。

但是随着斜拉桥跨度的增大,将会面临桥塔过高和斜索过长等一系列技术问题。另外,必须提到的是,斜拉桥的斜拉索可以说是这种桥梁的生命线,至今国内外已发生过几起通车仅几年,由于拉索腐蚀严重而导致全部换索的不幸工程实例。因此如何做好斜拉索的防腐工作,确保其使用寿命,仍是当今桥梁界十分重视的研究课题。

1.1 斜拉桥跨径布置

当代斜拉桥最典型的孔跨布置形式是双塔三跨式(边跨/中跨=0.4~1)与独塔双跨式(边跨/中跨=1~2),如图1.3和1.4所示。在特殊情况下,斜拉桥也可以布置成独塔单跨式及多塔多跨式。

图1.3 双塔三跨式

图1.4 独塔双跨式

在跨越宽阔水面时,由于桥梁长度大,必要时也可采用三塔斜拉桥,如湖南洞庭湖大桥(主跨2×348m ,如图1.5所示)。由于中间桥塔没有端锚索来有效地限制其变形,三塔斜拉桥的结构柔性会有所增大。在适宜的地形条件下,有时也可采用独塔单跨式斜拉桥,此时边跨跨度很小,甚至没有边跨,如图1.6所示Marian Bridge (the Czech Republic ),主跨123.3m 。

图1.5 洞庭湖大桥

图1.6 捷克Marian 桥

1.2 斜拉桥拉索布置

根据斜索在主梁上的间距,有稀索(对于钢梁,间距大约为30~60m ,对于混凝土梁,约为15~30m )与密索之分。早期斜拉索采用稀索较多,目前则多用密索。密索斜拉桥有下述优点:索间距较短,主梁弯矩减小;每索的拉力较小,锚固点的构造简单。每根斜索的截面较小,每索只用一根在工

图1.7 拉索为稀索示意图

图1.8 拉索为密索示意图

拉索的空间布置形式,通常分为单索面和双索面,而双索面又分为双平行索面和双斜索面。拉索在平面内的布置形式,有辐射式、竖琴式、扇式和星式,具体如图1.9所示。

辐射式:拉索集中在塔顶,斜索倾角大,发挥效力好,钢索用量省。

竖琴式:斜索彼此平行,倾角相等,外形简洁美观,但钢索用量大。

扇式:特点介于辐射式和竖琴式之间,长大跨径斜拉桥多采用该方式。

星式:将索合并锚在梁端,斜索倾角最小,锚固复杂,目前较少采用。

图1.9 拉索按平面内的布置形式分类

1.3 斜拉桥索塔布置

从行车方向看,索塔可做成独柱式、双柱式、门式、A 式、倒Y 式、宝石式和倒V 式等,如图1.10所示。索塔高度:桥面以上塔柱高度与主跨之比

图1.10 主塔的形式种类

1.4 斜拉桥主梁布置

斜拉桥的主梁截面形式根据所用材料(混凝土、钢、或两者)有所不同。一般不用T 形截面。如钢梁的常用横截面形式有双主梁、钢箱梁、桁架梁等。双主梁一般采用两根工字形梁,上置钢桥面板,主梁之间用钢横梁连接。

钢箱梁截面的形式多样,有单箱单室、多箱单室、多箱多室等布置(如图1.11所示)。斜拉桥采用钢桁梁则主要是为了满足布置双层桥面(公铁两用)的需要(如图1.12所示)。钢箱梁是钢斜拉桥中最常见的主梁形式,其断面高h/L=1/60~1/120。

图1.11 钢箱梁断面示意图

图1.12 公铁两用桥梁断面示意图

二. 斜拉桥调索理论

斜拉桥不仅具有优美的外形,而且具有良好的力学性能,其主要优点在于:恒载作用下,拉索的索力是可以调整的。斜拉桥可以认为是大跨径的体外预应力结构。

在力学性能方面,当在恒载作用时,斜拉索的作用并不仅仅是弹性支承,更重要的是它能通过千斤顶主动地施加平衡外荷载的初张力,正是因为斜拉索的索力是可以调整的,斜拉索才可以改变主梁的受力条件。活载作用下,斜拉索对主梁提供了弹性支承,使主梁相当于弹性支承的连续梁。由此可见,对于斜拉桥而言,斜拉索的初张力分析是非常重要的。

张拉斜拉索时,实际上已经将该斜拉索脱离出来单独工作,因为斜拉索的张力和结构的其它部分无关,而只与千斤顶有关,因此在张拉斜拉索时,其初张力效应必须采用隔离体分析(midas Civil中采用体外力来进行模拟)。

确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公路桥梁设计丛书-《斜拉桥》。

?刚性支承连续梁法

刚性支承连续梁法是指成桥状态下,斜拉桥主梁的弯曲内力和刚性支承连续梁的内力状态一致。因此可以非常容易地根据连续梁的支承反力确定斜拉索的初张力。

对于实际施工过程中如何才能达到合理的斜拉索索力分布?如果悬拼过程中一次张拉,则不可能达到刚性支承连续梁的弯矩分布,因为跨中合龙段的弯矩将与一次张拉索力无关,跨中合拢段在自重和二期恒载作用下必然产生比较大的弯矩,要消除这一正弯矩就需要进行二次调索。

?零位移法

零位移法的出发点是通过索力调整,使成桥状态下主梁和斜拉索的交点的位移为零。对于采用满堂支架一次落架的斜拉桥体系,其结果与刚性支承连续梁法的结果基本一致。

上述两种方法用于确定主跨和边跨对称的单塔斜拉桥的索力是最为有效的,对于主跨和边跨几乎对称的3跨斜拉桥次之,对于主跨和边跨的不对称性较大的斜拉桥,几乎失去了作用(因为这两种方法必然导致比较大的塔根弯矩,失去了索力优化的意义)。

?倒拆和正装法

倒拆法是斜拉桥安装计算广泛采用的一种方法,通过倒拆、正装交替计算,确定各施工阶段的安装参数,使结构逐步达到预定的线形和内力状态。

由于拉索的非线性和混混凝土收缩徐变的影响,倒拆和正装计算中,两者不闭合,即按照倒拆得到的数据正装,结构偏离成桥的线形和内力状态。

对于倒拆与正装结果不闭合的情况,可以将第一轮倒拆计算,不计混凝土的收缩徐变,而后利用上次倒拆结果进行正装计算,逐阶段考虑混凝土收缩徐变的影响,并将各施工阶段的收缩徐变值存盘,再次进行倒拆计算时采用上一轮正装计算阶段的混凝土收缩和徐变值,如此反复,直到正装和倒拆的计算结果收敛到容许的精度。

