双曲线的性质及应用

双曲线的性质及应用
双曲线的性质及应用

双曲线的性质及应用

教学目标

(一)知识教学点

使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.

(二)能力训练点

在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力.

(三)学科渗透点

使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题.

教学重点:双曲线的几何性质及初步运用.

(解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.) 教学难点:双曲线的渐近线方程的导出和论证.

(解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.)

教学疑点:双曲线的渐近线的证明.

(解决办法:通过详细讲解.)

活动设计

提问、类比、重点讲解、演板、讲解并归纳、小结.

教学过程

(一)复习提问引入新课

1.椭圆有哪些几何性质,是如何探讨的?

请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.

2.双曲线的两种标准方程是什么?

再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标

下面我们类比椭圆的几何性质来研究它的几何性质.

(二)类比联想得出性质(性质1~3)

引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页>

(三)问题之中导出渐近线(性质4)

在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计

仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想.

接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?

下面,我们来证明它:

双曲线在第一象限的部分可写成:

当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.在其他象限内也可以证明类似的情况.

现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字

母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字

这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精

再描几个点,就可以随后画出比较精确的双曲线.

(四)顺其自然介绍离心率(性质5)

由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:

变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.

这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.

(五)练习与例题

1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.

请一学生演板,其他同学练习,教师巡视,练习毕予以订正.

由此可知,实半轴长a=4,虚半轴长b=3.

焦点坐标是(0,-5),(0,5).

本题实质上是双曲线的第二定义,要重点讲解并加以归纳小结.

解:设d是点M到直线l的距离,根据题意,所求轨迹就是集合:

化简得:(c2-a2)x2-a2y2=a2(c2-a2).

这就是双曲线的标准方程.

由此例不难归纳出双曲线的第二定义.

(六)双曲线的第二定义

1.定义(由学生归纳给出)

平面内点M与一定点的距离和它到一条直线的距离的比是常数e=

叫做双曲线的准线,常数e是双曲线的离心率.

2.说明

(七)小结(由学生课后完成)

将双曲线的几何性质按两种标准方程形式列表小结.

五、布置作业

1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.

(1)16x2-9y2=144;

(2)16x2-9y2=-144.

2.求双曲线的标准方程:

(1)实轴的长是10,虚轴长是8,焦点在x轴上;

(2)焦距是10,虚轴长是8,焦点在y轴上;

曲线的方程.

点到两准线及右焦点的距离.作业答案:

距离为7

双曲线的简单几何性质总结归纳

双曲线的简单几何性质 一.基本概念 1 双曲线定义: ①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹 (21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点. ②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线 这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线 2、双曲线图像中线段的几何特征: ⑴实轴长122A A a =,虚轴长2b,焦距122F F c = ⑵顶点到焦点的距离:11A F =22A F c a =-,12A F =21A F a c =+ ⑶顶点到准线的距离:21122 a A K A K a c ==-;21221 a A K A K a c ==+ ⑷焦点到准线的距离:22 11221221 a a F K F K c F K F K c c c ==-==+或 ⑸两准线间的距离: 2 122a K K c = ⑹21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将 有关线段1PF 、2PF 、21F F 和角结合起来,122 12 cot 2 PF F F PF S b ?∠= ⑺离心率: 121122121122PF PF A F A F c e PM PM A K A K a ======∈(1,+∞) ⑻焦点到渐近线的距离:虚半轴长b ⑼通径的长是a b 22,焦准距2b c ,焦参数2b a (通径长的一半)其中2 22b a c +=a PF PF 221=- 3 双曲线标准方程的两种形式: ①22 a x -22 b y =1, c =22b a +,焦点是F 1(-c ,0),F 2(c ,0) ②22a y -22 b x =1, c =22b a +,焦点是F 1(0,-c )、F 2(0,c ) 4、双曲线的性质:22 a x -22b y =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R ⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线: ①若双曲线方程为12222=-b y a x ?渐近线方程?=-02222b y a x x a b y ±= ②若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x ③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上) ④特别地当?=时b a 离心率2=e ?两渐近线互相垂直,分别为y=x ±,

高中数学双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求范围内的一个重要的基础知识.那么在高三第一轮复习 课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习 x b ax y + =(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表示 的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是奇 函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3 233+= 是双曲线,求实半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲 线的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线,在曲线上任意取一点P (x, x x 3 233+)满足3421=-PF PF 即可;

双曲线的几何性质教案(精)

