【CN109836522A】一种带有弱疏水性侧链的两性离子聚合物接枝纳米介质及制备和固定化酶的方法【

【CN109836522A】一种带有弱疏水性侧链的两性离子聚合物接枝纳米介质及制备和固定化酶的方法【
【CN109836522A】一种带有弱疏水性侧链的两性离子聚合物接枝纳米介质及制备和固定化酶的方法【

阳离子聚合物凝胶堵水剂研究

抗盐抗温堵水剂研究 1.1 油田堵水剂概述 随着油田的日益开采, 水的组分在所开采的石油中所占的比例越来越大。油井出水,将直接造成产量的下降。地层能量的损失和注水的强度加大,以及设备管网的腐蚀加剧等危害,造成巨大的经济损失,使开发效益受到严重的影响, 油田堵水在油田开采过程中显得非常的重要。 堵水包括水井调剖和油井堵水。在地壳中,地质的不均匀性使注入水沿高渗透孔道突入油井,为了减少渗透,必须封堵这些高渗透层。从水井封堵地壳高渗透层时调整注水层的吸水剖面,这种方法称为水井调剖。从油井封堵这些高渗透层时,可减少油井出水,这种方法称为油井堵水。无论是调剖还是堵水,目前行之有效的方法都是使用化学试剂,在油井堵水过程中所使用的化学试剂称为油井堵水剂。 油井堵水剂是指从油井注入能减少油井产水的化学试剂,经过几十年的发展,堵水剂已成系列。按工艺可分为单液法堵水剂和双液法堵水剂;按形式可分为冻胶型、凝胶型、沉淀型和胶体分散体型;按苛刻条件可分为高温、大孔道、低渗透层、高矿化度地层型等。 1.2 堵水剂研究的意义 油井出水是油田开发过程中不可避免要遇到的问题。油井采出液所含的水来自注入的驱替水、储油区的边水、储油圈闭中油层以下的底水。驱替水和边水的窜流最好用深部调剖技术,但该技术还不够成熟,因此从生产井封堵高渗透层的堵水技术仍是不可缺少的方法。对于底水推进的问题,最好用推进处建立水油隔板的方法解决。油井出水会造成很多危害:消耗地层能量,减少油层最终采收率;降低抽油井的泵率;使管线和设备的腐蚀与结垢严重;增加脱水站的负荷;若不将脱出的水回注,还会增加环境污染,因而降低采出液的出水率有其重要的意义。如果油井有缺陷使得产量很低,那么堵水处理从工艺和经济上就会很有效。该工艺是一个极大增加原油产量、降低操作费用的方法。国内外都十分重视油田堵水工作。国外将堵水作为三次采油前地层的预处理措施,中国则将堵水作为控水稳油的重要手段。但需要进行调剖、堵水的油藏地层通常具有高温、高压、高盐和

两性表面活性剂

https://www.360docs.net/doc/752198314.html, 两性表面活性剂是在同一分子中既含有阴离子亲水基又含有阳离子亲水基的表面活性剂。最大特征在于它既能给出质子又能接受质子。在使用过程中具有以下特点:对织物有优异的柔软平滑性和抗静电性;有一定的杀菌性和抑霉性;有良好的乳化性和分散性。两性表面活性剂生产厂家哪家好?淮南华俊新材料科技有限公司来为您解答! 它是一种温和性的表面活性剂。两性表面活性剂分子与单一的阴离子型、阳离子型不同,在分子的一端同时存在有酸性基和碱性基。酸性基大都是羧基、磺酸基或磷酸基,碱性基则为胺基或季铵基,能与阴离子、非离子型表面活性剂混配,能耐酸、碱、盐以及碱土金属盐。 淮南华俊新材料科技有限公司 https://www.360docs.net/doc/752198314.html,