?无应力状态控制法

无应力状态法分析的基本思路是:不计斜拉索的非线性和混凝土收缩徐变的影响,采用完全线性理论对斜拉桥解体,只要保证单元长度和曲率不变,则无论按照何种程序恢复还原后的结构内力和线形将与原结构一致。

?内力平衡法

内力平衡法的基本原理是:设计适当或合理的斜拉索初张力,以使结构各控制截面在恒载和活载共同作用下,上翼缘的最大应力和材料允许应力之比等于下翼缘的最大应力和材料允许应力之比。

?影响矩阵法

即通过影响矩阵的方法对斜拉桥进行索力求解。

三. midas Civil中的斜拉桥功能

斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。但对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的比例是十分重要的。因此斜拉桥的设计首先是确定其合理的成桥状态,即合理的线形和内力状态,其中起主要调整作用的就是斜拉索的张拉力。

midas Civil程序针对斜拉桥的张拉力确定、施工阶段分析、非线性分析等提供了多种解决方案,下面就一些斜拉桥功能做一些说明。

对于斜拉桥的结构计算原则:

(1)对于一般跨径的混凝土斜拉桥结构计算,可按经典结构力学或有限元方法计算;

(2)对于跨径较大的斜拉桥,应计入结构几何非线性及材料非线性对结构的影响;

(3)斜拉桥为空间结构体系,在静力分析时可将空间结构简化为平面结构进行计算,动力分析应按空间结构计算;

(4)在结构计算中,必须计入拉索垂度对结构的非线性影响,可采用拉索换算弹性模量的方法计入其影响;

(5)除对结构进行总体计算外,尚应对一些特殊部位进行局部分析与验算。

3.1 拉索单元模拟

不同结构中索单元的使用:

悬索桥的主缆和吊杆:建议使用考虑大变形的悬索单元;

大跨斜拉桥的斜拉索:对于近千米或者超过千米的斜拉桥建议使用考虑大变形的

索单元;

中小跨斜拉桥的斜拉索:建议使用考虑恩斯特公式修正的等效桁架单元;

拱桥的吊杆:建议使用桁架单元或只受拉桁架单元;

系杆拱桥的系杆:建议使用桁架单元;

体内预应力或体外预应力的钢索(钢束):与索单元无关,使用预应力荷载功能

按荷载来模拟即可。

进行细部分析时,对于预应力钢束可以按桁架单元来模拟;

3.2 未知荷载系数法功能

复制和粘贴

考虑施工阶段的未知荷载系数法:

还可考虑施工阶段,计算未知荷载系数。利用此功能可直接计算出,施工过程中每根拉索的拉索控制力。

3.3 索力调整功能

设计人员指定的

范围(红线)

随拉索张力变换

的效果(蓝线)

在影响矩阵中确认对单元影响最大的张

力后,使用搜索功能,确定最优索力;

3.4 未闭合配合力功能

在斜拉桥设计中,可通过成桥阶段分析得到结构的一些必要数据、拉索的截面和张力等,除此之外斜拉桥还需要进行施工阶段分析。

根据施工方法的不同,斜拉桥的结构体系会发生显著的变化,施工中有可能产生比成桥阶段更不利的结果,所以斜拉桥的设计要做施工阶段分析。按施工的顺序进行分析的方法叫施工阶段的正装分析(Forward Analysis )。一般通过正装分析验算各个施工阶段的产生应力,检查施工方法的可行性,最终找出最佳的施工方法。

进行正装分析比较困难的是如何输入拉索的初始张拉力,为了得到初始张拉力值通常先进行倒拆分析,然后再利用求出的初始张拉力进行正装分析。采用这种分析方法,工程师普遍会经历的困惑是:在进行正装分析时可以看出正装和初始平衡状态的索力不闭合。

除了混凝土收缩徐变的影响,合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。

初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响。但在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。如上所述,结构体系的差异导致了初始平衡状态分析(成桥阶段分析)与正装分析的最终阶段的结果产生了差异。

产生上述张力不闭合的原因,大部分是因为工程师没有完全把握索的基本原理或没有适当的分析软件。实际上是不应该产生内力不闭合的,其理由如下:

(1)从理论上讲,在弹性范围内正装分析和倒拆分析在同一阶段的结果应该相同。

(2)如果在计算时考虑合拢段在合拢时的闭合力,就能够得出与初始平衡状态分析(成桥阶段分析)相同的结果。

从斜拉索的基本原理上看,倒拆分析就是以初始平衡状态(成桥阶段)为参考计算出索的无应力长,再根据结构体系的变化计算索的长度变化,从而得出索的各阶段张力。一个可行的施工阶段设计,其正装分析同样可以以成桥阶段的张力为基础求出索的无应力长,然后考虑各施工阶段的索长变化得出各施工阶段索的张力。

目前以上述理论为基础的程序都是大位移分析为主,其原因是悬臂法施工在安装拉索时的实际长度取值是按实际位移计算的。一般来说新安装的构件会沿着之前安装的构件切线方向安装,进行大位移分析时时,因为切线安装产生的假想位移是很容易求出来的,但是小位移分析要通过考虑假想位移来计算拉索的张力是很难的。MIDAS/Civil 能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。利用此功能可不必进行倒拆分析,只要进行正装分析就能得到最终理想的设计桥型和内力结果。

未闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状态合拢段上也会产生附加的内力。进行正装分析时,把计算的拉索与合拢段的未闭合配合力反映在索张力和合拢段闭合内力上,就能使初始平衡状态和施工阶段正装分析的最终阶段的结果相同。

首先,在安装拉索的前一阶段,求出拉索两端节点的位移。

利用拉索两端位移,求拉索变形前长度(L )与变形后长度(L ’)之差。根据差值求出相应的拉索附加初拉力(ΔT )。把求出的附加初拉力(ΔT )和初始

(vb = vj - vi)

三跨连续斜拉桥的中间合拢段合拢时,不会产生内力(只产生自重引起的内力),所以合拢段与两侧桥梁段之间形状是不连续的。为了让合拢段连续地连接在两侧桥梁段上,求出合拢段两端所需的强制变形值,将其换算成能够产生此变形的内力,并将其施加给合拢段后连接在两侧桥梁段上。

四. 斜拉桥分析例题

4.1 斜拉桥概况

4.2 斜拉桥成桥分析

定义荷载工况及荷载组合

注意点:

