变速恒频双馈风力发电机的主要优点及基本原理.doc

变速恒频双馈风力发电机的主要优点及基本原理.doc
变速恒频双馈风力发电机的主要优点及基本原理.doc

变速恒频双馈风力发电机的原理和优点研究

变速恒频发电技术

变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限

制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电

能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复

杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒

频技术将是今后风力发电的必然趋势。

目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

变速恒频双馈风力发电机基本原理

双馈电机的结构类似于绕线式异步电机,旋转电机的定子和转子均安放对称三相绕组,其定子与普通交流电机定子相似,定子绕组由具有固定频率的对称三

相电源激励。电机定转子极数相同。转子绕组由具有可调节频率的对称三相电源

激励。电机的转速由定转子之间的转差频率确定。电机的定转子磁场是同步旋转

的,因此它又具有类似同步电机的特性。

当电机定子对称三相绕组由频率f1的电网供电时,气隙中基波旋转磁场的同步转速为 n1,满足 f1n p n1 / 60 。转子由原动机带动以转速n r旋转,而在转子对

称三相绕组中施以频率为sf1(s为转差率)的变频电源,在转子中产生三相对称

电流,它们产生的基波旋转磁势 F 2相对于转子而言以转差速度sn1旋转,相对于定子以同步转速旋转。转子磁势在气隙中建立的基波旋转磁场,在定子绕组中产

生感应电势(频率为 f 1),该电势与外加至定子绕组中的电源电压共同作用形成

三相对称电流,由此产生的定子基波磁势 F 1同样以同步转速旋转。定转子磁势

相对静止,在气隙中形成合成磁势 F m,该磁势在气隙中产生合成磁场m ,分

别与定转子绕组交链,在绕组中分别感应电势E1、E2 (频率为sf1)。

实质上,双馈电机与普通异步电机的工作原理是一致的。二者的区别在于普通异步电机转子电流的频率取决于电机的转速,由转子短路条感应电势的频率决

定,与转差率有关,转子电流本身的频率不能自主地、人为地调整。而双馈电机

转子绕组的频率由外加交流励磁电源供电,其频率可以随之变化调节。因此,双馈电机既具有异步电机的工作原理,又具有同步电机的工作特性,是一种具有同步特性的特殊的异步电机。

双馈电机定转子均为三相对称绕组,它均匀分布在电机圆周内,气隙均匀,电路、磁路呈对称分布。现作如下假定: (1)只考虑定转子电流的基波分量,忽略谐

波分量。 (2)只考虑定转子空间磁势基波分量。 (3)忽略磁滞、涡流损耗和铁耗。 (4)

变频电源可为转子提供能满足幅值、频率及功率因数要求的电源,不计

其阻抗与损耗。定子方正方向按发电机惯例定义,转子方正方向按电动机惯例定

义。与分析感应电机的方法类似, 根据磁势与电势平衡原则, 将转子方各物理量

折算至定子方,可得基本方程式如下:

V 1 E 1 I 1 ( r 1 jx 1 ) V 2 E 2 I 2 ( r

2 jx 2 ) s

s I 2 I 1 I m E 1

E 2

E 1 jI m x m

式中, V 1 为定子电压, I 1 为定子电流, r 1 为定子电阻, x 1为定子漏抗, V 2 为 折算后的转子电压, I 2 为折算后的转子电流, r 2 为折算后的转子电阻, x 2 为折 算后的转子漏抗,

I m 为激磁电流, r m 为激磁电阻, x m 为激磁电抗, s 为转差率,

E 1 、 E 2 为感应电势。另外,由于 r m

x m ,故忽略 r m 。

对于发电机,若轴上输入的机械功率为

P m ,根据能量守恒原理,有:

P

m

sP

em

P em

于是

P m (1 s) P em

P m 3(1

s)

x

m

2 (V 2 2

r 1 V 1 2

r

2

)

3(1 s)

V 1V 2

x m

[cos ( r 2

( x 1 x m ) r 1 (x 2 x m ))]

D

s 2 s sD s

3(1 s) V 1V 2 x m [sin

( r 1r 2 x 1 x 2 x m ( x 1 x 2 ))]

sD

s

则电磁转矩可表示为:

T

em P em

P m

T m

1

式中, 为转子机械角速度,

1 (1 s) 。

由机械功率表达式可导出电磁转矩表达式,它由三个分量组成,即:

T em T 1 T 2

T 3

式中,

T1 3 x m2 V12r 2

1D

s

T2 3 x m2 V22 r1

1 D s2

T3

V1V2 x m r2

( x1 x m ) r1 (x2

r1 r2

x1x2 x m ( x1 x2 ))] 3 [cos ( x m ))] sin (

1 sD s s

可见,1为一感应转矩。当 s 一定时,1 由定子电压的幅值大小确定。

0 s 1

T T

时,T1 0 为拖动转矩;s 0时,T1 0 为制动转矩,也就是说其转矩性质视s 的正负而定。 T2恒为制动转矩。当s 一定时, T2由转子电源电压的幅值大小确定。

T3是由定转子磁场相互作用产生的,可看作同步转矩,其值可正可负。因此,在一般情况下,双馈电机的电磁功率和电磁转矩不但与转差率s 有关,还与定转子电压幅值以及它们之间的相位差角有关,这是从双馈电机整个外部特性来考虑