双曲线的简单几何性质教案课题:双曲线的简单几何性质 教学类型:新知课 教学目标: ①知识与技能 理解并掌握双曲线的几何性质, 能根据性质解决一些基本问题培养学生分析,归纳,推理的能力。 ②过程与方法 与椭圆的性质类比中获得双曲线的性质,进一步体会数形结合的思想,掌握利用方程研究曲线性质的方法 ③情感态度与价值观 通过本节课的学习使学生进一步体会曲线与方程的对应关系, 感受圆锥曲线在解决问题中的应用 教学方法:本节课主要通过数形结合,类比椭圆的几何性质,运用现代化教学手段,通过观察,分析,归纳出双曲线的几何性质,在教学过程中可采取设疑提问,重点讲解,归纳总结,引导学生积极思考,鼓励学生合作交流。 教学重难点: 重点:双曲线的几何性质及其运用 难点 : 双曲线渐近线,离心率的讲解 教具:多媒体 教学过程:

⑴复习提问导入新课: 首先带领学生复习椭圆的几何性质,它有哪些几何性质?(应为范围,对称性,顶点,焦点 ,离心率,准线是如何探讨的呢?(通过椭圆的标准方程探讨。让全班同学口答,并及时给以表扬。接下来让那个同学回忆双曲线的标准方程是什么?请一名同学回答。 (应为:中心在原点,焦点在 x 轴上的双曲线的标准方程为 x 2/a 2-y 2/b 2=1; 中心在原点,焦点在 y 轴上的双曲线的标准方程为 y 2/a 2-x 2/b 2=1 。回忆完旧知后,我会给 出一首歌曲《悲伤的双曲线》 (大概一分钟左右 ,引起学生兴趣,渴望知道双曲线的性质,这样顺利进入探究新知环节中。 ⑵引导探索,学习新知 1, 引导学生完成黑板上关于椭圆与双曲线性质的表格(让学生回答,教师引导, 启发,订正并写在黑板上 ,通过类比联想可以得到双曲线的范围,对称性和顶点。 2, 导出渐近线(性质 4 在学习椭圆时,以原点为中心, 2a,2b 为邻变的矩形,对于估计椭圆的形状, 画出椭圆的简图有很大帮助, 试问对双曲线, 仍然以 2a,2b 为邻边做一矩形, 那么双曲线和这个矩形有什么关系呢?这个矩型对于估计和画出双曲线有什么指导意义呢? (不要求学生回答, 只引起学生类比联想。接着在提出问题:当 a,b 为已知时,这个矩形的两条对角线所在的直线的方程是什么?(请一名同学回答。接下来按照幻灯片显示来详细解决。最后向学生说明我们研究渐近线是为了较 准确地画出双曲线的草图。 3. 顺其自然介绍离心率 由于正确的认识了渐近线的概念, 对于离心率的直观意义也就容易掌握了,为此介绍双曲线的离心率其的影响。 最后应明确的指出:双曲线的几何性质与坐标系的选择无关, 即不随坐标系的 改变而改变。

《双曲线的简单几何性质》教学设计.

《双曲线的简单几何性质》教学设计 首都师范大学附属丽泽中学宛宇红靳卫红 一、教材分析 1.教材中的地位及作用 本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。 2.教学目标的确定及依据 平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。 (1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、 顶点、离心率、渐近线等几何性质; ②掌握双曲线标准方程中c ,的几何意义,理解双曲线的渐近 a, b 线的概念及证明; ③能运用双曲线的几何性质解决双曲线的一些基本问题。 (2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察 能力,想象能力,数形结合能力,分析、归纳能力和逻辑推 理能力,以及类比的学习方法; ②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对 直角坐标系中曲线与方程的概念的理解。

(3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。 3.重点、难点的确定及依据 对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。 4.教学方法 这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。 渐近线是双曲线特有的性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。 例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。

