通信抗干扰创新方式

通信抗干扰创新方式
通信抗干扰创新方式

通信抗干扰创新方式

一.概述

在现代高科技战场上,成功的战术通信是保障有效指挥和控制战场局而的关键,通信系统也因此成为各种对抗手段对付的目标,而抗干扰通信能力则是现代战争中通信的最基木的要求之一。利用电子手段对敌无线电通信实施侦察以获取情报,用电子干扰或火力摧毁剥夺其〃发言权“以瘫痪其指挥,已成为电子战的主要内容,但有矛就有盾, 反侦察.抗千扰方面也不示弱。

二、通信干扰

在现代电子战中防电子干扰是电子防御的一个部分,电子干扰根据对敌方电子系统作用性质的不同,分为压制性干扰和欺骗性干扰;

根据干扰形成方法的不同分为有源干扰和无源干扰;根据干扰对象的不同分为雷达干扰、通信干扰、制导干扰、导航干扰、引信干扰.敌我识别干扰.指挥控制与通信系统干扰、光电干扰和空间电子干扰等。

本文重点讨论通信干扰。兵家格言"知彼知己,百战不殆",己被传统的火力战所证实,电子战也不例外,要进行抗干扰通信,先要了解通信干扰的有关内容。

通信干扰属于电子进攻范畴,它是通过通信侦察,在无线电通信系统的传输过程中引人干扰信号,扰敌或破坏敌方无线通信设备之间的信息交换。例如,用噪声干扰使通信信息模糊,造成通信中断,或采用假信息迷惑敌人,使信息传递错误,造成通信混乱。通信干扰按干扰信号的频谱宽度分,有瞄准式干扰.阻塞式干扰和扫频式或跟踪式干扰等。

1?瞄准式干扰

瞄准式干扰是指干扰信号的中心频率与被干扰信号频率重合,或干扰

信号和被干扰信号频谱宽度基本相同。瞄准式干扰因为干扰频率通常是对准相应的一个通信信号频率实施干扰的,也叫单频干扰或

瞄准式干扰频谱窄,干扰功率集中,干扰能量全部用来压制敌方的某

一通信信号,功率利用率高,干扰效果好。但要求频率重合度好, 对干扰机性能要求高,且要有引导干扰频率的侦察部分。通常用于压制敌方重要的指挥通信。

2?阻塞式干扰

阻塞式干扰又称拦阻式干扰。阻塞式干扰是一种宽频带压制性干

扰,它能对一定频段内的所有信号实施干扰。其干扰信号辐射的频谱很宽,通常能覆盖敌方通信设备的整个工作频段,同时压制该频段内的通信信号,因此,也叫多频干扰或“面干扰蔦这种干扰的优点是无需频率重合,也不要引导干扰的侦察设备,干扰设备相对简单。但其缺点是千扰功率分散,干扰效率不高,而且落人干扰频带内的己方通信信号也将受到干扰。阻塞式干扰主要用于压制敌方战术分队的无线电通信。据报道,以美国为首的北约部队使用的“一次性通信千扰机〃就采用了阻塞式干扰方式。这种野战条件下使用的干扰设备市飞机.

导弹投掷到南联盟纵深地带,落地后自动伸出天线,对南联盟通信设施进行全频段的阻塞式干扰。干扰后一次性通信干扰机定时自毁。

3?扫频式或跟踪式干扰

扫频式或跟踪式干扰是指干扰发射机的信号频率在较宽的频段内按某种规律随机变化所形成的干扰。它可实施随机干扰,但要求干扰系统自动化程度高。

三.抗干扰通信措施

针对上述各种干扰方式的特点,抗干扰通信从技术体制角度可采取以下一些措施:

1?跳频通信

跳频电台主要用于战术无线电通信,是20世纪八十年代以来出现的一种新颖的通信方式。海湾战争以后,不少国家军队都加强了跳频电台的研制,相继问世了一批抗干扰能力强,高性能的产品。

跳频通信实现了电台通信频率的快捷跳变,是目前战术短波,超短波电台中用的最多的抗干扰手段。普通无线电台工作时,通信频率是固定不变的,叫"定频通信化它的频点容易受到敌方侦察和干扰。

跳频通信与此相反,由于跳频电台的工作频率是在不停地快速变化, 敌方干扰跳频电台的难度远远大于干扰定频电台,按现有的技术可以很快地检测到定频电台的工作频率,可以快速地施放大功率干扰,也可通过定向接收机测出电台位并引导火力摧毁。

而由于跳频电台的工作频率是在不停地快速变化,当跳频频率数足够多时,敌方很难确定我方的工作频率,即使确定其中一个或几个频率并对其施放干扰,对话音通信基本起不到干扰作用。试验证明, 跳频电台在35%的频率点被干扰的情况下仍能保持话音通信。这就是说,跳频频率数越多,敌方要实现干扰的目的,需确定和施放干扰的频率点也越多。另一方而,跳频带宽越宽,敌方干扰就越困难,迫使敌方侦察接收机的带宽增加,搜索时间增多,灵敏度下降,增加了敌方侦察的难度。同时敌方施放干扰所需付出功率

也越大。

敌方采用瞄准式干扰时,干扰信号即使偶尔碰到了己方某些频点, 仅仅干扰瞬时信息,即使是电台本身AGC特性不好有影响,对通信全局影响不大。

敌方采用宽带阻塞式干扰机干扰跳频电台,要消耗巨大的功率。

跳频频率数目越多,跳频的范围越宽,抗宽频带阻塞式干扰的能力就越强。据测算,一部功率为50瓦的跳频电台如果在1000个频率点上跳变,干扰机的功率必须高达50的0瓦以上,这也是难以办到的事情。而且,功率越大,其体积、重量也就越大,体积太大了在战场上也不便于移动和隐蔽,还容易被对方火力摧毁。此外,宽频段阻塞式干扰,在扰乱敌方通信的同时,往往也会打乱己方的阵脚。

跳频通信并不惧怕单频干扰和多频干扰,但跟踪式干扰是跳频通信的〃天敌蔦跟踪式干扰的步骤是:侦听、处理、施放干扰。当木方截获到敌方的跳频图案后,迅速地以同样的跳频图案施放干扰,由于两个跳频图案的矢量迭加必然带来接收方的一片盲然,致使敌方无法达成正常的跳频通信。据报道,国外己有能同时监视SO个相邻信道, 扫描搜索速度为80,的0信道/秒的侦察接收机问世,这种侦察接收机的截获跳频图案的概率几乎达到100% O