https://www.360docs.net/doc/752198314.html, 蛋黄里的卵磷脂是天然的两性表面活性剂。现在常用的人工合成两性表面活性剂,其阴离子部分大多是羧酸基,也有少数是磺酸基。其阳离子部分大多是胺盐或季胺盐。由胺盐构成阳离子部分的叫氨基酸型;由季胺盐构成阳离子部分的叫甜菜碱型。 两性表面活性剂通常具有良好的洗涤、分散、乳化、杀菌、柔软纤维和抗静电等性能,可用作织物整理助剂、染色助剂、钙皂分散剂、干洗表面活性剂和金属缓蚀剂等。但是,这类表面活性剂的价格较贵,实际应用范围较其他类型的表面活性剂小。 淮南华俊新材料科技有限公司是安徽省高新技术企业,目前增设上海、广州两家办事处。是以表面活性剂和聚丙烯酸及丙烯酰胺系列聚合物的研发、生产、销售于一体的企业,产品广泛应用于日化、石油开采、水处理、农药助剂、水性涂料、金属加工液等多个领域。我公司的主要产品有阳离子表面活性剂系列、两性表面活性剂系列、非离子表面活性剂系列、增稠剂系列产品以及其他产品。 淮南华俊新材料科技有限公司 https://www.360docs.net/doc/752198314.html,

离子交换树脂基础知识

离子交换树脂基础知识

离子交换树脂的基础知识 一、离子交换树脂发展简史 离子交换剂是一类能发生离子交换的物质,分为无机离子交换剂和有机离子交换剂。有机离子交换剂又称离子交换树脂。无机离子交换剂(如沸石)早在一百多年前就已发现并应用,人类就已经会利用沙砾净水。而有机离子交换树脂是在1933年由英国人亚当斯(Hdams)和霍姆斯(Holms)首先用人工方法制造酚醛类型的阳、阴离子交换树脂。 在第二次世界大战期间,德国首先进行工业规模的生产。战后英、美、苏、日等国的发展很快。1945年美国人迪阿莱里坞(D’Alelio)发表了关于聚苯乙烯型强酸性阳离子交换树脂及聚丙烯酸型弱酸性阳离子交换树脂的制备方法。后来聚苯乙烯阴离子交换树脂、氧化还原树脂以及螯合树脂等也相继出现,在应用技术及其范围上也日益广大。到了上世纪五十年代后期,各种大孔型的树脂又相继发展起来,在生产及科学研究中,离子交换树脂起着越来越重要的作用。 解放前,我国的离子交换树脂的科研和生产完全空白,解放后,从五十年代初期开始,我国在北京、上海和天津的一些科研单位和高等学校分别开始了离子交换树脂的研究。1953年酚醛磺化树脂产生,1958年凝胶型苯乙烯树脂投入生产,1959年南开大学何炳林用苯乙烯做致孔剂合成孔径大、强度高和交换速度快的大孔型交联聚苯乙烯离子交换树脂。60年代我国生产了大孔型苯乙烯系、丙烯酸系离子交换树脂。到70年代中、后期又合成了多种吸附树脂、碳化树脂,并已先后投入生产。 经过50年的努力,我国的离子交换树脂的生产和工业应用得到了飞速

也属于功能高分子。 阳离子交换树脂是一类骨架上结合有磺酸(-SO3H)和羧酸(-COOH)等酸性功能基的聚合物。将此树脂浸渍于水中时,交换基部分可如同普通酸那样发生电离。以R表示树脂的骨架部分,阳离子交换树脂R-SO3H或R-COOH在水中的电离如下: RSO3H RSO3- + H+ RCOO-+ H+ RSO3H型的树脂易于电离,具有相当于盐酸或硫酸的强酸性,称为强酸性阳离子交换树脂。而RCOOH型的树脂类似有机酸,较难电离。具有弱酸的性质,因此称为弱酸性阳离子交换树脂。 阴离子交换树脂是一类在骨架上结合有季胺基、伯胺基、仲胺基、叔胺基的聚合物。其中以季胺基上的羟基为交换基的树脂具有强碱性,称为强碱性阴离子交换树脂。用R表示树脂中的聚合物骨架时,强碱性阴离子交换树脂在水中会发生如下的电离: R—N+(CH3)3OH-R—N+(CH3)3 + OH-- 具有伯胺、仲胺、叔胺基的阴离子交换树脂碱性较弱,称为弱碱性阴离子交换树脂。强碱性阴离子交换树脂一般以化学稳定的CL盐型出售,应用时要用N a OH溶液进行转型。 三、离子交换树脂的分类 按骨架结构不同,离子交换树脂可分为凝胶性和大孔型树脂两大类。 由苯乙烯和二乙烯苯混合物在引发剂存在下进行自由基悬浮聚合,得到具有交联网状结构的聚合体。这种聚合体一般是呈透明状态的,无孔的