(完整版)双曲线简单几何性质知识点总结,推荐文档

北安一中高二数学导学案 主备人:陈叔彤 审阅人:高二数学组 备课日期 :2012-10-17 课题:§双曲线简单几何性质知识点总结 课时: 课时 班级: 姓名: 【学习目标】 知识与技能:1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等 几何性质 2.掌握双曲线的另一种定义及准线的概念3.掌握等轴双曲线,共轭双曲线等概念 过程与方法:进一步对学生进行运动变化和对立统一的观点的教育情感态度与价值观:辨证唯物主义世界观。【学习重点】双曲线的几何性质及其应用。【学习难点】双曲线的知识结构的归纳总结。 【学法指导】 1.课前依据参考资料,自主完成,有疑问的地方做好标记. 2.课前互相讨论交流,课上积极展示学习成果. 【知识链接】双曲线的定义:_________________________________________________【学习过程】 1.范围: 由标准方程,从横的方向来看,直线x=-a,x=a 之间没有图 122 22=-b y a x 象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大。 X 的取值范围________ y 的取值范围______2. 对称性: 对称轴________ 对称中心________3.顶点:(如图) 顶点:____________特殊点:____________实轴:长为2a, a 叫做半实轴长21A A 虚轴:长为2b ,b 叫做虚半轴长 21B B 双曲线只有两个顶点,而椭圆则有四个顶点, 这是两者的又一差异4.离心率: 双曲线的焦距与实轴长的比,叫做双曲线的离心率 a c a c e == 22范围:___________________ 双曲线形状与e 的关系:,e 越大,即渐112 222 2-=-=-= =e a c a a c a b k 近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔

双曲线的简单几何性质 (第二课时) 教案 2

课 题:8.4双曲线的简单几何性质 (二) 教学目的: 1.使学生掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质 2.掌握等轴双曲线,共轭双曲线等概念 3.并使学生能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题 4.通过教学使同学们运用坐标法解决问题的能力得到进一步巩固和提高,“应用数学”的意识等到进一步锻炼的培养 教学重点:双曲线的渐近线、离心率 教学难点:渐近线几何意义的证明,离心率与双曲线形状的关系 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.范围、对称性 由标准方程122 22=-b y a x ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方 向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭 圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 2.顶点 顶点:()0,),0,(21a A a A - 特殊点:()b B b B -,0),,0(21 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 3.渐近线 过双曲线122 22=-b y a x 的两顶点21,A A ,作Y 轴的平行线a x ±=,经过21,B B 作X 轴的 平行线b y ±=,四条直线围成一个矩形 矩形的两条对角线所在直线方程是x a b y ± =( 0=±b y a x ),这两条直线就是双曲线的渐近线 4.等轴双曲线 定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e x y Q B 1 B 2A 1A 2N M O

双曲线的几何性质(一)

双曲线的几何性质(一) 教学目标 1.掌握双曲线的几何性质 2.能通过双曲线的标准方程确定双曲线的顶点、实虚半轴、焦点、离心率、渐近线方程. 教学重点 双曲线的几何性质 教学难点 双曲线的渐近线 教学过程 I.复习回顾: 双曲线的标准方程、研究椭圆的几何性质的方法与步骤 II.讲授新课: 1.范围: 双曲线在不等式x ≥a 与x ≤-a 所表示的区域内. 2.对称性: 双曲线关于每个坐标轴和原点都对称, 这时,坐标轴是双曲线的对称轴,原点是 双曲线的对称中心,双曲线的对称中心叫 双曲线的中心。 3.顶点: 双曲线和它的对称轴有两个交点A 1(-a ,0)、A 2(a ,0),它们叫做双曲线的顶点. 线段A 1A 2叫双曲线的实轴,它的长等于2a ,a 叫做双曲线的实半轴长;

线段B 1B 2叫双曲线的虚轴,它的长等于2b ,b 叫做双曲线的虚半轴长. 4.渐近线 ①我们把两条直线y=± x a b 叫做双曲线的渐近线; ②从图可以看出,双曲线122 22=-b y a x 的各支向 外延伸时,与直线y =±x a b 逐渐接近. ③“渐近”的证明:略 ④等轴双曲线: 实轴和虚轴等长的双曲线叫做等轴双曲线. ⑤ 利用双曲线的渐近线,可以帮助我们较准确地画出双曲线的草图.具体做法是:画出双曲线的渐近线,先确定双曲线顶点及第一象限内任意一点的位置,然后过这两点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分,最后利用双曲线的对称性画出完整的双曲线. 注意:⑴求渐近线方程的简便方法:令方程左边等于零即0b y a x 22 22=- ⑵等轴双曲线一般可设为k y x 22=- 等轴双曲线的性质:①离心率为2 ②等轴双曲线的相伴矩形是正方形 ③渐近线方程为y =±x 且互相垂直 ④两条渐近线平分双曲线实轴和虚轴所成的角。 5.离心率:

4双曲线的性质

双曲线的性质【要点梳理】 要点一、双曲线的简单几何性质 双曲线 22 22 1 x y a b -=(a>0,b>0)的简单几何性质 范围 2 22 2 1 x x a a x a x a 即 或 ≥≥ ∴≥≤- 双曲线上所有的点都在两条平行直线x=-a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x≤-a或x≥a. 对称性 对于双曲线标准方程 22 22 1 x y a b -=(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线 22 22 1 x y a b -=(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。 顶点 ①双曲线与它的对称轴的交点称为双曲线的顶点。 ②双曲线 22 22 1 x y a b -=(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(-a,0),A2(a,0),顶点是双曲线两支上的点中距离最近的点。 ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,-b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。 ①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。 ②双曲线的焦点总在实轴上。 ③实轴和虚轴等长的双曲线称为等轴双曲线。 1