外军通信抗干扰发展趋势

外军通信抗干扰发展趋势 1、跳频通信装备抗跟踪干扰能力日益提高,抗跟踪干扰已由定频通信抗自动瞄准式干扰发展到跳频抗跟踪干扰 外军提高跳频通信抗跟踪干扰能力的技术动态主要有两个方面,一是适当提高跳速,二是采用变速跳频。外军大部分20世纪80年代的跳频通信装备为中低跳速跳频,较新的跳频通信装备采用了中高跳速跳频,如美国的HF-2000,CHESS,HA VE-QUICKIIA,JTIDS及MILSTAR,瑞典的TRC-350,法国的ALCALTEL111等。值得注意的一点是外军有些跳频通信装备大幅度提高跳速并不是以提高抗跟踪干扰能力为出发点的,其主要目的是利用相应的技术体制,由高跳速提高数据传输速率,如:CHESS系统和JTIDS等。另外,提高跳速后,还将给交织和纠错带来方便。当然,提高跳速也会引起其他问题,需要综合考虑。变速跳频是抵抗跟踪干扰的有效措施之一,外军现役跳频电台中也有所采用,但还多是半自动变速或有限种跳速随机变速,有些是通过信令实现跳速牵引,还没有实现真正意义上的变速跳频,这里将其称为准变速跳频,如法国的ERM-9000,TRC-9600,南非的TRC-1600,TRC-600以及瑞典的SFH-41等。 2、跳频通信装备抗阻塞干扰技术逐步成熟 最初提出跳频抗干扰体制,实际上是基于频率分集原理,并以提高跳速为代价实现抗阻塞干扰为出发点的。后来由于数据传输速率越来越高,常规跳频体制的跳速难以适应,形成了实际上的慢跳频(无论绝对跳速多高)。因此,抗阻塞干扰能力一直是跳频通信的重要问题。长期以来很多国家都致力于跳频通信抗阻塞干扰技术的研究,有些成果已得到成功的应用。外军实用化研究成果主要有短波采用自适应选频与跳频相结合的体制,将经过LQA(链路质量分析)选出的最佳或准最佳频率作为跳频频率表生成的基准,如美国的SCl40、英国PATHER-2000、以色列的HF-2000,TRl78、法国的TRC-350H、南非的HF-6000,TRl78A/B,TR390以及瑞典的TRC-350等;超短波采用具有FCS(free channel searce)功能的跳频体制,在一般窄带干扰情况下,使用常规跳频,在遇到宽带阻塞干扰时,自动转到FCS功能,在当前最佳频点上定频工作,一旦宽带干扰消失,又可回到跳频方式上工作,如法国的PR4G、比利时的BAMS等;UHF波段采用了频率自适应与跳频相结合的体制,即在跳频通信过程中自动检测和删除受干扰频率,使系统在无干扰或干扰较弱的频点上跳频,如瑞典的RL-401系列跳频接力机等,但该跳频机在干扰严重时,无更有效的措施,只是自动回到常规跳频状态。 3、扩展频段成为通信抗干扰新的发展趋势 拓宽现有频段、发展多频段,不仅有利于协同通信和全谱作战,还有利于提高跳频通信抗阻塞干扰能力。在拓宽频段方面,外军少数短波电台的频段范围已拓宽到116~50MHz,如美国的M508,RF-500,AN/PRC-132短波电台等;少数超短波电台的频段范围拓宽到30~108 MHz,如比利时的BAMS、荷兰的PRC/VRC-8600、德国的SEMl73/183/193、以色列的CNR-9000、英国的PANTHER-V、法国的PR4G系列电台等,增加了20MHz的带宽。在开发新频段方面,成效显著,最具代表性的是美国的MILSTAR卫星通信系统,采用宽带亚毫米/毫米波,实现宽带高速跳频,跳频带宽达2 GHz。在研制多频段通信抗干扰装备方面更是如火如荼,电台以HF/VHF/UHF三个频段的综合运用为典型特征。如美国的AM-7177A/ARC-182(V),MBITR,MXF-610,MBMMR,SPEAKEASY,英国的SWORDFISH,BOWMAN,南非的MATADOR,TRC-1600,TR600,加拿大的AN/GRC-512(V)等,多频段接力机主要有美国的AMLD4,AMLA3,AN/GRC-226,法国的TFH-150,TFH-701,瑞典的RL401/422,俄罗斯的捷标坦特系列接力机等。 4、提高短波跳频数据速率取得突破进展 自从短波通信出现以来,由于通信体制、器件、信道带宽及天波传输特性等原因,短波