问题的,将其看作只受定转子方两个外加电压源作用。

由于转子绕组始终可以看作受两个频率都是转差频率的电压源作用,一个是转子感应电势 sE20( E2sE20, E20为转子静止时,转子开路感应电势),另一

个是转子绕组外加电压V2。因此,不妨换个角度,从电机的转子方来考虑电磁

功率和电磁转矩。定义转子绕组外加电压V2与转子感应电势sE20之间的夹角为,定转子方功率因数角分别为 1 和 2 ,则由等值电路可得:

I m V1 Z

1 I1

Z m Z m

V s[( Z Z )V

1 (Z Z

Z

1

Z

2 )I ]

2 m 2

Z m 1 2 Z m 1

V2

E2

V2 sE20

I 2 s e j ( 2 ) e j 2

Z 2 s Z 2 Z 2

将上式用 Euler公式展开后取实部和虚部,并分别定义转子电流的有功分量为I 2 p、无功分量为 I 2q,则有:

I

I

2 p

E 20

[ V 2

cos(

2

)

s cos

2

]

( 1)

Z 2 sE 20

2q

E

20

[ V 2

sin(

2

)

ssin

2

]

( 2)

Z 2 sE 20

若将双馈电机看作特殊的异步电机, 则由异步电机的统一转矩公式, 可得双

馈电机的电磁转矩表达式为:

T

em

kE 20 I

2 p

式中, Z 1

r 1 jx 1 , Z 2

r 2 jx 2 , Z m jx m , k 为由电机参数所决定的常数。

s

上式表明,交流励磁双馈发电机的电磁转矩与转子电流的有功分量成正比,

因而通过转子电流的有功分量就可以控制双馈发电机定子端口的有功功率; 而转子电流的无功分量则可以控制双馈发电机定子端口的无功功率。

当 0 s 1 时,电机次同步运行,转差功率为 sP em 0,表示电磁功率一部

分由转子方电源提供,此时原动机提供的机械功率为

(1 s) P em ;当 s 0 时,电

机超同步运行,转差功率为 sP em 0 ,表示转子方电源吸收由电机气隙回馈的一

部分电磁功率,此时原动机提供的机械功率为 (1 s )P em ,表示定子方发出的电功率以及转子方电源吸收的电功率全部由原动机承担。

式(1)与式( 2)表明,独立调节转子方外加电压的幅值和相位角 就可以控制双馈发电机定子端口的有功功率和无功功率。在转差率保持不变的情况下,

如果转子电流有功分量发生变化, 只要适当调节的幅值和相位角 ,就可以保持转子电流无功分量不变, 或者使定子端口的有功功率和无功功率保持一定的功率因数关系。式( 1)与式( 2)亦同时表明,若转子方外加电压的幅值和相位角取适当的值,当转差率为正值时( 0 s 1 ),转子电流的有功电流分量可以为

正值,电机次同步运行,定子发出有功功率;当转差率为负值时(

s 0 ),转

子电流的有功电流分量可以为负值, 电机超同步运行,但定子同样发出有功功率。

通过对等值电路的分析和计算,可以将双馈发电机的控制规律看作转差率

s 、转子励磁电源电压 V 2 (包括其幅值、相位和频率)以及

V 1 与 V 2 之间的相位

差角这三个量的函数,这三个量中任意量变化都将影响电机运行性能。因此,

若要使电机达到某种稳态,则可以利用这三个量来进行控制。

双馈发电系统作为可再生能源获取的执行部件,属于典型的分布式发电系

统。因此,分布式发电系统的通用问题,如孤岛效应等,都值得在双馈发电系统

中进行研究。双馈发电系统在和常规的大电网并联运行时,对电网电压的扰动的响应,包括不对称电网、电压跌落、电网电压谐波、电网电压相位及频率波动等,也是很有必要进行研究的。

参考文献

[1]王承熙等 . 风力发电 . 北京 : 中国电力出版社 , 2003

[2] 陈雷 . 大型风力发电机组技术发展趋势. 可再生能源 , 2003, 107(1) : 27~3

[3]秦晓平等 . 感应电动机的双馈和串级调速 . 北京 : 机械工业出版社 , 1990

[4] 叶启明 . 大型风力发电机组系统的结构与特点. 华中电力 , 2002, 15( 2) : 67~68

[5]黄顺礼 , 魏晓玲 , 黄春阳 . 《第五次全国电机学术讨论会论文集》述评. 电机技术 , 2000,

2:54~55

[6]刘其辉 . 变速恒频风力发电系统运行与控制研究. 浙江大学博士学位论文, 2005 .

[7] 戴赟 ,王志新 . 变速恒频风力机桨叶电液比例控制系统研究[J]. 机电一体化 ,2006,12(1):16 —20

[8] 乐斌 ,王志新 . 兆瓦级双馈感应风力发电机变频器调制方法分析与仿真研究[J]. 昆明理工大学学报 ,2006,31(4B):21—25

定距桨变距桨与风力发电机组

桨距 螺旋桨的桨叶都与旋转平面有一个倾角。 假设螺旋桨在一种不能流动的介质中旋转,那么螺旋桨每转一圈,就会向前进一个距离,连续旋转就形成一段螺旋。 同一片桨叶旋转一圈所形成的螺旋的距离,就称为浆距。显然,桨叶的角度越大,浆距也越大,角度与旋转平面角度为0,浆距也为0。 这个“距”,就是桨叶旋转形成的螺旋的螺距。 桨距指的是直升机的旋翼或固定翼的螺旋桨旋转一周360 度,向上或向前行走的距离(理论上的)。就好比一个螺丝钉,您拧一圈后,能够拧入的长度。桨距越大前进的距离就越大,反之越小!然而要测量实际桨距的大小是比较困难的,所以一般固定翼飞机使用桨距不变的螺旋桨上都会标明其直径和桨距的大小(单位以英寸居多),以便于和合适的发动机配套使用。绝大多数的固定桨距的直升机桨一般是专为某一级别的飞机定制的,所以只标明直径。可变桨距直升机可以非常容易的通过测量桨叶的攻角(迎风角度)大小来体现桨距的大小,和变化幅度。 l 定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69 ,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/ 小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。 失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。 2 变桨距调节型风力发电机组 变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“, 直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。 随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用 OptitiP 技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。 变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。 3 主动失速调节型风力发电机组