离心率 ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e 表示,记作22c c e a a ==。 ②因为c >a >0 ,所以双曲线的离心率 1c e a = >。 由c 2=a 2+b 2,可得22 22 2()11 b c a c e a a a -==-=-,所以b a 决定双曲线的开口大小,b a 越大,e 也越大,双曲线开口就越开阔。所以离心率可以用来表示双曲线开口的大小程度。 ③等轴双曲线a b =,所以离心率2=e 。 渐近线 经过点A 2、A 1作y 轴的平行线x=±a ,经过点B 1、B 2作x 轴的平行线y=±b ,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是b y x a =± 。 我们把直线x a b y ± =叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。 22= --||b b MN x a x a a 2222 =--= →+-b x a x a x x a

双曲线的几何性质.

双曲线的几何性质 (4) 教学目标:能综合应用所学知识解决较综合的问题,提高分析问题与解决问题 的能力. 教学过程 例1 中心在原点,一个焦点为F (1,0)的双曲线,其实轴长与虚轴长之比为 m , 求双曲线标准方程. 例2 已知点A(3,2),F(2,0),在双曲线22 13y x -=上求一点 P ,使1||||2 PA PF +的值最小. 例3 已知双曲线2 2 12 y x -=,求过定点A (2,1)的弦的中点P 的轨迹方程. 例4 在双曲线22 11312 x y - =-的一支上有三个不同点A (x 1,y 1)、B (x 2,6)、C (x 3,y 3)与焦点F 1(0,5)的距离成等差数列,求y 1+y 3的值. 例5已知梯形ABCD 中,AB//CD,|AB|=2|CD|,点 E 满足 ,双曲线 过 C 、 D 、 E 三点,且以 A 、 B 为焦点,当23 34 λ≤≤时,求双曲线离心率 的取值范围. 课堂练习 1.设直线y =kx 与双曲线4x 2―y 2=16相交,则实数k 的取值范围是 (A )―2

(完整版)双曲线简单几何性质知识点总结

四、双曲线 一、双曲线及其简单几何性质 (一)双曲线的定义:平面内到两个定点F 1,F 2的距离差的绝对值等于常数2a (0<2a <|F 1F 2|)的点的轨 迹叫做双曲线。 定点叫做双曲线的焦点;|F 1F 2|=2c ,叫做焦距。 ● 备注:① 当|PF 1|-|PF 2|=2a 时,曲线仅表示右焦点F 2所对应的双曲线的一支(即右支); 当|PF 2|-|PF 1|=2a 时,曲线仅表示左焦点F 1所对应的双曲线的一支(即左支); ② 当2a=|F 1F 2|时,轨迹为以F 1,F 2为端点的2条射线; ③ 当2a >|F 1F 2|时,动点轨迹不存在。 双曲线12222=-b y a x 与122 22=-b x a y (a>0,b>0)的区别和联系

(二)双曲线的简单性质 1.范围: 由标准方程122 22=-b y a x (a >0,b >0),从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的 方向来看,随着x 的增大,y 的绝对值也无限增大。 x 的取值范围________ ,y 的取值范围______ 2. 对称性: 对称轴________ 对称中心________ 3.顶点:(如图) 顶点:____________ 特殊点:____________ 实轴:21A A 长为2a, a 叫做半实轴长 虚轴:21B B 长为2b ,b 叫做半虚轴长 双曲线只有两个顶点,而椭圆则有四个顶点 4.离心率: 双曲线的焦距与实轴长的比 a c a c e = = 22,叫做双曲线的离心率 范围:___________________ 双曲线形状与e 的关系:1122 222-=-=-==e a c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越 大,这时双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 5.双曲线的第二定义: 到定点F 的距离与到定直线l 的距离之比为常数 )0(>>= a c a c e 的点的轨迹是双曲线 其中,定点叫做双 曲线的焦点,定直线叫做双曲线的准线 常数e 是双曲线的离心率. 准线方程: 对于12222=-b y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2 1:-=, 相对于右焦点)0,(2c F 对应着右准线 c a x l 2 2:= ; 6.渐近线 过双曲线122 2 2=-b y a x 的两顶点21,A A ,作x 轴的垂线a x ±=,经过21,B B 作y 轴的垂线b y ±=,四条直线 围成一个矩形 矩形的两条对角线所在直线方程是____________或(0 =±b y a x ),这两条直线就是双曲线 的渐近线 双曲线无限接近渐近线,但永不相交。