抗干扰措施

抗干扰技术 在电路设计当中,抗干扰占有一个特别重要的地位。在一切的电子技术当中,都是重点。(或许你会说你是玩单片机的,感觉没这方面的必要,其实是因为数字电路就两种信号,一个高电平,一个低电平,本身就有一定的抗干扰性能,而模拟信号是连续的,容易被干扰,这也是现在的产品都数字化的原因之一,但是玩单片机的就不玩模拟信号?加点抗干扰技术以防万一也没错吧!)举个例子来说,如果要放大一个微弱的信号,当电源不是很好,有较大的纹波,经常4.5V到6V之间跳,工频信号又很强,你的电路有没有什么防护措施,你想想,当这个信号到最后,还是你想要的信号吗?打个比方,如果唐僧身边没有那么多能干的徒弟,菩萨,神仙,他到得了西天吗?那些妖精就是干扰源,徒弟什么的就是抗干扰措施,当然唐僧自身也有一定的抗干扰能力。这就是我们要讲的抗干扰技术。(请各位懒人直接跳到最后的总结) 理论上来说,抗干扰分为3个方面:1、干扰源。2、传输途径。3、敏感原件。也就是我们需要下功夫的地方。按照优先考虑的顺序,也是如上的1、2、3。你要是能把干扰抑制在源头,扼杀在摇篮里,那就不用其他的措施了。但是干扰源来自四面八方,说不定自己后院还起火(比如运放的自激振荡),所以3个方面都是需要加强的。 一般来说,电源的干扰时最普遍的,所以电源做得好就是一切的基础,尽量降低电源的纹波系数,电容可以滤去交流信号,因此在一些用运放的地方电源和地端可以并联10uF、1uF、0.1uF的电容,以滤去不同频率的波。小电容通低频,大电容通高频,但注意电解电容不要正负极接反了,那样也会产生噪声。再就是布线时,电源线和地线要尽量粗点(减小导线的电阻),避免90°折线;模拟电路和数字电路用不同的电源,;数字电路与模拟电路避免使用公共地线;最多模拟地与数字地仅有一点相连,信号连接时,可用光电隔离,防止互相干扰。接地线越短越好,避免地线形成环路。 在传输途径上下功夫,各模块之间连接线尽量短,远离干扰;高频信号传输可使用同轴电缆或多芯屏蔽电缆,对可能的干扰源输出线进行滤波,产生噪声的导线与地线绞合,信号地线、其它可能造成干扰的电路的地线分开,敏感电路加屏蔽罩(屏蔽罩是要接地才有用的),把干扰源围闭在屏蔽罩内也是允许的。隔离也是常用的,隔离分变压器隔离,继电器隔离,光电隔离,光电隔离比较常用。 有的继承电路 而加强自身的抗干扰性能,大部分是靠原件本省的性质和所用的材料等等,我们自己难以决定。 总而言之,想要抗干扰,可采取以下措施: 1、提高电源的稳定性,减小纹波。各个模块的电源可以和地之间用不同的电容 相连。 2、在信号线容易受到干扰的地方,使用滤波电路。 3、各级模块相连的信号线尽量短,也可以用同轴电缆相连。 4、使用屏蔽盒屏蔽各个模块,或者干扰源。 5、模拟电路与数字电路使用不同的电源,信号之间使用光电隔离。 6、布线时,避免地线成环状,接线尽量短,但避免交叉、飞线。各种模块布局 时分开,模拟电路与数字电路分开。电源线与地线要尽量粗一点。原件排列

无线通信抗干扰技术性能

无线通信抗干扰技术性能 随着人们生活水平的提高,无线通信技术在人们生活中起到了越来越重要的作用。无线通信技术的发展,使人们能够打破时间、空间的限制,随时随地进行信息交流,使得工作效率大大提高,为人类社会的发展做出了巨大的贡献。然而在无线通信技术的使用中,经常会受到通信环境等因素的干扰,因此,无线通信抗干扰技术就显得十分的重要。 1无线通信抗干扰技术发展现状 无线通信受到的干扰主要包括码间、共道和多址三种常见的类型。无线通信会受到干扰是有其本身的特性所导致的,在无线信号的使用中会受到调制、频率以及带宽等多方面的影响,其中一部分是自然存在的,一部分是由于人为原因导致的。这些因素共同对无线信号的传输造成一定的影响,继而对无线通信形成干扰。因此,我们就需要对无线通信技术抗干扰技术进行深入的研究目前在无线通信抗干扰技术中,主要应用的技术包括以下几类:(1)频域处理抗干扰技术。该类技术又可以分为直接序列扩频抗干扰技术和跳频抗干扰技术。(2)空间处理抗干扰技术。主要包括自适应天线技术和分集技术。(3)时域处理抗干扰技术。主要包括跳时技术和通信猝发技术。此外,目前多维联合抗干扰、认知抗干扰等新技术也得到了较好的发展。 2无线通信抗干扰技术性能分析 2.1频域处理抗干扰技术 2.1.1直接序列扩频抗干扰技术 直接序列扩频抗干扰技术目前在各个领域都得到了较为广泛的应用,其主要是通过调整信号频率并解码、保存信号,将单位频带的功率降低来隐藏通信信号,从而使信号受到的外界干扰减少。该技术抗多径干扰、抗截获的能力较强,但是其处理增益会受到码片速率和信源的比特率限制,因此在实际的应用中可能会遇到频道数少、带宽大等问题。 2.1.2跳频抗干扰技术

移动通信的基本技术之抗干扰措施

移动通信的基本技术之抗干扰措施 在第三代移动通信系统中除了大量的环境噪声和干扰以外,还有大量的电台产生的干扰,如邻道干扰、公道干扰和互调干扰,更重要的是第三代移动通信系统的主流标准(WCDMA、CDMA2000等)都采用了码分多址方式,CDMA码分多址系统是一个干扰受限制系统,在信息的传输中,存在着多址干扰,多径干扰和远近效应。那么为了保证网络的畅通运行,我们也采用了第三代移动通信系统采用的相关抗干扰技术进行处理。这些技术包括:空分多址(SDMA)智能天线技术,用于抗多径干扰的RAKE接收技术,抗多址干扰的联合检测技术,并对这些技术在特定系统中的性能进行了仿真。 首先介绍一下智能天线技术,智能天线利用多个天线阵元的组合进行信号处理,自动调整发射和接收方向图,以针对不同的信号环境达到最优性能。智能天线是一种空分多址技术,主要包括两个方面:空域滤波和波达方向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图,使它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了小区间干扰。 比起只能智能天线技术抗多径干扰的RAKE接受技术又有哪些技术有点呢?智能天线抑制干扰的能力在多数情况下受天线阵元个数的限制,且当感兴趣信号存在多个非相关多径时,阵列只保留其中的一路信号,而把零陷对准其它信号,这样,阵列能够减小由非相关多径带来的干扰,但未能发挥路径分集的优势,因而是次最优的。为此,联合时域和空域处理的接收技术成为研究的热点。 当信道存在多径时延扩展,且时延大于一个码片周期时,这些多径信号既是多径干扰,又是一些有价值的分集源,由此产生了2D-RAKE接收机。目前2D-RAKE接收机讨论最多的是应用在WCDMA上行链路。 空时RAKE接收机首先对存在角度扩展的多个路径分量进行波束成型,以降低DOA可分辨的其它用户信号产生的多址干扰或期望信号的非相关多径分量,然后将经过空间滤波后的信号送入RAKE合并器,以充分利用延迟可分辨的期望信号的多个路径的能量。空间波束形成旨在衰减干扰信号,而时间多径合并旨在利用有用信号。 与时域和空域一维干扰抑制不同的是,空时二维干扰抑制不再使用强迫置零条件,而是考虑噪声的存在,使用优化准则。空时处理有名的优化准则有两个,一个是空时最小均方误差准则,另外一个是空时最大似然准则 我们介绍的第三种抗干扰技术是联合检测技术 传统的接收技术是针对某一用户进行信号检测而把其他用户作为噪声加以处理,在用户数增多时,导致了信噪比恶化,系统性能和容量都不如人意。联合检测技术是在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号及其多径的先验信息(信号之间的相关性时已知的:如确知的用户信道码,各用户的信道估计),把用户信号的分离当作一个统一的相互关联的联合检测过程来完成,从而具有优良的抗干扰性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用上行链路频谱资源,显著地提高系统容量,并削弱了“远近效应”的影响。 每一样技术都有其优缺点,那么我们是否能将其结合,使技术更优化,让其在抗干扰方面体现的效果更为明显呢? 那就是智能天线与联合检测的结合(SA+JD), 其主要用于TD-SCDMA系统中,TD-SCDMA系统结合使用了智能天线和联合检测技术:1)智能天线消除小区间干扰,联合检测消除小区内干扰,两者配合使用;2)智能天线缓解了联合检测过程中信道估计的不准确对系统性能恶化的影响;3)当用户增多时,联合检测的计算量非常大,智能天线的使用减少了潜在的多用户; 4)智能天线的阵元数有限,对于M个阵元的智能天线只能抑制M-1个干扰源,而且所形成的副瓣对其它用户而言仍然是干扰,只能结合联合检测来减少这些干扰;5)在用户高速移动下,TDD模式上下行采用同样空间参数使得波束成型有偏差;用户在同一方向时,智能天线不能起到作用;还