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

尖速比对风力发电机发电效率的影响

尖速比对风力发电机发电效率的影响 摘要:本文采用实验和数值分析相结合的方法,针对影响风力发电机输出性能的尖速比因素进行研究,通过尖速比的变化对风力发电机的输出功率、电流、电压以及风能利用系数的影响分析,找到了尖速比对风力发电机的输出功率、电流、电压以及风能利用系数影响程度,为设计或制造提供参考。 关键词:风力发电机;尖速比;发电效率;影响 The influence of tip speed ratio on the wind turbine power generation efficiency GaoFeng,Inner Mongolia Energy Investment Group New Energy Co.,Ltd,010020 Abstract This paper adopts the method of combining experimental and numerical analysis,conducts the research in view of tip speed ratio influence factors of the wind generator output performance,by changing the tip speed ratio of wind turbine output power,current,voltage and the influence coefficient of utilization of wind energy analysis,found the tip speed ratio of wind generator output power,current and voltage and the wind energy utilization coefficient influence,provides the reference for the design and manufacturing. Key words:wind power generator;tip speed ratio;power efficiency;influence 引言 风能是可再生能源中发展最快的清洁能源,也是最具有大规模开发和商业化发展前景的发电方式。风力发电机组的规模化发展是风能利用的主要形式。风电场场址一般选在风力资源丰富的地区,主要是偏僻的山区以及东部沿海地区,场址地区环境条件十分恶劣,风速在大范围内随机发生变化,风电机组在一些地区还要时常受飓风的侵袭,会对风电机组产生很大的冲击。叶尖速比是用来表述风电机特性的一个十分重要的参数。它等于叶片顶端的速度(圆周速度)除以风接触叶片之前很远距离上的速度;叶片越长,或者叶片转速越快,同风速下的叶尖速比就越大。针对风轮与发电机的匹配性的研究也就是考虑小型风力发电机最优输出特性[1-3]。 本文采用400W永磁直驱小型风力发电机为实验对象,分析尖速比对风力发电机输出功率、电流、电压、风能利用系数的影响。 1.功率输出分析

变速变桨距风力发电机组控制策略改进与仿真

变速变桨距风力发电机组控制策略改进与仿真 刘 军,何玉林,李 俊,黄 文 (重庆大学机械传动国家重点实验室,重庆市400030) 摘要:在分析变速变桨距风力发电机组基本控制策略的基础上,提出一种扩大过渡区的改进控制策略,用来消除额定功率运行点附近切换造成的功率波动及突变载荷等不利影响。依据改进的控制策略设计了3个控制器平滑过渡方案,实现对该策略的最佳跟踪。运用MAT LAB 仿真平台模拟了改进控制策略下的风力发电机组运行特性,结果表明了改进控制策略的正确性及控制器设计的有效性。 关键词:风力发电机组;变速变桨距;控制策略;扩大过渡区;平滑控制 收稿日期:2010 06 23;修回日期:2010 10 09。重庆市科技攻关重点项目(CST C2007A A3027)。 0 引言 风力发电机组的控制技术由原来单一的定桨距失速控制转向变桨距变速控制,目的是为了防止风能转换系统承受的载荷过重,从风场中最大限度地捕获能量以及为电网提供质量较好的电能。然而,风力发电机组作为一种复杂的、多变量、强耦合、非线性的系统,要想减小风力机载荷以延长其使用寿命,抑制功率波动以降低对电网的不利影响,控制策略的选取及控制器的设计至关重要[1 6]。 本文通过对变速变桨距风力发电机组基本控制策略的分析,针对过渡区运行过程中出现的功率波动大及突变载荷强等情况,提出一种改进的控制策略来减缓此种影响。为最佳跟踪改进的控制策略,设计了3个控制器以实现3个运行区间的平滑过渡。同时应用M ATLAB 仿真平台对变速变桨距风力发电机组运行特性进行了仿真,结果表明了所提出方案的合理性和可行性。 1 基本的变速变桨距控制策略 如图1所示,在转速 转矩平面图中,曲线A BC 描述了变速变桨距风力发电机组的基本控制策略。在低风速区,风电机组从切入风速为V in 的A 点到风速为V N 的B 点,沿着C pmax 曲线轨迹运行,此区间称为恒C p 运行区。由于在B 点发电机转速达到了其上限值 N ,当风速从V N 上升到V N 时,转速将恒定在 N ,提升发电机转矩使风电机组达到其额定功率,在图1中为BC 段,也称为恒转速区或过渡区。当风速超过额定风速V N 时,变桨距系统将开 始工作,通过改变桨距角保持功率的恒定,风电机组将持续运行在C 点,直到风速超过切出风速V out ,此区间称为恒功率区,而此区间内桨距角控制方式采用统一桨距控制,它是指风力机所有桨距角均同时 改变相同的角度[7 8] 。在此需要注意的是:若最大功率P N 曲线与C pmax 曲线的相交点在额定转速极限值左侧,就会造成风电机组在未达到额定转速时,已进入失速状态,相应的A B 区间将被缩小,这时就需 对整个风电机组额定点进行重新选取。 图1 变速变桨距风力发电机组控制策略Fig.1 C ontrol strategy of the variable speed pitch controlled wind turbine driven generator system 从图1可以看出,3个区间工作点的划分非常明显,而控制器的设计与工作点的选取有着必然的联系,因此,基本的变速变桨距风电机组通常会设计2个独立的控制器,一个用来跟踪参考速度,另一个用来跟踪额定功率。由于2个控制器都有各自的控制目标,在运行过程中相互独立,然而在工作点附近,2个控制器又相互制约,这种制约就会导致风电机组在C 点控制系统的调节能力下降,在突遇阵风 82 第35卷 第5期2011年3月10日Vo l.35 N o.5M ar.10,2011