两性离子催化剂的研究进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2013年第32卷第10期·2396· 化工进展 两性离子催化剂的研究进展 聂万丽1,曹蓉2,Maxim V Borzov1 (1乐山师范学院化学学院,四川乐山 614000;2西北大学化学与材料科学学院,陕西西安 710069)摘 要:两性离子催化剂按照配体的结构特征和金属元素种类可分为两性离子茂金属配合物、非茂前过渡以及后过渡金属两性离子配合物三大类。两性离子茂金属配合物根据阴离子在配体上所连接区域的不同又可以分为Girdle型、Bridge型和Ring型三种。本文对各类两性离子配合物的合成方法、结构特征和催化反应活性进行了归纳总结,发现两性离子催化剂对催化烯烃聚合表现出较好的活性,而非茂的两性离子配合物不仅是良好的烯烃聚合催化剂,还可以催化多种类型的小分子反应。作为一种新型高效的单组份活性催化剂,目前,有关两性离子催化剂的应用研究还有很多未知的领域有待开发,尤其是在小分子的活化、催化领域。 关键词:两性离子催化剂;烯烃聚合;茂金属配合物;非茂金属配合物 中图分类号:O 6-1文献标志码:A 文章编号:1000–6613(2013)10–2396–07 DOI:10.3969/j.issn.1000-6613.2013.10.022 Research progress of zwitterionic catalysts NIE Wanli 1,CAO Rong2,Maxim V Borzov1 (1School of Chemistry,Leshan Normal University,Leshan 614000,Sichuan,China;2Department of Chemistry and Materials,Northwest University,Xi’an 710069,Shaanxi,China) Abstract:By their structural features,zwitterionic catalysts can be divided into metallocene and non-metallocene (early and late transition metal) complexes. According to the location of counterions in the molecule structure,zwitterionic metallocenes can be classified into girdle-,bridge- and ring-type families. Extensive data on the synthesis,structural characteristics and catalytic activity of the zwitterionic systems for olefin polymerization are reviewed. While zwitterionic catalysts exhibit good activity in respect to olefin polymerization,non-metallocene catalysts possess certain activity in reactions of small molecules as well. Research on these potential single-component catalysts for olefin polymerization and other processes (especially in part concerning small molecule activation) is still required. Key words:zwitterionic catalyst;olefin polymerization;metallocene;non-metallocene 在过去的三十年里,有关茂金属催化剂在聚烯烃工业中表现的研究备受关注。茂金属催化剂在催化烯烃均相聚合反应中所表现出的高催化活性、单一活性中心和高立构规整性使它成为20世纪80年代金属有机化学领域的研究热点之一。 有关茂金属催化剂体系催化烯烃聚合的过程相对较复杂[1-4]。已被广泛认可的机理为:催化剂前体(中性的第四副族茂金属二氯化物及二甲基衍生物)与一个作为助催化剂的强路易斯酸反应,得到一个中心金属离子具有14电子结构的阳离子活性反应中心。在催化反应过程中,保证这一阳离子反应活性中心不受到反应体系中碱性杂质或其它物质的影响是维持催化剂寿命的关键因素。工业生产中为了提高聚合活性,反应中通常需要使用大量的助催化剂甲基铝氧烷MAO(Al∶M = 100~10000∶ 收稿日期:2013-02-28;修改稿日期:2013-04-26。 第一作者及联系人:聂万丽(1972—),女,副教授。E-mail niew126@ https://www.360docs.net/doc/752198314.html,。