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

现场总线抗干扰措施

根据国际电工委员会IEC1158定义,安装在制造或过程区域的现场装置与控制室内的动控制装置之间的数字式、串行、多点通信的数据总线称为现场总线。当今全球最流行的现总线有FF总线(FieldbusFoundation)、Profibus、Modbus等,在造纸行业,ABB公司AF100应用也很多。但是无论哪一种现场总线,都是数字信号,当在介质上传输时,由于干扰噪音的原因,使得“1”变成了“0”,“0”变成了“1”,从而影响现场总线性能,以至于不能正常工作。因此研究现场总线的抗干扰问题并提高现场总线的抗干扰能力非常重要。 1 纸机车间存在的干扰源 (1)纸机传动系统是纸机车间最大的干扰源。纸机传动系统的总负荷约占造纸车间总负荷的1/3以上,在系统的整流和逆变中,大功率电力电子元器件(IGBT等)高速开和关转换,产生大量的高频电磁波,污染整个车间,并且产生大量高次谐波,污染工频电网。 (2)变压器、MCC柜、电力电缆和动力设备。这些设备均为工频,频率较低,干扰一般发生在近场,而近场中随着干扰源的特性不同,电场分量和磁场分量有很大差别。特别是动力设备启动时,瞬间电流能够达到额定电流的6~1倍,会产生大电流冲击的暂态干扰。 (3)来自工频电源的干扰。工频电源波形畸变和高次谐波若未加隔离或滤波,便会通过向纸机控制系统供电而进入控制系统,影响现场总线的信号。 (4)导线接触不良产生的火花、电弧等。 (5)三相供电不平衡产生的地电流、屏蔽层不共地产生的接地环流。 2 干扰的传播途径 (1)由导线传输,称为传导干扰。在现场总线中,主要表现为地线阻抗干扰和来自工频电源的干扰。 (2)通过空间以辐射的形式传输,称为辐射干扰。 3 现场总线的抗干扰措施 (1)远离干扰源动力设备和电力电缆对现场总线的干扰,与距离的平方成反比,即随距离的增大,干扰衰减非常快。所以,现场总线设备远离用电设备,现场总线电缆与动力缆分层桥架布置,都能起到很好的防干扰作用。远离干扰源,是防止辐射干扰的重要措施。 (2)现场总线设备和电缆的屏蔽现场总线屏蔽的机理,一是外来电磁波在金属表面产生涡流,从而抵消原来的磁场;二是电磁波在金属表面产生反射损耗,另一部分透射波在金属屏蔽层内传播过程中,衰减产生吸收损耗。现场总线的屏蔽是利用由导电材料制成的屏蔽并结合接地,来切断干扰源。 (3)采用UPS电源或隔离变压器可防止来自工频电源的干扰。 (4)采用光缆传输信号在现场总线传输速度高!传输距离远干扰大的情况下,尽可能地采用光缆。采用光缆后,有效解决了辐射扰和传导干扰的众多问题。若在不共地两点之间,或者在

(完整版)无线电通信抗干扰(教案).docx

复杂电磁条件下无线电通信抗干扰教案 作业准备 1、清点人数 2、宣布作业提要 课目:复杂电磁条件下无线电通信抗干扰 目的:使同志们了解复杂电磁条件下无线电通信干扰的主要形式和特点,掌握抗干扰的基本手段和方法,提高 在复杂电磁条件下完成通信保障任务的能力。 内容: 1、敌实施电子干扰的手段; 时间:方法:地点:要求:2 、受电子干扰的种类和特点; 3 、抗干扰的基本方法。 30 分钟 理论讲解、组织练习、小结讲评专业教室 1、认真听讲,做好笔记; 2 、勤于思考,踊跃发言。 作业实施 [ 提示要点 ] 同志们,我们今天所要学习的是复杂电磁条件下, 电通信抗干扰。随着信息时代的到来,通信作为信息的传输 渠道,被一下子从战争的后台推到了前台,成为战争进程中 无线