风力发电机的组成部件其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不

风力机检测期末考试题

1.风力发电机组如何对叶片进行防雷保护 通过安装在叶尖上的雷电接收器并借助于叶尖扰流器作为传导系统来实现。 2.风力发电机组如何进行防雷保护 ①桨叶上安装雷电接收器并借助叶尖扰流器传导。电刷和低速轴制动盘连接着叶轮和机舱底座。电刷将电流不经主轴承转移到机舱底座 ②机舱底座通过电刷与塔架相连,塔架与地面控制柜通过电缆与埋入基础的接地系统相连,使电流接地。无与机舱底座项链的部件可与接地电缆相连。在机舱体后部安装避雷针,高度在风速风向仪之上。传动系统采用绝缘联轴器,发电机外壳接地,齿轮箱外壳不接地。 ③塔筒直径大于3米,从地基引出至少3根引出接入塔筒。动力系统地电缆通过该扁钢接入电网 3.定桨距风力发电机组调整桨叶安装角的依据是什么 在一定范围内,桨叶节距角越小,气流对桨叶的失速点越高,其最大输出功率也越高 4.风力发电机组的主要温度监测点有哪些 1)齿轮油温及高速轴承温度 2)发电机绕组及其轴承温度 3)主轴承温度 4)发电机驱动器(交流器、软并网装置、变桨驱动器等)温度 5)控制器环境温度 5.风力发电机组的工作状态包括哪几种 运行状态、暂停状态、停机状态、紧急停机状态 6.列举5种风电场有功控制模式 限值模式、调整模式、斜率控制模式。差值模式和调频模式 7.风力发电机组的特性主要包括哪几方面 风力机特性、传动系统特性、发电机特性、变流器特性变距系统特性和偏航系统特性 8.风力发电机组的润滑对象主要有哪些 变桨轴承、主轴、发电机轴承、偏航轴承 9.变速恒频风力发电机组的基本控制目标是什么 在额定风速以下运行时尽可能提高能量转换效率,在额定风速之上时变桨控制可有效调节风机吸收的能量,同时控制叶轮上的载荷以限定在安全设计值以内 1)减小传动链的转矩峰值 2)通过动态阻尼来一直传动链振动 3)避免过量的变桨动作和发电机转矩调节 4)通过控制风电机组塔架的振动尽量减小塔架基础的负载 5)避免轮毂和叶片的突变负载 10.风力发电机组的传动轴系包括哪三大部分 1)低速转动的主轴、主轴承以及轴承座 2)增速齿轮箱以及弹性支撑 3)高速联轴器、发电机及其弹性支撑 11.风力发电机组上,振动分析的传感器主要用于哪些部件的状态监测 齿轮箱的齿轮和轴承、发电机轴承和主轴承的运行状态 12.电动变桨系统为什么要配备后备电源?后备电源有哪些类型?

变桨距风力发电机组的运行状态

变桨距风力发电机组的运行状态 从空气动力学角度考虑。当风速过高时,只有通过调整桨叶节距,改变气流对叶片的角度,从而改变风力发电机组获得的空气动力转矩,才能使功率输出保持稳定。同时,风力机在启动过程中也需要通过变距来获得足够的启动转矩。 变桨距风力发电机组根据边距系统所起的作用可分为三种运行状态,即风力发电机组的启动状态(转速控制)、欠功率状态(不控制)和额定功率状态(功率控制)。 1)启动状态变距风轮的桨叶在静止时,节距角为90°,这时气流对桨叶不产生转矩,整个桨叶实际上是一块阻尼板。当风速达到启动风速时,桨叶向0°方向转动,直接到气流对桨叶产生一定的攻角,风轮开始启动。在发电机并入电网以前,变桨距系统的节距给定值由发电机转速信号控制。转速控制器按照一定的速度上升斜率给出速度参考值,变桨距系统根据给定的速度参考值,调整节距角,进行所谓的速度控制。为了确保并网平稳,对电网产生尽可能小的冲击,变桨距系统可以在一定时间内保持发电机的转速在同步转速附近,寻找最佳时机并网。虽然在主电路中也采用了软并网技术,但由于并网过程的时间短,冲击小,可以选用容量较小的晶闸管。 为了使控制过程比较简单,早期的变桨距风力发电机在转速达到发电机同步转速前对桨叶节距并不加以控制。在这种情况下,桨叶节距只是按所设定的变桨距速度,将节距角向0°方向打开,直到发电机转速上升到同步转速附近,变桨距系统才开始投入工作。转速控制的给定值是恒定的,即同步转速。转速反馈信号与给定值进行比较。当转速超过同步转速时,桨叶节距就迎风面积小的方向转动一个角度,反之则向迎风面积增大的方向转动一个角度。当转速在同步转速附近保持一定时间后发电机即并入电网。 2)欠功率状态欠功率状态是指发电机并入电网后,由于风速低于额定风速,发电机在额定功率以下的低功率状态下运行。与转速控制道理相同,在早期的变桨距风力发电机组中,对欠功率状态不加控制。这时的变桨距风力发电机组与定桨距风力发电机组相同,其功率输出完全取决于桨叶的气动性能。 3)额定功率状态当风速达到或超过额定风速后,风力发电机组进入