离子交换树脂的种类和性能

离子交换树脂的种类和性能 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl

水溶性高分子简介

水溶性高分子简介 摘要:本文介绍了水溶性高分子的分类,物理性能,制造以及未来的发展前景。关键词:水溶性高分子聚乙烯醇聚乙二醇 引言 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。是一种亲水性的高分子材料,在水中能够溶解或溶胀而形成溶液或分散液。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;②阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。这些集团不但使得高分子有亲水性,而且还带来很多宝贵的性能,如粘合性,成膜性,润滑性,分散性,减磨性等等。 1水溶性高分子的分类 1.1天然水溶性高分子。 以天然动植物为原料,通过物理过程或者物理化学的方法提取而成。最常见的如淀粉类、纤维素、植物胶、动物胶等。天然高分子虽然受到合成高分子的不断冲击,产量逐渐下降,但是仍然有很大一部分市场被其牢牢统治着。 1.2改性天然高分子。 主要有改性纤维素和改性淀粉两大类。如羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素等。这类高分子兼有天然高分子和合成高分子的优点,拥有广泛的市场,因此产量很大。 1.3合成高分子。 合成高分子材料分为聚合类和缩合类两类,如聚丙烯酰胺(PAM)、水解聚丙烯酰胺(HPAM))、聚乙烯吡咯烷酮(PVP)等。按大分子链连接的水化基团分为:非离子型和离子型。按荷电性质分为:非离子、阳离子、阴离子和两性离子高分子,其中后三类为聚电解质。按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物。 2水溶性高分子的物理性能 2.1溶解性 溶解性是达到平衡的溶液便不能容纳更多的溶质,在特殊条件下,溶液中溶解的溶质会比正常情多,这时它便成为过饱和溶液。每份溶剂所能溶解的溶质的最大值就是“溶质在这种溶剂的溶解度”。 为了提高水溶性,一是在分子中引入足够的亲水基团到大分子上面变为水溶性高分子。二是降低聚合物的结晶度。三是利用聚电解质的反离子力作用促进溶解。

阳离子和两性离子聚合物汇总

钻井液用具阳离子聚合物 1.降滤失剂 1.1阳离子单体:2-羟基-3-甲基丙烯酰氧丙基三甲基氯化铵( HMOPTA) (1)AM/AA/HMOPTA阳离子型共聚物 《油田化学品》P116(某年某版?); 《钻井液与完井液研究文集》P185(某年某版?) 《HMOPTA/AM/AA具阳离子型共聚物泥浆降滤失剂的合成》(某年某版?) (2)AM/AA/AMPS/HMOPTA 两性离子型共聚物 《AM/AMPS/AA/HMOPTA共聚物的合成及性能》.精细石油化工进展,2001年10期,杨小华,王中华 (3)AM/AMPS/MAA/HMOPTA四元两性共聚物 《AM/AMPS/MAA/HMOPTA四元共聚物的合成及作为钻井液处理剂的性能》.油田化学,2002年第03期,杨小华,刘明华,王中华 (4)AMPS/AM/HMOPTA两性共聚物 《AMPS/HMOPTA/AM共聚物降滤失剂的合成及性能》.精细石油化工进展.2005年03期,刘明华,周乐群,杨小华 (5)AA/AS/HMOPTA两性聚合物 《HMOPTA_AA_AS聚合物的合成及性能评价》杨小华,王中华 (6)AM/丙烯酸钾/ HMOPTA/玉米淀粉CGS-2具阳离子型接枝改性淀粉 《油田化学品》P130; 《研究文集》P119 1.2阳离子单体:甲基丙烯酰胺基丙基三甲基氯化铵(MAPTAC或MPTMA) (1)AA/AM/MPTMA两性离子共聚物 《钻井液与完井液研究文集》P195 (2)AM/AMPS/MPTMA两性离子共聚物 《钻井液与完井液研究文集》P144; 《MPTMA/AMPS/AM的合成及其在钻井液中的应用》,河南化工,1993年10期,王中华 (3)AM/AA/ MPTMA/淀粉接枝两性共聚物

离子交换树脂分类

离子交换树脂分类 一、离子交换树脂的组成 离子交换树脂是一类带有功能基的网状结构高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架,连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。 H)(强酸性阳离子交换树 阳离子交换树脂:骨架上结合有磺酸基(-SO 3 脂)或羧酸基(-COOH)(弱酸性阳离子交换树脂)。 阴离子交换树脂:骨架上结合有季铵基(强碱性阴离子交换树脂),伯胺基、仲胺基、叔胺基(弱碱性阴离子交换树脂)。 二、离子交换树脂的分类 按骨架结构不同:凝胶型(干态无孔,吸水后产生微孔)和大孔型(树脂内部无论干、湿或收缩、溶胀都存在着比凝胶型树脂更大、更多的孔)。 根据所带的功能基团的特性:阳离子交换树脂(带酸性功能基,能与阳离子进行交换)、阴离子交换树脂(带碱性功能基,能与阴离子进行交换)和其它树脂。 三、离子交换树脂的命名方法 根据离子交换树脂的功能基的性质,将其分为强酸(0)、弱酸(1)、强碱(2)、弱碱(3)、螯合(4)、两性(5)和氧化还原(6)七类(各类后面的数字为其分类代号)。 离子交换树脂的骨架分为苯乙烯系(0)、丙烯酸系(1)、酚醛系(2)、环氧系(3)、乙烯吡啶系(4)、脲醛系(5)、氯乙烯系(6)七类(各类后面的数字为骨架分类代号)。