敌我双方争夺的焦点。本世纪初,以美国为首的多国部队发 动了伊拉克战争。国防大学金田教授针对在这场战争发表了 题为《“人间蒸发” 的共和国卫队》的文章,文章中写道:“共和国卫队由南北两个军构成,共编为3个装甲师、1个机械化师、2个步兵师和若干个独立旅,总兵力约14万人。主 要负责保卫伊首都巴格达。战争之初,各国军事专家都认为 在巴格达的郊外将会发生此次战争中最激烈的战斗。然而, 当美军的地面部队兵临城下时,巴格达城内几乎见不到这支 部队的影子,只有大量被丢弃的坦克、火炮和散落的共和国 卫队军旗证明着这支部队存在过。”那么,为什么共和国卫队会“人间蒸发”呢?美国的战争报告给出了答案。原来, 在战争之初,美军即以精确火力打击,摧毁了伊军的通信枢 纽和指挥中心。随着美军地面部队的不断推进,又先后利用 电子战飞机、无人机、电子战分队等电子对抗力量对共和国 卫队的指挥控制中心、通信枢纽实施干扰。导致共和国卫队 的通信联络陷入瘫痪,同时又利用各种通信渠道散布萨达姆 政权已被推翻、战争已经结束等假消息。共和国卫队的士兵 在得不到上级指令、真假消息又难以分辨的情况下,早已军 心涣散、无心应战,纷纷丢下武器,扮成平民,逃出了巴格达。由此我们可以看出,在未来信息化战争条件下,如何面 对复杂的电磁环境,保障通信畅通,已是摆在我们每一个通 信兵面前的一个不容忽视的课题。那么今天,我们就来共同

关于CBTC系统无线通信抗干扰技术的研究

技术装备 52 MODERN URBAN TRANSIT 6/2009现代城市轨道交通 0引言 列车控制系统在地铁信号的发展过程中,经历了从单向轨道电路到双向无线通信的变革。目前广泛应用于地铁列车控制系统的是基于无线通信的列车控制系统(CBTC)(图1)。而无论基于无线局域网还是专用无线网的通信,都存在同频或邻频干扰的问题。为此,如何引入技术手段,提高CBTC系统的抗干扰能力,保证其可靠、稳定运行十分重要。 1无线局域网 1.1结构 无线局域网(WLAN)是计算机 网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,利用电磁波完成数据交互,实现传统有线局域网的功能。WLAN的核心结构如图2所示。 从图2可以看到,WLAN的工作层有介质访问控制层(MAC)和物 理层(PHY),其中物理层分为PLCP(物理层收敛过程)子层和PMD(物理机制相关)子层。PLCP子层通过将MAC层信息映射到PMD子层,使MAC层对物理层的依赖减到最低,而PMD子 层则提供了控制无线介质 的方法和手段。WLAN的物理层采用扩频工作方式,包括FHSS(跳频扩频)、DSSS(直接序列扩频)、HR/DSSS(高速直接序列扩频)和OFDM(正交分复用),无线工作频段为ISM:2.4~2.4875GHz以及U-NII:5.725~5.850 GHz(取决于采用的标准)。在IEEE802.11结构内还包含两个管理实体(MAC层管理实体MLME和PHY 物理层管理实体PLME)和管理信息库(MIB),从而控制MAC层和PHY层的工作状态。 1.2MAC层干扰问题 无线局域网的MAC层的载波监听多路访问/冲突检测方法(CSMA/CD)协议问题,从理论上讲,MAC层的CSMA/CD协议完全能够满足局域网级的多用户信道竞争问题,但是,对应无线环境而 邱鹏:南京恩瑞特实业有限公司轨道交通事业部,助理工程师,南京 211106 关于CBTC系统无线通信 抗干扰技术的研究 邱鹏 李亮 摘 要:研究基于无线传输的CBTC系统车-地通信抗干扰技术,通过 分析无线局域网中的同频干扰,结合重复累积码、感知无线电、一致性测试3项技术,提出1套在CBTC系统设计和系统运营两个阶段抑制同频干扰的完整解决方案。 关键词:车地通信;同频干扰;重复累积码;感知无线电;一致性测试 注:LLC即逻辑链路控制;WEP即有线等效保密 图2WLAN 的核心结构 图1CBTC 系统框图 车载部分 车载ATC定位 数据通信部分 无线传输系统 轨旁网络装置 ATS 轨旁ATC系统 LLC WEPMAC PHY DSSS FH IR OFDMMACMgmt MIB LLC MAC 业务接口 MAC管理业务接口MAC子层 MAC管理层 PHY业务接口 PHY管理业务接口PHY管理层 PLCP子层PMD 子层

军事短波通信抗干扰措施

【摘要】短波电台是部队通信装备中应用最多的设备,针对日益复杂的电磁应用环境和通信对抗挑战,本文从技术和使用角度阐述了电台通信抗干扰的几点措施。 【关键词】短波电台通信抗干扰 短波通信通常是指利用波长为100―10m (频率为3―30mhz)的电磁波进行的无线电通信。目前也有把中波的高频段(1.5―3mhz)归到短波波段中去,所以现有的许多短波通信设备,其波段范围往往扩展到1.5―30mhz。在许多国家,也把短波通信认为是高频(hf)无线电通信。 多年来,短波通信被广泛地用于政府、军事、气象、商业等部门,用以传送语言、文字、图像、数据等信息。尤其在军事部门,它始终是军事指挥通信的重要手段之一,是军事指挥决策部门与下级所属单位有效沟通和信息传递的重要工具,也是构建我军c4i指挥体系的重要环节,在现代日益复杂的战场环境下,如何提高电台抗干扰能力,保护己方通信畅通尤为迫切。 一、短波通信干扰类型 能够对设备形成干扰的前提是在时间域对齐,频率域对准,空间域相同,能量域足够,这是干扰的总体原则,具体到各个干扰样式和原理,则有不同的表现形式,通信干扰主要有以下几种类型: 以上几种干扰措施是以前常用的干扰方式,随着通信设备的发展,有些干扰方式现在已基本不再使用,比如单频干扰或窄带连续波干扰,随着军事电台大量采用抗干扰措施,现在已少见单频电台干扰,但宽带噪声干扰、多音干扰和脉冲干扰、扫频干扰仍然应用较多。 此外,为了对抗跳频扩频通信、直接伪码序列扩频通信和混合扩频通信抗干扰能力强的新体制通信系统,出现了一些新的通信对抗技术样式,如宽带拦阻式干扰、跟踪引导式干扰、快速转发式干扰、部分频带噪声干扰等。这些新的干扰样式必须引起我们足够的重视,寻扎相应的对抗策略。 二、短波通信抗干扰技术 通信抗干扰技术的体系、方法、措施可分为4类: (1)以扩频技术为主的频域抗干扰技术,如直接序列扩频( ds-ss),其关键参量是时间函数的相位;跳频( fh)的关键参量是时间函数的载频;ds/ fh混合扩频技术;自适应选频技术,当通信信道干扰严重时,通信双方同时改换到最优化频道;自适应频域滤波技术。其中,跳频技术是目前军事通信抗干扰技术中应用最广泛、最有效措施之一,其原理是信息码同伪随机码模相加后,去离散地控制射频载波振荡器输出频率,使发射信号的频率随伪码的变化而跳变。跳频技术抗干扰能力得益于信号载波频率在很宽的频带内跳变,使干扰方难以跟瞄,但其瞬时带宽同定频一样。现阶段,中高速跳频技术仍是对付跟踪(引导)式和宽带阻拦式干扰的有效措施。有效提高跳频抗干扰效率的方法是:提高跳频速率、加大跳频带宽、变速跳频、适当增加跳频组网数目。跳频带宽宽,可跳频道数多,抗干扰能力就愈强。对于宽带阻拦式干扰来说,干扰效率与干扰的带宽成正比。例如对于10mhz中频带宽,信道间隔25 khz,共400信道,当干扰机对该跳频台实施10 mhz拦阻式干扰时,干扰功率平分在400个信道上,干扰强度仅为定频干扰的1/ 400。若带宽再增加,抗干扰力会更强。当前,跳频通信电台朝着跳频速率更快,跳频带宽更宽、智能化跳频的方向发展。 (2)以自适应时变和处理技术为主的时域抗干扰技术,含猝发通信、低速率通信技术、跳时(th)技术、自适应信号功率管理技术。跳时就是一种时分信道,用伪随机码随机选择信道工作时间,可视为一种伪码调制系统,它具有很好的远近效应一致性,模拟和数字体制都可使用。跳时的优点是用时间的合理分配来避开干扰,干扰机必须连续发射才可能收到效果,增大了干扰代价,也就具有一定的抗干扰能力。猝发通信是首先将正常速率的信息存贮