对于大跨斜拉桥,利用未知荷载系数法进行调索,单位初拉力建议取100KN,不要用1KN。

利用Excel表格功能快速方便地修改边界条件;

复制、粘贴、拖拉这三个是经常用到的

生成未知荷载系数组合

4.3 斜拉桥倒拆分析

下图为拆合龙段后的结构示意图,此时查看在该施工阶段结束时,在CS合计作用,拉索1

(即最外侧两对拉索)的索力值即可。同理,对于拉索2的索力,在拆拉索1的施工阶段结束

时,查看即可;以此类推,得到所有拉索的索力值。

方法一:利用考虑施工阶段未知荷载系数进行二次调索:

)建立分析模型,定义正装施工阶段,在完成二期恒载的阶段定义后,定义调索的施工阶段,在此阶段中,只激活相对应的单位索,尤其需注意一点,不能有任何其他荷载、结构、边界激活,要不会影响未知荷载系数求解的结果。

)完成施工阶段分析控制数据,需注意把索力定义成体外力。

)完成分析后,在结果中定义未知荷载系数项目组,选择最终施工阶段为目标状态,而后选择未知变量,及定义各种约束条件,建

独塔单索面混凝土斜拉桥受力分析

龙源期刊网 https://www.360docs.net/doc/5a10151814.html, 独塔单索面混凝土斜拉桥受力分析 作者:刘旭勇 来源:《中国房地产业·下半月》2015年第10期 【摘要】本文通过有限元分析软件Midas Civil 2015对一座独塔单索面预应力混凝土斜拉桥进行计算,对其主要受力特点进行分析,为此类斜拉桥的设计提供参考。 【关键词】独塔单索面斜拉桥;调索 引言 斜拉桥按其桥塔的数目一般分为独塔式、双塔式和多塔式。独塔斜拉桥具有跨越性强的优点,可以跨越中小河流,使用最为广泛。 本文通过有限元分析软件Midas Civil 2015对一座独塔单索面预应力混凝土斜拉桥进行计算,对其主要受力特点进行分析,为此类斜拉桥的设计提供参考。 1 工程概况 主桥采用独塔单索面预应力混凝土斜拉桥,总长160m,桥面以上塔高53.0m,塔柱纵向中距3.3m。斜拉索在主梁上标准索距6.5m,主塔上1.8m,桥面宽25.4米。斜拉桥边墩墩顶处支座采用纵向无约束支座形式,梁塔采用固结形式联结。 主梁单箱三室斜腹板截面,箱梁顶宽25.16m,底板宽15.0m,悬臂长4.0m,箱梁对称中心线处梁高2.8m。标准箱梁顶板厚0.28m,底板厚0.25m,外腹板厚0.3m,中腹板为直腹板,厚0.40m。斜拉索为单索面体系,主梁上索距6.5m,主塔上索距1.8m,全桥斜拉索共有9 对,18根。索塔为钢管混凝土结构;索塔总高自桥面起为53m。主塔墩采用圆台形结构,顶 面半径2.75m,底面半径3.5m。转体施工用设备均布在承台上,承台下布置7根φ1.8m的钻孔灌注桩,呈梅花形布置,桩长40m。待转体完成后,将主墩与承台固结,形成塔墩梁固结形式。 2 技术标准 荷载:城—A级;地震烈度:7度;风速: 31.7m/s;桥面路幅宽度:0.6m(护栏)+3.0m (人行道)+8.0m(车行道)+2.2m(索锚区)+ 8.0m(车行道)+ 3.0m(人行道)+ 0.6m(护栏)=25.4m;桥面纵坡:±2.5%;桥面横坡:行车道±1.5%; 3 整体结构分析

midas拱桥专题

midas Civil 培训例题集拱桥专题

目录 一.拱桥概述 ................................................................................................................................................................................................. - 1 - 1.1 按照静力图式拱桥分类 ....................................................................................................................................................................... - 1 - 1.2 按照桥面所处空间位置拱桥分类......................................................................................................................................................... - 1 - 1.3 主拱圈的截面形式分类 ....................................................................................................................................................................... - 2 - 二.midas Civil中的吊杆拱桥分析功能 .......................................................................................................................................................... - 2 - 2.1 拉索单元模拟...................................................................................................................................................................................... - 2 - 2.2 未知荷载系数法功能........................................................................................................................................................................... - 3 - 2.3 索力调整功能...................................................................................................................................................................................... - 4 - 三.拱桥实例分析.......................................................................................................................................................................................... - 5 - 3.1 系杆拱桥模型概况............................................................................................................................................................................... - 5 - 3.2 系杆拱桥成桥分析............................................................................................................................................................................... - 5 - 3.3 系杆拱桥施工阶段仿真模拟.............................................................................................................................................................. - 11 - 3.4 拱桥的稳定分析 ................................................................................................................................................................................ - 14 - 3.5 混凝土拱桥模型模拟与设计关键点................................................................................................................................................... - 14 -

某独塔单索面斜拉桥施工方案比选

某独塔单索面斜拉桥施工方案比选 摘要:余姚市中山路主桥是一座部分矮塔斜拉桥,本文对中山路主桥几种切实可行的施工方法进行分析,通过受力性能、经济性能等几种指标的比较,为以后类似的部分斜拉桥的施工方案的比选提供一定的参考。 关键词:矮塔斜拉桥施工方案比选 1 工程概况 本工程位于余姚市城区中部,南至四明东路,北至阳明东路,中山路主桥是连接江南片和江北片交通的一条主要交通通道。主桥为独塔单索面斜拉桥,跨径为76m+76m=152m。桥梁北侧主桥宽度为0.25m(栏杆)+4.0m(人、非混行道)+0.5m(防撞栏杆)+11.0m(机动车道)+3.50m(索区及绿化带)+11.0m(机动车道)+0.5m(防撞栏杆)+4.0m(人、非混行道)+0.25(栏杆)=35.0m ;南侧主桥的人非混行道设置在辅道上,因此桥梁宽度为16.5m。 主桥汽车荷载等级为城市A级,设计行车速度40km/h,桥下净空≥4.5m,通航等级为四级,通航净空为55×7m。 图1 中山路主桥效果图 2 桥梁结构简介 主梁采用预应力混凝土箱梁,单箱五室斜腹板截面(图3)。箱梁宽度为26.3m。标准横隔板每6.0m布置一道,并与斜拉索索距对应。箱梁节段划分如下:0号块节段长12.0m,其余节段长度为3.95m~6.0m,标准节段重量为377.0t。最良江侧人行道板搁置在箱梁外挑悬臂梁上,悬臂梁设置间距同箱梁横隔板,标准厚度为45cm,高度为35cm~100cm,采用预制拼装。 主塔采用钢壁结构,内灌补偿收缩混凝土。桥塔外轮廓采用椭圆形截面,承台以上塔高62.7m,桥面以上塔高51.6m。整个塔柱的外轮廓为椭圆锥形状,在锚固区范围的36.5m内,桥塔中心被挖空,由两个部分椭圆通过钢横撑连接。塔尖为空心钢结构,外形为椭圆锥,高7m,与桥塔主结构最上面的椭圆形钢板焊接。主塔柱钢结构在工厂预制,现场拼装,内部混凝土通过泵送灌注。 斜拉索采用单索面扇形布置,利用中央分隔带作为拉索锚固区,在每个锚固点处横桥向并排布置2根斜拉索,横向间距塔上为0.6m,梁上为1.0m。全桥斜拉索共9对,主梁上标准间距6.0m,最长索约153m,最短索约47.3m。 中墩采用花瓶式门式墩,塔墩基础由12根直径为1.8m钻孔桩组成群桩基础。