风力发电机介绍

风力发电机介绍 目录 1. 风力发电发展的推动力 2.风力发电的相关参数 2.1.风的参数 2.2.风力机的相关参数(以水平轴风力机为例) 3.风力机的种类 3.1.水平轴风力机 3.2.垂直轴风力机 4.水平轴风力机详细介绍 4.1.风轮机构 4.2.传动装置 4.3.迎风机构 4.4.发电机 4.5.塔架 4.6.避雷系统 4.7.控制部分 5.风力发电机的变电并网系统 5.1.(恒速)同步发电机变电并网技术

5.2.(恒速)异步发电机变电并网技术 5.3.交—直—交并网技术 5.4.风力发电机的变电站的布置 6.风力发电场 7.风力机发展方向 1. 风力发电发展的推动力: 1) 新技术、新材料的发展和运用; 2) 大型风力机制造技术及风力机运行经验的积累; 3) 火电发电成本(煤的价格)上涨及环保要求的提高(一套脱硫装置价格相当 一台锅炉价格)。 2. 风力发电的相关参数: 2.1. 风的参数: 2.1.1. 风速: 在近300m的高度内,风速随高度的增加而增加,公式为: V:欲求的离地高度H处的风速; V0:离地高度为H0处的风速(H0=10m为气象台预报风速的高度); n:与地面粗糙度等因素有关的指数,平坦地区平均值为0.19~0.20。 2.1.2. 风速频率曲线:

在一年或一个月的周期中,出现相同风速的小时数占这段时间总小时数的百分比称风速频率。 图1:风速频率曲线 2.1. 3. 风向玫瑰图(风向频率曲线): 在一年或一个月的周期中,出现相同风向的小时数占这段时间总小时数的百分比称风向频率。以极座标形式表示的风向频率图叫风向玫瑰图。 图2:风向玫瑰图

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

变速恒频风力发电机组的无功功率极限

变速恒频风力发电机组的无功功率极限 申洪,王伟胜,戴慧珠 (中国电力科学研究院,北京100085) 摘 要:根据变速恒频风电机组的工作原理,建立了变速恒频风电机组的稳态数学模型,该模型考虑了风力机、双馈电机及其转速控制的稳态特性。在此模型的基础上,提出了计算变速恒频风电机组无功功率极限的方法,并对一变速恒频风电机组进行了计算分析,验证了所提方法的可行性。 关键词:变速恒频风电机;双馈电机;无功功率极限 1 引言 近年来世界风力发电发展迅速,风电装机容量平均每年以高于20%的速度增长。截止到2002年底,全世界风力发电装机容量约为31128MW,其中我国风电装机容量达468.42MW。目前,兆瓦级风力发电机组已逐渐取代600kW级的机组,成为国际上风力发电机市场的主力机型,风电机组正向着大型化、变桨距和变速恒频的方向不断发展和完善。 虽然变速恒频风电机组与固定转速的风电机组相比在性能上有较大改善,但由于风速变化的随机性,变速恒频风电机组的并网运行对电力系统而言仍然是一种波动的冲击功率,因而必须对这种风电机组的并网运行特性进行研究。变速恒频风电机组的发电机采用双馈感应电机,文献[1]~[3]对它的稳态模型进行了研究,建立了基于与定子磁场同步旋转的dq坐标系的数学模型。因为双馈发电机的转速和定子侧的无功功率都可以调节,所以转速控制规律和无功功率控制规律对变速恒频风电机组的稳态特性也有很大的影响。文献[1]、[2]介绍了转速控制和无功功率控制的基本思想,其中转速控制的目标是使风力机的功率系数最优,而无功功率控制则根据其接入的电力系统的实际运行方式可以设定为功率因数恒定或端电压恒定两种控制方式。 风电机组发出的有功功率主要取决于风速的大小,而无功功率则取决于风电机组的无功控制方案。一般风电场位于偏远地区,电网结构薄弱,当无功功率控制的设定值达到风电机组的无功功率极限时,一方面转子绕组发热将导致风电机组停机,另一方面由于不能向系统中提供或吸收足够的无功功率,将导致端电压降低或升高,严重时将导致系统电压失稳。因而研究变速恒频风电机组的无功功率极限是很有必要的。文献[4]对此问题进行了一定的研究,但它只讨论了发电机定子绕组中有功功率和无功功率的稳态运行域问题,并没有解决整个风电机组注入系统的有功功率和无功功率的稳态运行域问题。另外,该文献没有考虑转速控制规律的影响。