双曲线的性质及应用

双曲线的性质及应用 教学目标 (一)知识教学点 使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征. (二)能力训练点 在与椭圆的性质的类比中获得双曲线的性质,从而培养学生分析、归纳、推理等能力. (三)学科渗透点 使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题. 教学重点:双曲线的几何性质及初步运用. (解决办法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明.) 教学难点:双曲线的渐近线方程的导出和论证. (解决办法:先引导学生观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.) 教学疑点:双曲线的渐近线的证明. (解决办法:通过详细讲解.) 活动设计 提问、类比、重点讲解、演板、讲解并归纳、小结. 教学过程 (一)复习提问引入新课 1.椭圆有哪些几何性质,是如何探讨的? 请一同学回答.应为:范围、对称性、顶点、离心率,是从标准方程探讨的.

2.双曲线的两种标准方程是什么? 再请一同学回答.应为:中心在原点、焦点在x轴上的双曲线的标 下面我们类比椭圆的几何性质来研究它的几何性质. (二)类比联想得出性质(性质1~3) 引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).<见下页> (三)问题之中导出渐近线(性质4) 在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计 仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想. 接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么? 下面,我们来证明它:

双曲线的基本性质与解题技巧

双曲线定义: ⑴双曲线的第一定义:平面内与两个定点F 1,F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫做双曲线 ⑵双曲线的第二定义:平面内到一个定点F 的距离和到一条定直线的距离比是常数e (e >1)的点的轨迹叫做双曲线 双曲线的标准方程: ⑴中心在原点、焦点在x 轴上的双曲线: 22 221(0,0)x y a b a b -=>> ⑵中心在原点、焦点在y 轴上的双曲线: 22 22 1(0,0)y x a b a b -=>> 双曲线的基本性质:(以22 221(0,0)x y a b a b -=>>为例) ⑴范围:x ≤-a ,或x ≥a ⑵图像关于x 轴、y 轴、原点对称, ⑶两顶点是(,0)a ±,实轴长为2a ,虚轴长为2b 。 ⑷离心率(1,),c e c a =∈+∞= ⑸渐近线方程为b y x a =±,准线方程是2a x c =±。 【例1】 已知双曲线22221x y a b -=的离心率为2,焦点与椭圆22 1259 x y +=的焦点相同,那么双曲线的焦点坐标为______;渐近线方程为________。 ⑹实轴和虚轴相等的双曲线叫等轴双曲线,记作:22(0)x y k k -=≠,等轴双曲线的离心率e = ⑺与双曲线22221(0,0)x y a b a b -=>>有共同渐近线的双曲线方程为22 22(0)x y k k a b -=≠ ⑻以0x y a b ±=为渐近线的双曲线方程为2222(0)x y k k a b -=≠

⑼点00(,)P x y 和双曲线的关系: 点P 在双曲线内22 221x y a b ?-> (含焦点) 点P 在双曲线上22 221x y a b ?-= 点P 在双曲线外22 221x y a b ?-< 常见题型: 一、求双曲线标准方程 求双曲线的标准方程常用的方法是待定系数法和轨迹方程法。 基本步骤: ⑴定型(确定它是双曲线) ⑵定位(判断它的中心在原点、焦点在哪条坐标轴上) ⑶定量(建立关于基本量的方程或方程组,解得基本量a ,b 的值。) 【例2】 一炮弹在某处爆炸,在F 1(-5000,0)处听到爆炸声的时间比在F 2(5000,0)处晚 30017 秒,已知坐标轴的单位长度为1米,声速为340米/秒,爆炸点应在什么样的曲线上,并求爆炸点所在的曲线方程。 【例3】 已知双曲线22 22:1(00)x y C a b a b -=>>,x =,求双曲线C 的方程。 【例4】 与双曲线有2 212 x y -=有公共渐近线,且过点(2,2)M -的双曲线的标准方程为___________。 二、双曲线的焦半径公式 ⑴双曲线22 221x y a b -=上一点00(,)P x y 的 左焦半径为10PF a ex =+; 右焦半径为20PF a ex =-。

双曲线的几何性质(习题)