【桥梁方案】预应力混凝土独塔双索面斜拉桥总体施工方案

目录 一、施工方案总体说明 (1) 1.编制依据 (1) 2.总体目标 (2) 二、总体施工方案 (5) 1.主桥工程 (5) 1.1.桩基施工方案 (5) 1.2承台施工方案 (12) 1.3斜拉桥主塔施工方案 (19) 1.4主梁施工方案 (36) 1.5斜拉索施工方案 (47) 2.引桥工程 (64) 2.1桩基施工方案 (64) 2.2系梁施工方案 (69) 2.3墩柱施工方案 (75) 2.4盖梁施工方案 (79) 2.5承台施工方案 (88) 2.6预制箱梁施工方案 (92) 2.7箱梁架设方案 (101) 2.8桥面系施工方案 (103)

xx市xx大桥总体施工方案 一、施工方案总体说明 1.编制依据 1.1亚行贷款xx市城市环境综合治理项目的有关招投标文件。 1.2现场调查、施工能力及类似工程施工工法、科技成果和经验;我单位为完成本合同段工程拟投入的管理人员、专业技术人员、机械设备等资源。 1.3建筑部颁布的《建筑工程施工现场管理规定》、及国家建设工程强制性标准、《建筑施工手册》等。 1.4国家、xx市有关部门颁布的环保、质量、合同、安全等方面的法律法规要求。 1.5国家、交通部现行的有关工程建设施工规范、验收标准、安全规则等。 《城市桥梁工程施工与质量验收规范》(CJJ 2-2008) 《城市桥梁养护技术规范》(CJJ 99-2003) 《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 《公路斜拉桥实施细则》(JTG/T D65-01-2007) 《公路桥涵施工技术规范》(JTG/T F50-2011) 《公路工程技术标准范》(JTG/B01-2003) 建质【2009】87号等。

斜拉桥常见建模问题

建立悬索桥模型时,如何定义索单元的几何初始几何刚度? 相关命令 模型〉单元〉建立... 荷载〉初始荷载〉大位移〉几何刚度初始荷载… 相关知识 (1)静力线性分析时,几何刚度初始荷载不起作用。此时必须输入“小位移〉初始单元内力”,不然运行分析时程序会提示发生奇异; (2)静力非线性分析时,程序根据几何刚度初始荷载考虑结构的初始状态。且根据不同的荷载工况,结构的几何刚度会发生变化。另外,不同荷载工况作用效应的算术迭加不成立; (3)施工阶段非线性分析(独立模型,不考虑平衡单元节点内力)时,几何刚度根据不同施工阶段荷载的作用发生变化,且考虑索单元节点坐标变化引起的影响(索单元); (4)施工阶段非线性分析(独立模型,考虑平衡单元节点内力)时,几何刚度初始荷载不起作用,此时发生作用的是“大位移〉平衡单元节点内力”发生作用; (5)施工阶段非线性分析(独立模型,考虑平衡单元节点内力,但未输入平衡单元节点内力,只输入了几何刚度初始荷载)时,几何刚度初始荷载不起作用,对施加的荷载工况进行静力非线性分析。下一个阶段中也一样,但前一阶段的荷载和本阶段的荷载相当于一同作用并对之进行分析; (6)移动荷载分析时,程序会自动将索单元转换为等效桁架单元进行线性分析,其几何刚度将利用“小位移〉初始单元内力”来确定。 索单元输入的初拉力是i端或j端的切向拉力吗? 相关命令 模型〉单元〉建立... 问题解答 索单元输入的初拉力不是i端或j端的切向拉力。建立索单元时输入的初拉力是为了生成索单元的初始几何刚度而输入的。索单元进行非线性分析时,是以新生成的初始几何刚度为初始状态,随荷载的变化不停更新结构的几何刚度。最后根据最终的几何刚度以及索的自重重新计算出索单元两端i端和j端的切向拉力。 初拉力荷载可分为体外力和体内力(“施工阶段分析控制”对话框)。体内力荷载分析是在索单元上作用等效于初拉力荷载的变形量,再与其它结构相连接后进行整体结构分析的过程。根据索单元两端结构的刚度,索单元两端节点会发生新的位移量,此位移量将决定索单元的内力。而且同时作用在索单元上的其它荷载,也会使索单元的内力发生变化。假如索单元两端是固定边界条件,则索单元将发生与初拉力相同大小的内力。 采用程序中的“组合截面(钢管形-砼)”建立的模型,如何考虑钢管内混凝土部分的收缩徐变特性? 相关命令 模型〉材料和截面特性〉时间依存性材料(徐变/ 收缩) 荷载〉施工阶段分析数据〉施工阶段联合截面… 问题解答 程序中的“组合截面(钢管形-砼)”定义的截面是利用使用等效截面特性值来进行分析和计算的。如果需要考虑混凝土部分的收缩徐变特性,就需要模拟出钢管与混凝土分阶段施工的过程。可采用程序中的“施工阶段联合截面”功能来模拟组合截面的分阶段施工过程,然后按通常的方法定义混凝土的收缩徐变特性即可。 钢管混凝土截面的两种材料的时间依存特性是不同的,而且混凝土的膨胀的系数也比钢材大的多,所以在实际工程中两种材料之间的互相作用是无法正确模拟的。目前还没有出现能够完全正确地模拟两种材料之间的互相作用的软件。本程序也是假定钢材和混凝土紧密地连接在一起,且没有考虑钢管对混凝土的套箍作用。 定义收缩徐变对话框中有一个定义材龄的地方,定义施工阶段对话框中也有一个定义材龄的地方,两个材龄有什么区别?对哪些结果产生影响? 相关命令