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

通信抗干扰技术

工控系统的通信抗干扰技术 0 引言 一个工控系统常常由几台、几十台甚至更多的工业控制机组成各种形式的分布式测控系统。直接控制级(DDC)可以独立完成本地的数据采集和控制任务,主站负责系统的管理。所有的机器连接成网络互通信息,就可以完成以整体目标为宗旨的相互协调配合,达到更高的控制水平和管理层次。系统的通信因此就成为所有的机器协调一致的关键环节。对于工控系统的设计者来说,面对工业现场严重的干扰,提高通信网络的抗干扰能力无疑是非常重要的事。 1 给RS232C通信接口加装光隔电流环的抗干扰措施 RS232C是微机之间最常用的点对点串行通信接口,但RS232C的抗干扰能力很差。这是由于RS232C采用单端信号传输,而它的连接电缆把它所连接的两台机器的地又连接在了一起,因此,当两个地线之间的地电位不一致时,就有共模干扰电压产生。于是就造成了严重的干扰,甚至烧毁接口器件。如果给RS232C加装一个光隔电流环,就可以隔断两个地之间的联系,从而极大地提高其抗干扰能力。图1是RS232C加光隔电流环的电路原理图。图中,U1是工控机1的RS232C发送接口芯片1488,U2是工控机2的RS232C接收接口芯片1489。它们之间的通信信道已经由T1、T2组成的光隔电流环驱动。当工控机1发送“0”时,U1输出约+11 V,它使光隔管T1的发光二极管发光,使得T1的光电三极管导通,其发射极输出电流i。电流i通过通信线路,驱动光隔管T2的发光二极管发光,使得T2的光电三极管导通,其发射极输出电压约+11 V,接收芯片U2转换该电压成为TTL电平“0”。当工控机1发送“1”时,T1、T2截止,通信线路没有电流,T2的发射极输出-12 V,U2转换它成为TTL电平“1”。图中的C1、D2,C2、D3起加速作用。本电路经实际使用,可以构成几公里的通信。需要注意的是,光隔电流环的电源一定要选用与工控机电源隔离的电源。接地点D1、D2、D3各自独立于各自的体系,不能混接!由于工控机和外电路完全隔离,因此显著地提高了工控机的抗干扰水平。 图1 RS232C光隔电流环电路原理图 对RS232C进行光隔电流环改造,隔断了工控机与外界的电的联系,显著地提高了工控机的抗干扰能力。而且这种改造只是在插口上进行,不涉及到工控

通信干扰

通信干扰与抗干扰技术综述 班级: 0108** 学号: 0108**** 姓名: ******

目录 一、通信干扰 (2) 1.1 通信干扰的特点 (2) 1.2 通信干扰的分类 (3) 1.3 信干扰的一般过程和影响因素 (5) 二、通信抗干扰 (6) 2.1概述 (6) 2.2通信抗干扰原理 (7) 2.3抗干扰技术 (8) 三、直接序列扩频 (8) 3.1 DS扩频技术基本原理 (8) 3.2 DS抗干扰性能分析 (10) 四、小结 (12)

一、通信干扰概述 1.1 通信干扰的特点 对无线电通信过程的干扰是在无线电通信技术诞生之前就已经客观存在了,如天线干扰和工业干扰等,但是人为有意的无线电干扰却是在无线电通信技术成功应用于战争研究之后才发展起来的。其特点可归纳如下。 1.对抗性 通信干扰是为了破坏或扰乱敌方的无线电通信。其信号发射目的不在于传送某种信息,而在于用干扰中携带的信息去压制和破坏敌方的通信。 2.进攻性 无线电通信是有源的、积极地、主动地,他千方百计的“杀入”到敌方通信系统内部,所以干扰是有进攻性的。 3.先进性 通信干扰每时每刻都以敌方为对象,因此它必须跟踪敌方通信技术的最新发展,并且设法超过敌方,只有这样才能开发出克敌制胜的通信干扰设备。 4.灵活性和预见性 作为对抗性武器,通信干扰系统逆序具备敌变我变的能力,现代战场瞬息万变,为了立于不败之地,通信干扰系统的开发和研究必须注重功能的灵活性和发展的预见性。 5.技战综合性 通信干扰系统有如其他武器一样,其作用不仅取决于技术性能的优良,在很大程度上还取决于其战术使用方法。 6.综合对抗性 无线电通信系统随着现代化战争的发展,已从过去单独的、分散的、局部的发展成为联合的、一体的、全局的通信指挥系统。 7.工作频带宽 无线电通信干扰设备随着现代军事无线电技术的发展,需要覆盖的频率范围