双曲线的几何性质 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ — 一、选择题(共34题,题分合计170分) ) 1.双曲线9y 2-x 2 -2x -10=0的渐近线方程是 =±3(x +1) =±3(x -1) =±31(x +1) =±31 (x -1) 2.若双曲线x 2-y 2 =1右支上一点P (a ,b )到直线y =x 的距离为2,则a +b 的值是 A.-21 B.21 C.-21或21 或-2 ( 3.过(0,3)作直线 L ,若L 与双曲线 342 2y x =1,只有一个公共点,则L 共有

条 条 条 条 4.双曲线2mx 2 -my 2 =2,有一条准线方程是y =1,则m 应等于 是 21 34 5.双曲线15)1(422=--y x ,经过第一象限内的点) 217 , (m P ,则P 点到双曲线右焦点的距离是__________. 6.双曲线11692 2=-y x 的一个焦点到一条渐近线的距离等于 A.3 7.已知双曲线中心在原点且一个焦点为 )0,7(F ,直线y =x -1与其相交于M ?N 两点,MN 中点的横坐标为, 32 -则此双曲线的方程是 … A.14322=-y x B.13422=-y x C.12522=-y x D.1522 2=-y x 8.双曲线虚轴的一个端点为M,两个焦点为F,F ,∠FMF =120°则双曲线的离心率为 A.3 B.26 C.36 D.33 9.双曲线的渐近线方程为y =±2(x -1),一焦点坐标为(1+25,0),则该双曲线的方程是 A.116)1(422=--y x B.1164)1(22=--y x C.1416)1(22=--y x D.116)1(42 2=--y x 10.过双曲线1 22 2 =-y x 的右焦点F 作直线l 交双曲线于A ?B 两点,若|AB |=4,则这样的直线l 有 条 条 条 条 11.以椭圆114416922=+y x 的右焦点为圆心,且与双曲线116922=-y x 的渐近线相切的圆的方程是 / A. 91022=+-+x y x B. 91022=--+x y x C. 091022=-++x y x

知识讲解_双曲线的简单性质_基础

双曲线的简单性质 【学习目标】 1.知识与技能 理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念. 2.过程与方法 锻炼学生观察分析抽象概括的逻辑思维能力和运用数形结合思想解决实际问题的能力. 3.情感态度与价值观 通过数与形的辨证统一,对学生进行辩证唯物主义教育,通过对双曲线对称美的感受,激发学生对美好事物的追求. 【要点梳理】 【高清课堂:双曲线的性质356749 知识要点二】 要点一:双曲线的简单几何性质 双曲线 22 22 1 x y a b -=(a>0,b>0)的简单几何性质 范围 2 21 x a ≥,即22 x a ≥ ∴x a ≥,或x a ≤-. 双曲线上所有的点都在两条平行直线x= -a和x= a的两侧,是无限延伸的.因此双曲线上点的横坐标满足∴x a ≥,或x a ≤-. 对称性 对于双曲线标准方程 22 22 1 x y a b -=(a>0,b>0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y, 方程都不变,所以双曲线 22 22 1 x y a b -=(a>0,b>0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为 对称中心的中心对称图形,这个对称中心称为双曲线的中心.顶点 ①双曲线与它的对称轴的交点称为双曲线的顶点. ②双曲线 22 22 1 x y a b -=(a>0,b>0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为

A1(-a,0),A2(a,0) ,顶点是双曲线两支上的点中距离最近的点. ③两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,- b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴.实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b.a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长. ①双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆. ②双曲线的焦点总在实轴上. ③实轴和虚轴等长的双曲线称为等轴双曲线. 离心率 ①双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作 2 2 c c e a a ==. ②因为c>a>0,所以双曲线的离心率1 c e a =>. 由c2= a 2+b2,可得 22 22 2 ()11 b c a c e a a a - ==-=-,所以 b a 决定双曲线的开口大小, b a 越大,e也越大,双曲线开口就越开阔.所以离心率可以用来表示双曲线开口的大小程度. ③等轴双曲线a b =,所以离心率2 e=. 渐近线 经过点A2、A1作y轴的平行线x=±a,经过点B1、B2作x轴的平行线y=±b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是 b y x a =±. 我们把直线 b y x a =±叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交. 22 || b b MN x a x a a =-- 22 22 b x a x a x x a =-- =→ +-