江肇西江特大桥矮塔斜拉桥主塔施工方案(索鞍式)

2010年11期(总第71期 )作者简介:罗庆湘(1981-),男,重庆人,工程师,主要从事高速公路建设与管理。 1工程概况 江肇西江特大桥主桥共四个主塔,塔号为29#~32#塔,主塔为独柱式刚劲混凝土结构,截面为八边形,并在顺桥上刻有0.1m ,宽0.7m 的景观饰条。主塔高度为30.5m (含索顶以上4m 装饰段),主塔截面等宽段顺桥向宽5m ,横桥向宽2.5m ;塔底5m 范围,顺桥向厚为5m ,横桥向由2.5m 渐变到3.1m 。 图1主塔一般构造图 本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ,拉索通过预埋钢导管穿过塔柱,在主梁上张拉。斜拉索采用Φs 15.2mm 环氧涂层钢绞线斜拉索,标准强度为1860MPa ,斜拉索规格分别为43-Φs 15.2mm 和55-Φs 15.2mm ,采用钢绞线拉索群锚体系。斜拉索为单索面双排索,布置在主梁的中央分隔代处,全桥共128 根斜拉索。钢绞线外层采用HDPE 护套。减振装置及锚具采用斜拉索专用材料。 2施工方案简介 主塔分六节施工,其中最大施工节段为5.4m ;主塔内设劲性骨架,用于钢筋和索鞍定位;模板施工采用无支架翻模施工,模板采用定型钢模板,均设有阴阳缝,由模板厂加工,现场拼装。考虑到主塔外观,该主塔模板不采用对拉杆在塔身中间穿过来固定模板,而采用桁架式模板翻模施工,塔吊辅助翻模。 3主塔施工流程 图2主塔施工流程 江肇西江特大桥矮塔斜拉桥主塔施工方案 罗庆湘,闫化堂 (广东省长大公路工程有限公司,广东 广州 510000) 摘 要:江肇西江特大桥主塔为独柱式刚劲混凝土结构,截面为八边形;主塔高度为30.5m ,主塔截面等宽段顺 桥向宽5m ,横桥向宽2.5m ;本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ;拉索通过预埋钢导管穿过塔柱;采用C60混凝土。本文介绍了江肇西江特大桥主塔施工方案,重点介绍了劲性骨架设计及施工、索鞍定位以及混凝土防裂等。 关键词:矮塔斜拉;主塔;施工方案中图分类号:U44 文献标识码: B 265

广东独塔双索面斜拉桥施工方案

. 目录 一、概述 (1) 二、总体施工工艺 (2) 三、主要施工方法 (5) 1、施工准备 (5) 2、斜拉索的制作、运输、检查验收及存放 (9) 3、斜拉索提升至桥面 (9) 4、斜拉索的塔端挂设 (10) 5、桥面放索 (11) 6、斜拉索梁端安装 (12) 7、塔端软牵引 (14) 8、塔端张拉 (17) 9、斜索力调整 (18) 10、斜拉索施工注意事项 (19) 四、主要材料、机械、设备计划(全桥) (20) 五、劳动力使用计划 (21) 六、斜拉索施工进度计划 (21) 七、斜拉索相关参数 (22) 八、质量保证措施 (26) 九、安全保证措施 (27)

独塔双索面斜拉桥施工方案 一、概述 广东省***大桥为独塔双索面斜拉桥,桥跨布置为180+101+45m,索塔采用由直塔柱和斜拉柱组成,无上横梁的异型索塔,主梁采用预应力混凝土∏形梁,双向预应力混凝土结构,并采用前支点挂篮悬臂浇筑主梁混凝土。斜拉索两端均采用张拉端锚具,张拉端设在塔上;斜拉索中心线处的梁高为2.3m,斜拉索按扇形布置,塔上竖向间距1.8m,梁上水平间距6.0M,采用平行钢丝斜拉索。 主桥标准横断面布置为:1.5m(人行道)+2.0m(非机动车道)+2.25m(斜拉索布索区)+0.5m(防撞栏杆)+23.0m(机动车道)+0.5m(防撞栏杆)+2.25m(斜拉索布索区)+2.0m(非机动车道)+1.5m(人行道),总宽35.5m。 主桥斜拉索共设4×27=108根,斜拉索为塑包平行钢丝束,钢丝采用φ7镀锌高强钢丝,钢丝排列整齐,同心绞合,外缠包带,在缠包带外挤包高密度聚乙烯护套两层(黑色和彩色)。斜拉索两端均为带螺纹的冷铸锚。斜拉索共分为PES7-127、PES7-151、PES7-7、PES7-199、PES7-223、PES7-253六种规格,最长索A27长190.923m、重12.8682t,斜拉索钢丝总重756.1539t。平行钢丝斜拉索构造见图1。全桥斜拉索布置情况见图2。 图1平行钢丝斜拉索构造示意图

独塔双索面混合梁斜拉桥斜拉索安装施工方案[优秀工程方案]

赣州市飞龙岛大桥 斜拉索安装 施 工 方 案 编制: 审核: 审批: 柳州欧维姆工程有限公司

一、工程概况 飞龙岛大桥位于赣州中心市区的西部,连接河套老城区和章江新城区.起点为客家大道,由南向北跨越章江南大道、章江、飞龙岛、章江北大道,连接文明大道与扬公路交叉口,止点为交叉口以北100米,工程总长1449.761米,其中主桥长230米,引桥长565米,接线道路长624.761米,桥下道路长373.35米.主要工程内容:桥梁工程、道路工程、排水工程、交通工程、照明工程.全桥共21个墩台,南岸引桥0号到7号墩,第一联(0号到2号)2x30米整幅桥,单箱双室;第二联(2号到7号)30+2x35+2x30米连续梁,为双幅桥, 单箱双室.北岸引桥10号到21号,第四联(10号到14号)4x30米连续梁,双幅桥,第五联(14号到19号)30+2x35+30米连续梁,为双幅桥,第六联(19号到21号)2x30米整幅桥. 主桥为独塔双索面混合梁斜拉桥,主桥长230米,主跨150米,采用不对称布置,即150+(45+35)=230米,其中长128.5米为钢箱梁,其余101.35米均为混凝土箱.主塔顺桥向为曲线型斜塔、横桥向为“A”型,顺桥向:索塔塔背为圆曲线.塔高承台以上为87米,桥面以上为70.823米. 斜拉索采用空间双索面,每索面共9对斜拉索,全桥共36根斜拉索.斜拉索采用ф7米米镀锌平行钢丝,外挤双层PE,内层为黑色,外层为彩色,钢丝标准强度 =1670米pa.斜拉索规格共8种,即:61ф7,73ф7,91ф7,109ф7,121ф7,127фf pk 7,151ф7,187ф7.斜拉索在主梁处最小倾角28.5°,最大倾角61.7°.斜拉索锚具采用冷铸墩头锚,梁端及塔端锚具均采用张拉端锚具.