移动通信系统干扰原因及解决措施

移动通信系统干扰原因及解决措施 【摘要】本文对移动通信系统干扰来源及原因进行了描述,并对现有干扰解决措施进行了分析和展望。 【关键词】移动通信;系统;抗干扰技术 移动通信系统的干扰是影响无线网络丢包率,连接速率等系统指标的重要因素之一。它不仅影响我们网络的正常运行,还会影响用户的通话质量。对移动通信系统内部以及系统之间由于无用辐射、阻塞等原因造成的干扰进行研究,评估干扰影响的程度,从而寻找有效规避干扰的措施,以高效可靠地利用宝贵的频率资源,提供无线通信服务,一直是无线通信系统研究与应用中的一项重要内容。 一、移动通信技术干扰来源及原因 移动通信网络中的射频干扰研究变得越来越重要。干扰的产生多种多样的,原有的专用无线电系统占用了现有的频率资源,不同运营商的网络配置错误,发射机本身的设置,单元重叠,环境,电磁兼容性(EMI)和故意干扰等问题。这是移动通信网络中无线电频率干扰的原因。移动通信系统的干扰主要有:同信道干扰,相邻信道干扰,带外干扰,互调干扰和阻塞干扰。 1、移动通信内部频率的干扰:目前陆地移动蜂窝系统使用频率重用来提高频率利用率。虽然这增加了系统的容量,但它也增加了系统干扰的程度。这些干扰主要包括: (1)同频干扰:如果使用相同频率的两个载波频率太靠近,则它们将相互干扰。 (2)邻频干扰:RF载波频率受到另一个使用附近频率的RF载波频率的干扰。 (3)互调干扰:当两个或更多不同频率信号作用于非线性电路时,它们将相互调制以产生新的频率信号输出。如果频率落在接收器工作信道带宽内,则对接收器构成干扰。 2、外来电波的强烈干扰:由于移动通信是通过无线电波传输的,当空中的某些电波在一定程度上干扰了正在使用的无线电波时,这将导致信噪比下降到标准值以下,影响通话质量。这些干扰波的来源非常复杂并且很多,例如工业干扰,电源火花干扰,来自天空的干扰以及其他专业附近无线电波的干扰。

传感器干扰问题及抗干扰措施详解

模拟传感器在现代化工农业生产,消防应急,国防建设及科学研究中有重非常重要的作用。作为传感器最重要的指标是测量精度,现实环境又对传感器测量精度产生了很大的干扰,如果降低干扰是各传感器行业的命脉所在。那么我们就了解一下传感器的干扰及抗干扰措施。 干扰源、干扰种类及干扰现象 传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。 1、主要干扰源 (1)静电感应 静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 (2)电磁感应 当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 (3)漏电流感应 由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。 (4)射频干扰 主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。 (5)其他干扰 现场安全生产监控系统除了易受以上干扰外,由于系统工作环境较差,还容易受到机械干扰、热干扰及化学干扰等。 2、干扰的种类

通信抗干扰创新方式

通信抗干扰创新方式 一.概述 在现代高科技战场上,成功的战术通信是保障有效指挥和控制战场局而的关键,通信系统也因此成为各种对抗手段对付的目标,而抗干扰通信能力则是现代战争中通信的最基木的要求之一。利用电子手段对敌无线电通信实施侦察以获取情报,用电子干扰或火力摧毁剥夺其〃发言权“以瘫痪其指挥,已成为电子战的主要内容,但有矛就有盾, 反侦察.抗千扰方面也不示弱。 二、通信干扰 在现代电子战中防电子干扰是电子防御的一个部分,电子干扰根据对敌方电子系统作用性质的不同,分为压制性干扰和欺骗性干扰; 根据干扰形成方法的不同分为有源干扰和无源干扰;根据干扰对象的不同分为雷达干扰、通信干扰、制导干扰、导航干扰、引信干扰.敌我识别干扰.指挥控制与通信系统干扰、光电干扰和空间电子干扰等。 本文重点讨论通信干扰。兵家格言"知彼知己,百战不殆",己被传统的火力战所证实,电子战也不例外,要进行抗干扰通信,先要了解通信干扰的有关内容。 通信干扰属于电子进攻范畴,它是通过通信侦察,在无线电通信系统的传输过程中引人干扰信号,扰敌或破坏敌方无线通信设备之间的信息交换。例如,用噪声干扰使通信信息模糊,造成通信中断,或采用假信息迷惑敌人,使信息传递错误,造成通信混乱。通信干扰按干扰信号的频谱宽度分,有瞄准式干扰.阻塞式干扰和扫频式或跟踪式干扰等。

1?瞄准式干扰 瞄准式干扰是指干扰信号的中心频率与被干扰信号频率重合,或干扰 信号和被干扰信号频谱宽度基本相同。瞄准式干扰因为干扰频率通常是对准相应的一个通信信号频率实施干扰的,也叫单频干扰或 瞄准式干扰频谱窄,干扰功率集中,干扰能量全部用来压制敌方的某 一通信信号,功率利用率高,干扰效果好。但要求频率重合度好, 对干扰机性能要求高,且要有引导干扰频率的侦察部分。通常用于压制敌方重要的指挥通信。 2?阻塞式干扰 阻塞式干扰又称拦阻式干扰。阻塞式干扰是一种宽频带压制性干 扰,它能对一定频段内的所有信号实施干扰。其干扰信号辐射的频谱很宽,通常能覆盖敌方通信设备的整个工作频段,同时压制该频段内的通信信号,因此,也叫多频干扰或“面干扰蔦这种干扰的优点是无需频率重合,也不要引导干扰的侦察设备,干扰设备相对简单。但其缺点是千扰功率分散,干扰效率不高,而且落人干扰频带内的己方通信信号也将受到干扰。阻塞式干扰主要用于压制敌方战术分队的无线电通信。据报道,以美国为首的北约部队使用的“一次性通信千扰机〃就采用了阻塞式干扰方式。这种野战条件下使用的干扰设备市飞机. 导弹投掷到南联盟纵深地带,落地后自动伸出天线,对南联盟通信设施进行全频段的阻塞式干扰。干扰后一次性通信干扰机定时自毁。 3?扫频式或跟踪式干扰