高中数学双曲线的标准方程及其几何性质

双曲线的标准方程及其几何性质 一、双曲线的标准方程及其几何性质. 1.双曲线的定义:平面内与两定点F 1、F 2的距离差的绝对值是常数(大于零,小于|F 1F 2|)的点的轨迹叫双曲线。两定点F 1、F 2是焦点,两焦点间的距离|F 1F 2|是焦距,用2c 表示,常数用2a 表示。 (1)若|MF 1|-|MF 2|=2a 时,曲线只表示焦点F 2所对应的一支双曲线. (2)若|MF 1|-|MF 2|=-2a 时,曲线只表示焦点F 1所对应的一支双曲线. (3)若2a =2c 时,动点的轨迹不再是双曲线,而是以F 1、F 2为端点向外的两条射线. (4)若2a >2c 时,动点的轨迹不存在. 2.双曲线的标准方程:22 a x -22b y =1(a >0,b >0)表示焦点在x 轴上的双曲线; 22a y -2 2b x =1(a >0,b >0)表示焦点在y 轴上的双曲线. 判定焦点在哪条坐标轴上,不像椭圆似的比较x 2 、y 2 的分母的大小,而是x 2 、y 2 的系数 的符号,焦点在系数正的那条轴上. 4.直线与双曲线的位置关系,可以通过讨论直线方程与双曲线方程组成的方程组的实数解的个数来确定。 (1)通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式?,则有:?>?0直线与双曲线相交于两个点;?=?0直线与双曲线相交于一个点;?

(3)直线l 被双曲线截得的弦长2 212))(1(x x k AB -+=或2 212 ))(11(y y k -+ ,其中k 是直线l 的斜率,),(11y x ,),(22y x 是直线与双曲线的两个交点A ,B 的坐标,且 212212214)()(x x x x x x -+=-,21x x +,21x x 可由韦达定理整体给出. 二、例题选讲 例1、中心在原点,焦点在x 轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距 离为2,则双曲线方程为 ( ) A .x 2-y 2=1 B .x 2-y 2=2 C .x 2-y 2= 2 D .x 2-y 2=1 2 解析:由题意,设双曲线方程为x 2a 2-y 2 a 2=1(a >0),则c =2a ,渐近线y =x , ∴ |2a | 2 =2,∴a 2=2.∴双曲线方程为x 2-y 2=2. 答案:B 例2、根据以下条件,分别求出双曲线的标准方程. (1)过点)2,3(-P ,离心率2 5= e . (2)1F 、2F 是双曲线的左、右焦点,P 是双曲线上一点,双曲线离心率为2且 ?=∠6021PF F ,31221=?F PF S . 解:(1)依题意,双曲线的实轴可能在x 轴上,也可能在y 轴上,分别讨论如下. 如双曲线的实轴在x 轴上,设122 22=-b y a x 为所求. 由25=e ,得4522=a c . ① 由点)2,3(-P 在双曲线上,得 12 922 =-b a .②, 又222c b a =+,由①、②得12=a ,4 1 2= b . ③ 若双曲线的实轴在y 轴上,设12222=-b y a x 为所求. 同理有4522=a c ,19 222=-b a , 222c b a =+.解之,得2 17 2- =b (不合,舍去). ∴双曲线的实轴只能在x 轴上,所求双曲线方程为142 2 =-y x . (2)设双曲线方程为12222=-b y a x ,因c F F 221=,而2==a c e ,由双曲线的定义,得

双曲线的定义及其基本性质

双曲线的定义及其基本性质 一、双曲线的定义: (1)到两个定点F 1与F 2的距离之差的绝对值等于定长(< 2 1F F )的点的轨迹。两定点叫双曲线的焦点。 a PF PF 221=-<2 1F F (2)动点P 到定点F 的距离与到一条定直线的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线。 二、双曲线的方程: 双曲线标准方程的两种形式: ① 12 222=-b y a x ,2 2b a c +=,焦点是 F 1(-c,0),F 2(c,0) 12222=-b x a y , 22b a c +=, 焦点是F 1(0, -c),F 2(0, c) 三、双曲线的性质: (1)焦距F 1F 2=2c,实轴长A 1A 2=2a,虚轴长2b,且a 2+b 2=c 2 (2)双曲线的离心率为e= a c ,e>1恒成立。 (3)焦点到渐近线的距离:虚半轴长b ,通径长EF = a b 2 2 (4)有两条准线,c a x l 21:- =c a x l 2 2:= 四、双曲线的渐近线: (1)若双曲线为12222=-b y a x ?渐近线方程为x a b y ±=, (2)若已知某双曲线与12222=-b y a x 有公共渐近线,则可设此双曲线为λ=-22 22b y a x , (3)特别地当a=b 时?2=e ?两渐近线互相垂直,分别为y =±x ,此时双曲线为等轴双曲线 五、共轭双曲线: 双曲线A 的实轴为双曲线B 的虚轴,双曲线A 的虚轴为双曲线B 的实轴,即11 122=+B A e e 。 K 2 O F 1 F 2 x y O F 1F 2 x y