midasCivil斜拉桥专题培训例题集

midas Civil 培训例题集斜拉桥专题

目录 一.斜拉桥概述.............................................................................................................................................................................................. - 1 - 1.1 斜拉桥跨径布置 .................................................................................................................................................................................. - 1 - 1.2 斜拉桥拉索布置 .................................................................................................................................................................................. - 1 - 1.3 斜拉桥索塔布置 .................................................................................................................................................................................. - 2 - 1.4 斜拉桥主梁布置 .................................................................................................................................................................................. - 2 - 二.斜拉桥调索理论 ...................................................................................................................................................................................... - 3 - 三.midas Civil中的斜拉桥功能..................................................................................................................................................................... - 3 - 3.1 拉索单元模拟...................................................................................................................................................................................... - 4 - 3.2 未知荷载系数法功能........................................................................................................................................................................... - 5 - 3.3 索力调整功能...................................................................................................................................................................................... - 6 - 3.4 未闭合配合力功能............................................................................................................................................................................... - 7 - 四.斜拉桥分析例题 ...................................................................................................................................................................................... - 8 - 4.1 斜拉桥概况.......................................................................................................................................................................................... - 8 - 4.2 斜拉桥成桥分析 ................................................................................................................................................................................ - 10 - 4.3 斜拉桥倒拆分析 ................................................................................................................................................................................ - 14 - 4.4 斜拉桥正装分析 ................................................................................................................................................................................ - 15 -

斜拉桥的索力优化

斜拉桥索力优化简介 一、斜拉桥的概况 斜拉桥又称斜张桥,其上部结构由主梁、拉索和索塔三种构件组成。它是一种桥面系以加劲梁受弯或受压为主,支承体系以斜拉索受拉和主塔受压为主的桥梁。斜拉索作为主梁和索塔的联系构件,将主梁荷载通过拉索的拉力传递到索塔上,同时还可以通过拉索的张拉对主梁施加体外预应力,拉索与主梁的结点可以视为主梁跨度内的若干弹性支承点,从而使主梁弯矩明显减小,主梁尺寸以及主梁重量也相应减小,大大改善了主梁的受力性能,显著提高了桥梁的跨越能力。根据主梁所用建筑材料的不同,可将现代斜拉桥分为钢斜拉桥、混凝土斜拉桥、结合梁斜拉桥以及混合式斜拉桥等。早期斜拉桥的主梁均为钢结构,其形式主要为双箱或单箱配以正交异性板。随着技术进步,19世纪中期出现了第一座现代意义的混凝土斜拉桥,从此,混凝土斜拉桥进入了人们的视野。 混凝土斜拉桥的主梁和索塔一般由混凝土材料构成,为了提高主梁和索塔的适用性能,主梁可以优先采用预应力混凝土主梁,索塔可以釆用钢结构劲性骨架加强或环向预应力结构。在密索体系混凝土斜拉桥中,拉索受拉,主塔和主梁以受压为主,可以充分利用钢丝或钢绞线优异的受拉能力和混凝土良好的受压能力,同时,斜拉索水平分力对主梁形成预压作用,提高了主梁的抗裂能力。从设计方面看,既要考虑结构总体布置、结构体系选择的合理性,又要考虑釆用何种方法寻求成桥索力的最优解,还要考虑施工的便捷性、经济效益、社会效益

以及美学功能等多种因素;从施工方面讲,既要确定合理的施工流程,设法寻求合理的施工初拉力,还要做好施工过程中施工参数的动态控制和调整等方面工作。另外,在整个过程中,还要考虑设计参数变化、温度、徐变、几何和材料非线性以及施工方法等因素对设计和施工的影响。 二、斜拉桥索力优化方法 斜拉桥是高次超静定结构,其主梁、主塔受力对索力大小很敏感,而基于斜拉索索力可以调节的特点,我们可通过对拉索索力的调整来优化斜拉桥成桥恒载状态。针对如何才能确定合理的成桥状态,国内外许多学者都做了大量的研究并提出多种调整方法,可以将这些方法归为三类: (l)指定受力状态的索力优化,包括刚性支承连续梁法、零位移法、内力平衡法、指定应力法、零弯矩法等; (2)无约束的索力优化,包括弯曲能量最小法、弯矩最小法等; (3)有约束的索力优化,包括用索量最小法、应力平衡法等。 而由于斜拉桥的最合理的成桥状态本来也没有一个统一的标准,所以很难说哪一种方法一定优于另外的方法。下面将各种方法的原理介绍如下: ①刚性支承连续梁法 这种方法是使用最早的方法之一,它将斜拉桥主梁在恒载作用下弯矩呈刚性支承连续梁状态作为优化目标。将主梁、索梁交点处设以刚性支承进行分析,计算出各支点反力。利用斜拉索力的竖向分力与