风力发电机的控制方式综述

风力发电机及风力发电控制技术综述 摘要:本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发 电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 关键词:风力发电机电力系统控制技术 Overview of Wind Power Generators and the Control Technologies SU Chen-chen Abstract:This paper analyzes the advantages and disadvantages of the various wind turbine control technology of wind power, wind power generation system, and finally prospected the future control of wind turbines and wind power technology. 1 引言 在能源短缺和环境趋向恶化的今天,风能作为一种可再生清洁能源,日益为世界各国所重视和开发。由于风能开发有着巨大的经济、社会、环保价值和发展前景,近20年来风电技术有了巨大的进步,风电开发在各种能源开发中增速最快。德国、西班牙、丹麦、美国等欧美国家在风力发电理论与技术研发方面起步较早,因而目前处于世界领先地位。与风电发达国家相比,中国在风力发电机制造技术和风力发电控制技术方面存在较大差距,目前国内只掌握了定桨距风机的制造技术和刚刚投入应用的兆瓦级永磁直驱同步发电机技术,在风机的大型化、变桨距控制、主动失速控制、变速恒频等先进风电技术方面还有待进一步研究和应用[1]。发电机是风力发电机组中将风能转化为电能的重要装置,它不仅直接影响输出电能的质量和效率,也影响整个风电转换系统的性能和装置结构的复杂性。风能是低密度能源,具有不稳定和随机性特点,控制技术是风力机安全高效运行的关键,因此研制适合于风电转换、运行可靠、效率高、控制且供电性能良好的发电机系统和先进的控制技术是风力发电推广应用的关键。本文分析比较了各种风力发电机的优缺点,介绍了相关风力发电控制技术,风力发电系统中的应用,最后对未来风力发电机和风力发电控制技术作了展望。 2 风力发电机 2.1 风电机组控制系统概述 图1为风电机组控制系统示意图。系统本体由“空气动力学系统”、“发电机系统”、“变流系统”及其附属结构组成; 电控系统(总体控制)由“变桨控制”、“偏航控制”、“变流控制”等主模块组成(此外还有“通讯、监控、健康管理”等辅助模块)。各种控制及测量信号在机组本体系统与电控系统之间交互。“变桨控制系统”负责空气动力系统的“桨距”控制,其成本一般不超过整个机组价格5%,但对最大化风能转换、功率稳定输出及机组安全保护至关重要,因此是风机控制系统研究重点之一。“偏航控制系统”负责风轮自动对风及机舱自动解缆,一般分主动和被动两种偏航模式,而大型风电机组多采用主动偏航模式。“变 流控制系统”通常与变桨距系统配合运行,通过双向变流器对发电机进行矢量或直接转矩控制,独立调节有功功率和无功功率,实现变速恒频运行和最大(额定)功率控制。

浅谈金风风力发电机组的振动

浅谈金风风力发电机组的振动 姓名:张玉博 入职时间:2013年5月 部门:哈密总装厂

目录 摘要: (2) 一、引言 (3) 二、状态监测与故障诊断 (4) (一)、振动监测方式 (4) (二)、国内外发展现状 (4) (三)、振动故障诊断 (4) 三、金风风力发电机组振动故障案例 (6) (一)、石碑山A0701机组 (6) (二)、石碑山B1004机组 (7) 四、金风风力发电机组减振措施与保护 (8) (一)、对中概念 (8) (二)、造成不对中的原因 (8) (三)、不对中对风机的影响 (9) (四)、金风风力发电机组的减振措施 (9) (五)、独立于系统的硬件保护 (11) 五、小结 (11) 参考文献 (12)

浅谈金风风力发电机组的振动 摘要: 振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。 风力发电机组中减少振动很重要的一个举措就是对中。金风风力发电机组为了减少振动带来的消极影响,做了许多积极措施。从S43/600Kw机组的机械对中到S48/750Kw的激光对中等都有了质的飞跃。 关键词: 振动;振动分析;对中

风力发电机组变桨距

随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。本文从分析我国风力发电的现状出发,在总结分析风力发电技术发展的基础上,对我国风电发展过程中存在的主要问题进行了探讨分析,提出了相关建议。 关键词:风力发电;现状;技术发展 能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。 1我国风力发电的现状 2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。 随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。 我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。 从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2风力发电的技术发展 风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。 2.1风力发电机组机型及容量的发展 现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即

风力发电机设计与研究综述

风力发电机设计与研究综述 在资源越来越贫乏的现代社会,工业化的迅速发展,使得人们对于电力资源的需求大大增加,对于资源的开发上是一个不小的压力。由此,现代社会努力寻找各种替代能源来缓解压力,而风能的利用开发就是新能源的一种,本文就将针对风力发电机设计理念进行详细的分析介绍,对其中蕴含的原理和知识进行综合论述,同时对未来风力发电的技术方向和研发方向进行分析预测,提出切实的建议。 标签:风力发电机;设计理念;未来前景 风力发电技术的发展其实不是特别久远,主要也是从国外发展而来的,而且这个技术的发展跟现代能源的开发也有关系,是生产力和生产资源的需要促使国外的集团机构进行资源开发技术上的研究,在技术上也是经过了几代人的磨炼探索,终于在对于新能源的资源利用上取得了突破。中国也在这样的背景下研制出来了风力发电机,事实上这是对风能转换成电力资源的完美利用。利用率高,并且不存在污染现象。但是在实际的运用中还是要分析一下风力发电机的工作情况,思考风力发电机设计原理的合理性和现实性,进行查漏补缺,实时抱有不断前进不断成长的学习态度。 一、风力发电机的设计概述 (一)了解风力发电的设计原理 风力发电实际上是对风能的有效利用,是对于风能的开发转换,而风力发电机就是针对这一需要进行技术支持的设备。它主要是利用风的流动对叶片产生的压力,促使内部轮轴进行转动,在经过不同的作用环节的催发下,生成最后所需要的电能资源。纵观一系列的作用环节,实际上主要就是一个从风能到机械能再到动能再到电能的转化过程。并且它的设计也是在原有传统能源利用的优缺点基础上进行的,吸取了原有的优势启发,但是在转换率和副作用上有了很大的改善,避免了很多原有能源开发可能会带来的问题,例如对环境的污染,对开采能源造成的地质破坏,对能源材料的集中运输难度等一系列问题,所以风力发电机绝对是一个较为科学且实际的合理设计。 (二)针对不同类型的不同设计 风力发电机是对于风能的采集利用,其实也存在类型上的不同,这也是针对电能的不同需求做出的改变。风力发电机大体上可以按照主轴方向和输出、功率调节形式和机械形式、发电机组几种区分标准进行分类,大大小小也是可以分为近十余种风力发电机的类型,这些有的是以发电目的为导向来进行输出功率大小的量比,有的是以内在结构的运作方式不同进行发电机类型的区分,其实这些类型都是基于现有技术和使用者的使用需求进行的设计生产,都是可以在不同环境不同使用期待下进行合理的风能向电能的转化的。风力发电机设计的更多类型也