双曲线的简单几何性质(优秀教案)

教案 普通高中课程标准选修2-1 2.3.2双曲线的简单几何性质(第一课时) 教材的地位与作用 本节内容是在学习了曲线与方程、椭圆及其标准方程和简单几何性质、双曲线及其标准方程的基础上,进一步通过双曲线的标准方程推导研究双曲线的几何性质。(可以类比椭圆的几何性质得到双曲线的几何性质。)通过本节课的学习,使学生深刻理解双曲线的几何性质,体验数学中的类比、联想、数形结合、转化等思想方法。 二、教案目标 (一)知识与技能 1、了解双曲线的范围、对称性、顶点、离心率。 2、理解双曲线的渐近线。 (二)过程与方法 通过联想椭圆几何性质的推导方法,用类比方法以双曲线标准方程为工具推导双曲线的几何性质,从而培养学生的观察能力、联想类比能力。 (三)情感态度与价值观 让学生充分体验探索、发现数学知识的过程,深刻认识“数”与“形”的关系,培养学生勇于攀登科学高峰的精神。 三、 教案重点难点 双曲线的渐近线既是重点也是难点。 四、 教案过程 (一)课题引入 1、前面我们学习了椭圆及其标准方程,并由标准方程推导出椭圆的几何性质,椭圆的几何性质有哪些?(教师用课件引导学生复习椭圆的几何性质,双曲线及其标准方程。) 今天我们以标准方程为工具,研究双曲线的几何性质。 【板书】:双曲线)0,0(122 22>>=-b a b y a x 的性质 2、双曲线有哪些性质呢?(范围、对称性、顶点、离心率、渐近线。) 3、双曲线的这些性质具体是什么?如何推导?请同学们对比椭圆的几何性质的推导方法,推导出双曲线的几何性质。(讨论)

(二)双曲线的性质 1、范围: 把双曲线方程12222=-b y a x 变形为22 221b y a x +=。 因为022≥b y ,因此122≥a x ,即2 2a x ≥,所以a x a x ≥-≤或。 又因为022 ≥b y ,故R y ∈。 【板书】:1、范围:a x a x ≥-≤或,R y ∈。 2、对称性: 下面我们来讨论双曲线的的对称性,哪位同学能根据双曲线122 22=-b y a x 的标准方程, 判断它的对称性? 在标准方程中,把x 换成x -,或把y 换成y -,或把x ,y 同时换成x -,y -时,方程都不变,所以图形关于y 轴、x 轴和原点都是对称的。 【板书】:2、对称性:双曲线的对称轴是x 轴、y 轴,原点是它的对称中心。 3、顶点: 提问:(1)双曲线有几个顶点?顶点的坐标是什么? 在标准方程122 22=-b y a x 中,令0=y 得a x ±=;令0=x ,则y 无解。 这说明双曲线有两个顶点,)0,(),0,(21a A a A -。 (2)如图,对称轴上位于两顶点间的线 12 2 22=-b y a x 的实轴,其段21A A 叫做双曲线长度为a 2。尽管此双曲线与y 轴无公共 点,但y 轴上的两 个特殊的点 ),0(),,0(21b B b B -。 我们称线段21B B 为双曲线的虚轴,其长 度为b 2。 【板书】:3、顶点:)0,(),0,(21a A a A -,称21A A 为实轴,21B B 为虚轴,其中),0(),,0(21b B b B -。

2.2.2双曲线的简单几何性质

2.2.2双曲线的简单几何性质 一、课前预习目标 理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征. 二、预习内容 1、双曲线的简单几何性质及初步运用. 类比椭圆的几何性质. 2.双曲线的渐近线方程的导出和论证. 观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线. 课内探究 一、椭圆与双曲线的几何性质异同点分析 二、描述双曲线的渐进线的作用及特征 双曲线的范围在以直线 b y x a =和 b y x a =-为边界的平面区域内,那么从x,y的变化趋势看,双 曲线 22 22 1 x y a b -=与直线 b y x a =±具有怎样的关系呢? 根据对称性,可以先研究双曲线在第一象限的部分与直线 b y x a =的关系。

双曲线在第一象限的部分可写成: 当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON. 在其他象限内也可以证明类似的情况. 现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字 母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字 这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精

再描几个点,就可以随后画出比较精确的双曲线. 三、描述双曲线的离心率的作用及特征 变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔. 这时,指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变. 四、例题 例.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.

相关文档
最新文档