独塔单索面斜拉桥主塔稳定性分析

独塔单索面斜拉桥主塔稳定简化分析 郭卓明 李国平 袁万城 上海城建设设计院 同 济 大 学 摘要:由于悬吊桥梁采用索塔支撑,其主塔往往须承受强大的轴向压力,因此其稳定是一个比较突出的问题。尤其独塔单索面斜拉桥在空间受力和稳定性方面都相对比较薄弱,对其进行稳定性分析更显必要。本文在对其主塔受力的适当简化之后,分别对其弹性及弹塑性稳定进行了简化分析,在传统的弹塑性稳定内力分析的基础上提出了一种独塔单索面斜拉桥主塔弹塑性稳定分析的简化方法。并以两座独塔单索面斜拉桥为背景做了算例,分析结果表明本文采用的简化分析方法是可行的。 关键词:独塔单索面 斜拉桥 主塔稳定 简化分析 一、引言 国民经济的飞速发展和国家对基础设施投入的进一步加强为我国大跨桥梁的发展提供了一个良好的条件,近十几年来,斜拉桥在我国迅速发展。由于单索面斜拉桥在美学上的优势,目前采用这种形式的斜拉桥也越来越多。由于悬吊桥梁的主塔均需承受巨大的轴向压力,而且随着桥梁跨度的增大,主塔也越来越高,结构越来越柔,其稳定问题成为一个非常突出的问题。尤其是其侧向稳定在设计时更需特别注意。 结构的稳定是一个较为经典的问题。从1744年欧拉的弹性压杆屈曲理论,到1889年恩格赛的弹塑性稳定理论,到Prandtl, L.和Michell, J. H. 的侧倾稳定理论,再到李国豪教授、项海帆教授等对桁梁桥、拱桥稳定的研究[1]以及近来国内外许多学者对各种具体结构稳定的研究,稳定问题在理论上已经比较成熟。在斜拉桥的稳定方面,1976年Man-chang Tang 提出了弹性地基梁的屈曲临界荷载估算法,葛耀君[5]用能量法分析了斜拉桥的面内稳定,此外樊勇坚、李国豪以及钱莲萍等都提出过各种实用计算方法,但都是仅限于弹性稳定的简化分析,且基本集中于主梁的稳定。对于弹塑性稳定,最近谭也平、景庆新[2]等都用有限元的方法进行了分析。稳定问题在计算方法上经历了经典的平衡微分方程方法、能量法等简化方法和有限元的数值计算方法这三个阶段,目前众多的研究尤其是对弹塑性稳定的研究大都集中在有限元分析上。然而在精确的有限元分析的同时,采用直观明了、概念清晰的力学简化分析,无论在对有限元分析结果的检验还是在初步设计时进行简单的估算都十分必要。本文在对独塔单索面斜拉桥主塔的受力特性进行适当简化之后,对独塔单索面斜拉桥主塔的弹性及弹塑性稳定问题分别进行了简化分析。 二、弹性稳定简化分析 考虑最一般的情况,主塔失稳方向和拉索平面成夹角β,如图(1)所示。失稳线形假定为()()v z V f z H ?=,分解到斜拉索平面内和平面外分别为: 平面内:()()()x z v z V f z H =?=?cos cos ββ 平面外:()()()y z v z V f z H =?=?sin sin ββ 主塔产生变形以后,外力功主要有拉索做功、主塔本身轴压做功和风荷载做功,其中拉索做功需考虑其在平面内的弹性支撑和平面外的非保向力作用,则由能量法可方便的导出主塔势能的总表达式:

矮塔斜拉桥研究的新进展

矮塔斜拉桥研究的新进展 陈从春1,周海智2,肖汝诚1 (1.同济大学桥梁工程系,上海200092; 2.同济大学建筑设计研究院,上海200092) 摘 要:简要叙述矮塔斜拉桥在国内外的应用及研究状况,讨论该种桥型的中文和英文关键词,提出索梁恒载比、索梁活载比和名义刚度的概念,并对这种桥型进行界定,试图揭示这类桥梁的力学本质,最后对该种桥型的发展作了展望。 关键词:矮塔斜拉桥;应力幅;索梁恒载比;索梁活载比;名义刚度中图分类号:U 448.27 文献标识码:A 文章编号:1671-7767(2006)01-0070-04 收稿日期:2005-11-22 作者简介:陈从春(1970-),男,博士生,1992年毕业于湖南大学公路与城市道路专业,工学学士,1999毕业于武汉理工大学岩土工程专业,工学硕士。 0 引 言 随着桥梁技术的发展,桥梁应用的两大趋势是十分明显的,即传统桥梁的轻型化和组合化。组合体系桥梁极大地丰富了桥梁造型。组合体系桥中比较有代表性的是拱梁组合体系、斜拉-连续梁(刚构)体系等,其中斜拉-连续梁(刚构)体系是一种比较新颖的桥型,近10年来应用较多,受到广泛的关注。普遍认为,由Chr istian M enn 设计的建于1980年的的甘特(Ganter)大桥,是斜拉-连续(刚构)体系桥的先驱,其混凝土箱形梁由预应力混凝土斜拉板/悬挂0在非常矮的塔上,这种板可以看成是一种刚性的斜拉索,该桥的出现形成了斜拉桥的一个分支)))板拉桥,由于其与环境的完美结合,成为一道风景。甘特大桥的出现为其后的矮塔斜拉桥的出现奠定了基础。甘特大桥之后,又有墨西哥的帕帕加约(Papagayo )大桥、美国得克萨斯州的巴顿河(Bar -to n Creek)大桥及葡萄牙的索科雷多斯(Socorr-i dos)大桥等相继建成[1]。 1988年法国工程师Jacg ues M athivat 在设计位于法国西南的阿勒特#达雷(Arr ?t Darr ü)高架桥的比较方案时,首次明确提出了矮塔斜拉桥的方案。该方案是跨度为100m 的预应力混凝土等截面箱梁,塔、梁固结,斜拉索穿过矮塔上的鞍座与主梁锚固。 与此同时,1990年德国的Antonie Naaman 提出了一种组合体外预应力索桥,体外索的一部分伸出主梁之上,锚固在墩顶处主梁的刚柱上[2] 。这一种体系与法国Jacgues M athivat 的方案十分类似。 目前这种桥在各国得到广泛应用,日本已建成此类桥梁20多座,中国大陆地区已建和在建的已达 10多座,中国台湾地区有2座,瑞士、菲律宾、老挝、帕劳群岛、克罗地亚各1座,美国珍珠港在建1座;其中,中国在建的惠青黄河公路桥、江珠高速荷麻溪大桥分别达到220m 和230m (预应力混凝土梁),芜湖长江大桥达到340m(钢桁梁),分别为同类桥梁最大跨径。 尽管这种桥梁发展很快,但仍然有很多问题没有很好地解决,本文将就研究的最新情况作一论述。1 矮塔斜拉桥的称谓 对于这种桥型的称呼尚未统一,法国工程师Jacgues M athivat 在提出他的方案时,命名为/ex -tra -dosed PC bridg e 0,直译为/超剂量预应力混凝土桥梁0;日本工程界一直采用这种名称( ¨é?ー ?橋);在美国,这种桥有称为/extra -dosed PC bridg e 0的,也有称为/extrado sed cable -stay ed bridg e 0的;在我国台湾,最初将这种结构称为/外置预应力桥0,后来根据其外形类似恐龙高耸的脊背,而称为/脊背桥0、/拱背桥0。国内的称呼一直存在争论,学者严国敏将其称为/部分斜拉桥0,理由是这种桥型受力特性介于斜拉桥和连续梁之间,桥的刚度主要由梁体提供,斜拉索主要起体外预应力的作用;王伯惠、顾安邦、徐君兰等学者认为应该称为/矮塔斜拉桥0,而/部分斜拉桥0不够明确,没有道出其外在的形状与内在的结构特征,早期的稀索结构也有/部分0的性质。 目前,这种体系与最初相比又丰富了很多,主梁不仅采用预应力混凝土结构,还可采用钢结构(如中国的芜湖长江大桥),以及钢与混凝土的组合结构(如波形钢腹板梁及结合梁),不仅可以采用刚性梁,