变速恒频风力发电关键技术研究

变速恒频风力发电关键技术研究 发表时间:2018-06-07T10:41:35.750Z 来源:《电力设备》2018年第1期作者:李琳[导读] 摘要:本文主要对风力发电技术进行研究,首先从传统的恒速恒频发电入手与变速恒频发电做对比,展示了变速恒频发电在性能方面的突出优点,再分析变速恒频发电机组的工作原理和机组中的两种发电系统:交流励磁双馈发电系统和无刷双馈发电系统,分别对两种系统的工作原理、控制方式、优点及缺点等方面作出了阐述。 (大唐新能源黑龙江公司 150038)摘要:本文主要对风力发电技术进行研究,首先从传统的恒速恒频发电入手与变速恒频发电做对比,展示了变速恒频发电在性能方面的突出优点,再分析变速恒频发电机组的工作原理和机组中的两种发电系统:交流励磁双馈发电系统和无刷双馈发电系统,分别对两种系统的工作原理、控制方式、优点及缺点等方面作出了阐述。 关键词:变速恒频;风力发电;技术研究前言:根据我国目前生态建设和可持续发展的需要,大力开发可再生能源已经成为了当下应用能源的新型趋势,而风能正是符合这一需求的可再生绿色能源。风力发电技术早在上个世纪就开始进行研究和应用,但是在一定程度上机组性能尚不完善,关键技术的研发未有突破,导致了风能利用率较低。在近些年逐步发展的变速恒频风力发电技术在一定程度上可以对此改善,在技术研究上也有了新突破。 1.风力发电的技术分析 1.1恒速恒频风力发电机组分析 恒速恒频风力发电机组是一种运行后叶轮不能根据风速的变化而发生变化的,是由电网频率决定的风轮转速和电能频率在运行时基本保持不变的风电机组。主要发展于上世纪八十年代和九十年代之间,曾经被我国广泛应用于风力发电,并在此期间不断被研究者优化的一种风力发电形式。恒速恒频风力发电机组最开始的容量只有几十千瓦级,逐步发展为兆瓦级,并且有着一系列优点,例如:性能稳定、操作简便等,但仍属于非智能操作系统。 在恒速恒频风力发电机组中,由两种较为常用的控制方式:主动失速控制和定桨距失速控制。其中,主动失速控制是应用于大容量机组的一种控制方式,这种控制方式可以使机组具有稳定的输出功率,也会有部分机组采用定桨距失速控制,但是,该方式的输出功率不稳定还会造成一定程度上的齿轮箱磨损。 在恒速恒频风力发电系统中,由于外界风速变化无常,但风力发电机本身的转速不会改变,就会造成数据的不准确,风机效率低下等状况。在风力发电中,要提高风力发电系统的发电效率是首要任务,在整个过程中捕获最大风能是要点,所以发电系统一直在向着目标改进发展。随着科学技术的发展,在风力发电方面也有了明显的突破,正如近年来慢慢发展并强大的变速恒频风力发电系统。 1.2变速恒频与恒速恒频的对比分析 变速恒频风力发电机组是当今的主流风力发电机组,是二十世纪末期发展起来的一种高效的风力发电方式。与恒速恒频风力发电机组相比,变速恒频风力发电机组有明显的优势。变速恒频风电机组可以应对不同风速大小,在不同风速下进行自身调节,最大化捕捉风能,提高风能的利用率。恒速恒频发电机组在遇到较大风力时,自身产生的较大电流会使自身结构遭到损害。变速恒频风力发电机组本身可以根据外界风速的变化进行自身调节,减少因力的相互作用而导致装置内部结构遭到破坏的现象,从而大大延长了机组的使用寿命。不仅如此,变速恒频风力发电机组主要是通过对内部转子交流励磁电流幅值、频率以及相位的控制,实现在变速下对于频率的恒定控制,,这种控制方式还可以达到对输出功率的控制,使装置运行更加灵活,以便于整个机组的运作。 2.变速恒频风力发电的关键技术分析 2.1变速恒频风力发电工作原理 在变速恒频风力发电机组中,主要的三个部,分是风力机、发电机和辅助构件。变速恒频风力发电的基本工作原理是风力机构件中的叶轮吸收风能,在风能的作用下发生转动,使之转化为机械能,而后,叶轮的转动带动齿轮箱工作,产生机械能,再将产生的机械能通过发电机转化为电能,并经过一定转化输入电网,再由电网对各个用户进行传输。 目前的变速风力发电系统完全实现了机械自动化,属于智能运作系统,不需要人工调节,可以根据风速风力进行自身调节,适应外界变化。对于变速恒频发电机组而言,在额定风速以上运行时,可以使叶轮上的载荷控制在安全值内,并且,有效的调节风电机组吸收的能量。风力机的叶轮由于质量较大,具有较大的惯性,在变桨控制产生作用时,叶轮不会及时发生变化,通常情况下会滞后一定时间才能有所表现,这一情况很容易使功率有大幅度的波动。所以,在额定风速上运行时,需要用发电机转矩来进行快速的调节,来保证输出稳定的能量。当机组处于额定风速以下时,可以通过提高对发电机转矩的控制,使机组变速运行,以达到提高能量转换率的目的。 2.2变速恒频发电系统 交流励磁双馈发电系统:这种发电系统内部的主要结构有叶轮、齿轮箱、发电机、四象限变频器、交流励磁控制器、检测装置以及风力发电控制器等,其内部还存在滑环和电刷。馈电方式为装置内部转子绕组通过交流—交流的方式或是交流—直流—交流方式的变频器提供相关数据可以调节的电源,定子绕组接电网。交流励磁控制器还可以通过对于转子变频器输出的电压、幅值、相位以及频率的控制来调节转矩和定子的无功功率。在装置中,变频器提供给转子低频旋转磁场,且满足公式:ω1=ωs±ωr。其中ω1代表定子磁场同步转速,ωs代表整个磁场旋转速度,ωr代表转子机械旋转速度。 无刷双馈发电系统:这种电力系统的深入研究始于上世纪七十年代末,在此期间的几十年中,主要由美国Wisconsin大学、Ohio州立大学等高等院校对无刷双馈发电系统进行深入研究。其内部结构主要有电网、功率绕组、控制绕组、变频器、无刷电机、风力机等。在其内部定子上,一般有两套三相对称绕组,一个为主绕组,一个为副绕组。一般由工频交流电源直接为主绕组供电,如果副绕组短路,系统能够在异步运行方式下运作。无刷双馈发电系统内部的转子一般分为磁阻转子和笼形转子两类,其中,磁阻转子以ALA型较为常见,笼形以笼形短路绕组转子较为常见。 在风力发电系统的研究中表明,无电刷和滑环的发电转子在应用中更为稳定耐用,可靠性强。并且,发现在所有的发电系统研究中双馈型有刷及无刷的变速恒频控制在性能上都较为优越,较为常用,可以在此结论的基础上进一步对于双馈型变速恒频空间展开研究,进一步发展我国变速恒频风力发电的应用。 3.结语