完整word版抗干扰措施

6 抗干扰措施 系统总的增益为0?20dB,因此抗干扰措施必须要做得很好才能避免自激和减少噪声。我们采用下述方法减少干扰,避免自激: 1、设计制作稳定供电电源,减少电源外部干扰。 2、电源、前级放大、后级功放分级隔离,减少相互干扰。 3、将输入部分和增益控制部分装在屏蔽盒中,避免级间干扰和高频自激。 4、电源隔离,输入级和功率输出级采用隔离供电,输入级电源靠近屏蔽盒 就近接上1000uF电解电容,盒内接高频瓷片电容,通过这种方法可避免低频自激。 5、所有信号耦合用电解电容两端并接高频瓷片电容以避免高频增益下降。 6、构建闭路环。在输入级,将整个运放用较粗的地线包围,可吸收高频信 号减少噪声。在增益控制部分和后级功率放大部分也都采用了此方法。在功率级,这种方法可以有效的避免高频辐射。 7、使用同轴电缆, 输入级和输出级使用BNC 接头,输入级和功率级之间用同轴电缆连接。 8、注意整机电路PCB 排版、布线设计及其电磁兼容EMC 设计,提高整机抗干扰能力,工作稳定。(详见第9 章专题介绍) 实践证明,电路的抗干扰措施比较好,在1KHZ?6MHz的通频带范围和0? 58dB增益范围内都没有自激。

[8] 7 PCB 和电磁兼容设计 7.1 电磁兼容 EMC 电磁兼容(Electromagnetic Compatibility,简称EMC ),是研究在有限的空间、 时间和频谱资源的功能条件下, 各种电气设备共同工作, 并不发生降级的科学 另外一种解释, EMC 是一种技术,这种技术的目的在于,使电气装置或系统在 共同的电磁环境条件小, 既不受电磁环境的影响, 也不会给环境以这种影响。 句话说,就是它不会因为周边的电磁环境而导致性能降低、 功能丧失和损坏, 不会在周边环境中产生过量的电磁能量, 以致影响周边设备的正常工作。 (这是 EMC 的终极目标) 7.1.1 电磁兼容 EMC 研究的目的和意义 1、 确保系统内部的电路正常工作,互不干扰,以达到预期的功能; 2、 降低电子系统对外的电磁能量辐射,使系统产生的电磁干扰强度低于特 定的限定值; 3、减少外界电磁能量对电子系统的影响,提高系统自身的抗扰能力 7.1.2 EMC 的主要研究内容 EMC 是研究在给定的时间、空间、频谱资源的条件下: 同一设备内部各电路模块的相容性,互不干扰、能正常工作; 2、不同设备之间的兼容性。 总体讲,EMC 分为 EMI (Electromagnetic Interferenee 电磁干扰)、EMS (Electro Magnetic Susceptibility ,电磁敏感度)两部分。 7.1.3 EMC 三要素及对策 EMC 三要素为:干扰源, 耦合途径,耦合装置。任何 EMC 问题的处理都是 围绕三要素进行的: 1、降低干扰源; 1、

抗干扰措施

6抗干扰措施 系统总的增益为0~20dB,因此抗干扰措施必须要做得很好才能避免自激和减少噪声。我们采用下述方法减少干扰,避免自激: 1、设计制作稳定供电电源,减少电源外部干扰。 2、电源、前级放大、后级功放分级隔离,减少相互干扰。 3、将输入部分和增益控制部分装在屏蔽盒中,避免级间干扰和高频自激。 4、电源隔离,输入级和功率输出级采用隔离供电,输入级电源靠近屏蔽盒就近接上1000uF电解电容,盒内接高频瓷片电容,通过这种方法可避免低频自激。 5、所有信号耦合用电解电容两端并接高频瓷片电容以避免高频增益下降。 6、构建闭路环。在输入级,将整个运放用较粗的地线包围,可吸收高频信号减少噪声。在增益控制部分和后级功率放大部分也都采用了此方法。在功率级,这种方法可以有效的避免高频辐射。 7、使用同轴电缆,输入级和输出级使用BNC接头,输入级和功率级之间用同轴电缆连接。 8、注意整机电路PCB排版、布线设计及其电磁兼容EMC设计,提高整机抗干扰能力,工作稳定。(详见第9章专题介绍) 实践证明,电路的抗干扰措施比较好,在1KHz~6MHz的通频带范围和0~58dB增益范围内都没有自激。

7 PCB和电磁兼容设计 7.1电磁兼容EMC 电磁兼容(Electromagnetic Compatibility,简称EMC),是研究在有限的空间、时间和频谱资源的功能条件下,各种电气设备共同工作,并不发生降级的科学[8]。另外一种解释,EMC是一种技术,这种技术的目的在于,使电气装置或系统在共同的电磁环境条件小,既不受电磁环境的影响,也不会给环境以这种影响。换句话说,就是它不会因为周边的电磁环境而导致性能降低、功能丧失和损坏,也不会在周边环境中产生过量的电磁能量,以致影响周边设备的正常工作。(这是EMC的终极目标) 7.1.1 电磁兼容EMC研究的目的和意义 1、确保系统内部的电路正常工作,互不干扰,以达到预期的功能; 2、降低电子系统对外的电磁能量辐射,使系统产生的电磁干扰强度低于特定的限定值; 3、减少外界电磁能量对电子系统的影响,提高系统自身的抗扰能力. 7.1.2EMC的主要研究内容 EMC是研究在给定的时间、空间、频谱资源的条件下: 1、同一设备内部各电路模块的相容性,互不干扰、能正常工作; 2、不同设备之间的兼容性。 总体讲,EMC分为EMI(Electromagnetic Interference,电磁干扰)、EMS (Electro Magnetic Susceptibility,电磁敏感度)两部分。 7.1.3 EMC三要素及对策 EMC三要素为:干扰源,耦合途径,耦合装置。任何EMC问题的处理都是围绕三要素进行的: 1、降低干扰源;

相关文档
最新文档