矮塔斜拉桥

浅谈矮塔斜拉桥和多塔斜拉桥 矮塔斜拉桥是介于连续梁与斜拉桥之间的一种斜拉组合体系桥,具有塔矮、梁刚、索集中的特点。 矮塔斜拉桥主梁刚度较大,是主要的承重构件,斜拉索对梁起加劲、调整受力的作用,斜拉索的恒载索力占总索力(恒载索力十活载索力)的比重较斜拉桥大,斜拉索的应力变幅较小,疲劳问题不突出,因而斜拉索的容许应力可取0.6pk f ,从而降低工程造价。矮塔斜拉桥与连续梁相比具有结构新颖跨越能力大、施工简单、经济等优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。使得矮塔斜拉桥具有广阔的发展空间。 矮塔斜拉桥结构特点: 1、塔高较矮。拉索倾角较小,拉索为主梁提供较大的轴向力,并且拉索尽可能密集地从塔顶鞍座上通过,锚固于主梁。一般塔高可取主跨的1/8-1/12; 2、以梁为主,索为辅,梁体高度约是同跨径梁式桥的1/2或斜拉桥的2倍,梁高与跨度之比较大,一般为1/40-1/20,并且主梁自身承受大部分荷载作用约70%斜拉索只承受30%起到帮扶作用; 3、主梁无索区段较一般斜拉桥要长,有较明显的塔旁无索区段,不设置端锚索; 4、边孔与主孔的跨度比值在0.5-0.6左右,类似连续梁; 5、为了充分利用矮塔的高度,拉索多成扇形布置且布置较集中,通常布置 在边跨、中跨跨中1/3附近。在己建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,拉索应力变幅一般只有斜拉桥的1/3左右,施工过程及合拢后,基本不需要进行拉索索力调整; 6、适用跨径宜选择在100m-200m 之间,如果采用组合梁或复合梁,则跨径可达300m. 7、尤其适用于多塔多跨和塔高受限制的情形,从刚度和疲劳考虑,它更适用于铁路桥或双层桥面,但采用多跨时存在较大的挠度问题。 矮塔斜拉桥的受力特点: 索塔将斜拉索索力按一定比例分配给主梁的水平和垂直方向,当主梁刚度较大时,就可以降低塔高,以节约材料,并给主梁提供较大的水平分力,以解决主梁体内预应力的不足。所以矮塔斜拉桥索塔的作用主要是通过分配斜拉索索力,从而实现对结构性能的改善。索塔对索力的分配作用不仅与自身高度有关,同时还与索力大小有关。拉索、预应力钢筋的用量和索塔塔高是相互影响的,索塔高些,拉索用量可少些,则预应力筋也可以相应少些,反之,亦然。在一定的范围内,通过索力优化调整因塔高降低对结构的负面影响,具有十分重要的意义。同

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键技术研究

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键技术研究

软土地区跨既有桥梁非对称矮塔铁路斜拉桥施工控制关键 技术研究 中铁六局集团天津铁路建设有限公司 科技研发项目立项报告 申请单位:中铁六局集团天津铁路建设有限公司 项目起止时间:201*年**月至201*年**月 中铁六局集团天津铁路建设有限公司制订 一、立项目的(不少于300字) 天津津保铁路三线矮塔斜拉桥是我国首座三线铁路曲线矮塔斜拉桥,其空间行为明显,受力复杂,主墩结构特殊,施工工艺复杂,技术标准高。且工程位于天津市西青区,跨越外环桥、外环河,主墩承台侵入既有外环河,基坑挖深最大为11m,并紧邻外环桥桥墩,主塔采用搭设支架分阶段浇筑混凝土,施工工艺复杂,技术标准高,施工难度大,施工过程中需要解决如下问题: (1)软土地区临近桥墩深基坑支护研究 本工程所在的天津地区是一个地下水位高、土质差的软弱土地区,并且本桥主基坑位于外环河内。天津地区软土为渤海环境沉积形成,具有触变性、流变性、高压缩性、低强度、低透水性、不均匀性等特性。软土地区开挖基坑的时候容易使支护结构产生过度的位移,从而导致紧临建筑物发生不均匀沉降、地下管道开裂等不良影响和后果。正是由于上述原因本工程在软土中的基坑工程成为重点处理对象,处理措施的优劣很有可能影

响整个工程的成败。 (2)跨既有桥梁支架体系方案研究 本工程桥梁作为全国首座三线铁路矮塔斜拉桥,以最大孔跨84米,净空24米的现浇箱梁横跨天津市外环线公路桥梁,支架搭设工程对保证现浇箱梁施工安全、保证下部外环线公路桥梁的结构和运营安全起到决定性作用。 (3)非对称矮塔铁路斜拉桥塔梁施工控制研究 本工程桥梁为三线曲线铁路非对称矮塔斜拉桥,在我国尚无先例,所以设计和施工可参考的依据较少,因此更加重了不确定因素对工程的影响。当结构在施工过程中出现施工状态偏离理想的设计状态时,分析原因可知,一方面由于设计构件截面尺寸、预应力筋张拉力、材料弹性模量、容重、收缩系数和徐变系数等计算参数往往与施工中实际情况有一定的差距,此外环境温度、临时荷载、施工误差等等也常常影响结构实际变位偏离设计理想状态,另一方面,结构施工立模超高、构件超重和预应力筋张拉力误差等也是导致结构出现偏差的重要因素,如不加以控制调整,就会造成结构偏离设计成桥状态,甚至危及安全。因此大跨度预应力混凝土桥梁的施工控制难度相对较大,对其施工过程进行检测和控制是十分必要的。 二、国内外现状及发展趋势(不少于300字) 1、软土地区临近桥墩深基坑支护研究 基坑工程是基础、地下工程中比较全面和复杂的问题,除了涉及到土力学古典强度理论和稳定理论,还涉及到变形问题和土的支护及相互作用

相关文档
最新文档