恒速恒频风力发电系统的数学模型

恒速恒频风力发电系统的数学模型 为了研究风电场对电力系统的影响,需要建立合理的风电场数学模型,为进一步仿真分析奠定基础。按照本课题研究的要求,我们先后建立了异步发电机的稳态数学模型和动态数学模型,其中动态数学模型包括风速模型风轮机、传动机构和异步发电机的模型。本文以恒速恒频风力发电系统为研究对象,它主要由风力机和异步风力发电机等主要元件组成。我们着重于风电场与系统相互影响问题的研究,与之密切相关的环节,其数学模型将详细地描述。数学模型的建立为研究风电场的运行特性和风电场并网运行带来的稳定问题以及研究电力系统接入一定规模的风电场的可行性提供了基本的工具。 2.1 风电场及风力发电机组简介 风力发电场是将多台并网风力发电机安装在风力资源好的场地,按照地形和主风向排成阵列,组成机群向电网供电,简称风电场。风力发电形式可分为“离网型”和“并网型”“离网型”有:(1)单机小型风力发电机;(2)并联的小型或大型孤立的风力发电系统;(3)与其它能源发电技术联合的发电技术,如风力/柴油发电机联合供电系统。“并网型”的风力发电是规模较大的风力发电场,容量大约为几兆瓦到儿百兆瓦,由于十台甚至成百上千台风电机组构成。并网运行的风力发电场可以得大大电网的补偿和支撑,更加充分的开发可利用的风力资源,也是近儿年来风电发展的主要趋势。在日益开放的电力市场环境下,风力发电的成本也将不断降低,如果考虑到环境等因素带来的间接效益,则风电在经济上也具有很大的吸引力。 风电场的发电设备为风力发电机组,发电机经过变压器升压与电力系统连接,如图2.1

图2-1风电场与电力系统连接图 在风场内,风机与变电所之间的连接有两种方式:场地布置相对集中时用电缆直埋;场地布置相对分散时用架空lOkV 线路。一般有两种供电方式如图2-2:一是采用一台风机经一台箱式变电站就近升压;二是采用两台或多台风机经一台箱式变电站就近升压。 2.2 异步发电机的稳态数学模型 为了研究风电场对电力系统的影响,需要建立合理的风电场数学模型,为进一步仿真分析奠定基础。按照本课题研究的要求,我们先后建立了异步发电机的稳态数学模型和动态数学模型,其中动态数学模型包括风速模型、风轮机、传动机构和异步发电机的模型。首先异步发电机与异步电动机在能量转换过程中各功率损耗之间的关系不同,如图2-11。步发电机的功率转换是将输入的机械功率己转换为输出电功率,它的特点在于其转子的转速比定子产生的旋转磁场的转速更高。自然风吹动风轮机叶片,将风能转化为机械能,由此获得的机械功率只扣除掉机械损耗Pm 。和附加损耗mc P 后即为传递到异步发电机转子可转换的机械功率mec P 。在等效电路中对应可变电阻(1-s)/s(s<0)上的电功率,扣除转子铜耗1cu P 和铁心损耗fe P ,得到输入定子绕阻的电磁功率me P ,再扣除定子铜耗1cu P ,即得到注入电网的电功率Pe 。上述功率流向可表达为 ad me mec m P P P p ++= (2-1)

相关文档
最新文档