命名方法: D ¤△▼×■ D 大孔树脂在名称前加D ¤分类代号(阴、阳、酸、碱、强、弱) △骨架分类代号 ▼顺序号 ×■凝胶型树脂后加*并注明交联度 举例: 001×7强酸性苯乙烯系阳离子交换树脂 D001 大孔强酸性苯乙烯系阳离子交换树脂 D113 大孔弱酸性丙烯酸系阴离子交换树脂

水溶性高分子及其应用

水溶性高分子及其应用 马建 常州轻工职业技术学院 10线缆331 1013433138 摘要:水溶性高分子材料是一种亲水性的高分子材料,在水中能溶解或溶胀而形成溶液或分散液。它具有性能优异、使用方便、有利环境保护等优点,广泛应用于国民经济的各个领域。本文主要论述了水溶性高分子材料的概念、分类、功能和应用、以及研究发展现状及前景。 关键词:水溶性 高分子 发展应用 1、 水溶性高分子的概念 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。通常所说的水溶性高分子是一种强亲水性的高分子材料,能溶解或溶胀于水中形成水溶液或分散体系”。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;② 阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。 2、分类 a 、按来源分类 1 )天然水溶性高分子。 天然水溶性高分子以植物或动物为原料,通过物理的或物理化学的方法提取而得。许多天然水溶性高分子一直是造纸助剂的重要组分,例如常见的有表面施胶剂天然淀粉、植物胶、动物胶 (干酪素)、甲壳质以及海藻酸的水溶性衍生物等。 2)半合成水溶性高分子 。 这类高分子材料是由上述天然物质经化学改性而得。用于造纸工业中主要有两类:改性纤维素 (如羧甲基纤维素) 和改性淀粉 (如阳离子淀粉)。 3)合成水溶性高分子。 此类高分子的应用最为广泛,特别是其分子结构设计十分灵活的优势可以较好地满足造纸生产环境多变及造纸工业发展的要求。 b 、按分子量分类 可分为低分子量、高分子量、超高分子量 C 、按用途分类 可分为驱油剂(聚丙烯酰胺、改性淀粉、瓜胶),絮凝剂(聚丙烯酸、改性纤维素、壳聚糖) 3、功能 O OH O OH O CH 2OH OH O OH O CH 2OH OH O OH COOH

离子交换树脂

离子交换树脂 为了除去水中离子态杂质,现在采用得最普遍的方法是离子交换。这种方法可以将水中离子态杂质清除得以较彻底,因而能制得很纯的水。所以,在热力发电厂锅炉用水的制备工艺中,它是一个必要的步骤。 离子交换处理,必须用一种称做离子交换剂的物质(简称交换剂)来进行。这种物质遇水时,可以将其本身所具有的某种离子和水中同符号的离子相互交换,离子交换剂的种类很多,有天然和人造、有机和无机、阳离子型和阴离子型等之分,大概情况如表所示。此外,按结构特征来分,还有大孔型和凝胶型等。 离子交换剂的分类 天然海绿砂 无机质 人造合成沸石 离子交换剂 碳质磺化煤强酸性磺酸基(-SO3H) 阳离子型 有机质弱酸性羧酸基(-COOH) 强碱性Ⅰ型{-N(-CH3)3}OH 离子交换树脂阴离子型Ⅱ型{-N(CH3)2}OH 弱碱性(-(NH3)OH、(=NH2) OH 或 (≡NH)OH 其他-氧化还原型、有机物清除除型等 第一节离子交换剂的结构 离子交换树脂属于高分子化合物,结构比较复杂.离子交换剂的结构可以被区分为两个部分:一部分具有高分子的结构形式,称为离子交换剂的骨架;另一部分是带有可交换离子的基团(称为活性集团),它们化合在高分子骨架上.所谓“骨架”,是因为它具有庞大的空间结构,支持着整个化合物,正象动物的骨架支持着肌体一样,从化学的观点来说,它是一种不溶于水的高分子化合物,现将常用离子交换剂的结构简单介绍如下。 一、磺化煤 磺化煤是一种半化合成的离子交换剂,它利用煤质本身的空间结构作为高分子骨架,用浓硫酸处理的方法(称磺化)引入活性基团而制成。 磺化煤的活性基团,除了有由于磺化而引入的-SO3H外,还有一些煤质本身原有的基团(如-COOH和-OH)以及因硫酸氧化作用生成的羧酸(-COOH),所以它实质上是一种混合型离子交换剂。 磺化煤的价格比较便宜,是过去水处理系统中广泛应用的交换剂,但由于它有以下的缺点,所以现在大都为合成离子交换树脂所替代:

Macromolecules:超分子添加剂引发两性离子聚合物在脲基-嘧啶酮基生物材料表面的可控原子转移自由基聚合

Macromolecules:超分子添加剂引发两性离子聚合物在脲基-嘧啶酮基生物材料表面的可控原子转移自由基聚合 DOI:10.1021/acs.macromol.0c00160 表面引发的受控自由基聚合是一种常用的生物材料改性技术,例如,防污聚合物。在此,研究者报告了通过大分子引发剂添加剂的原子转移自由基聚合,将含两性离子聚(磺基甜菜碱甲基丙烯酸酯)的超分子生物材料功能化,该添加剂嵌入在脲基-嘧啶酮基材料的硬相中。从这些表面成功地聚合了聚(磺基甜菜碱甲基丙烯酸酯),聚合后的磺基甜菜碱含量以及相应的防污性能取决于大分子引发剂的添加浓度和聚合时间。此外,大分子引发剂添加剂的聚合成功地转化为功能性电纺支架,显示出该功能化策略在超分子材料系统中的潜力。 图1.本研究中使用方法的示意图。(A)UPy改性的聚己内酯(PCLdiUPy)超分子基材料,UPy-BiB大分子引发剂添加剂和磺基甜菜碱甲基丙烯酸酯(SBMA)单体的结构和图形表示。(B)通过UPy二聚和组装形成的纤维状硬相的示意图。(C)含UPy-BiB引发剂添加剂的SBMA的SI-ATRP示意图。

图2.在表面聚合3、6和24 h之前和之后,含0、1、5和10%UPy-BiB大分子引发剂添加剂的PCLdiUPy溶液浇铸薄膜的AFM相显微照片。比例尺指示100 nm。 图3.(A)3 h反应时间样品中AFM相显微照片的放大图。比例尺指示100 nm。(B)用SBMA域覆盖的溶液流延表面的百分比,以及这些域的高度。数据表示为平均值±标准差(SD),相关的显著性差异以星号表示。

图4.(A)在表面聚合3、6和24 h之前和之后,在含0、1、5和10%UPy-BiB 的溶液浇铸薄膜上测量的水接触角。数据表示为平均值±SD。具有统计意义的差异在图S4B中进行了描述。SBMA特有的季氮和硫组分的贡献通过溶液浇铸薄膜的XPS光谱计算得出。

两性离子色谱的综述

Analytica Chimica Acta 652 (2009) 3–21 Contents lists available at ScienceDirect Analytica Chimica Acta j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a c a Review Zwitterionic ion-exchangers in ion chromatography:A review of recent developments Ekaterina P.Nesterenko a ,Pavel N.Nesterenko b ,Brett Paull a ,? a Irish Separation Science Cluster,National Centre for Sensor Research,Dublin City University,Glasnevin,Dublin 9,Ireland b ACROSS –Australian Centre for Research on Separation Science,School of Chemistry,University of Tasmania,Private Bag 75,Hobart,TAS 7001,Australia a r t i c l e i n f o Article history: Received 28March 2009 Received in revised form 2June 2009Accepted 3June 2009 Available online 9 June 2009 Keywords: Ion chromatography Zwitterionic stationary phases Inorganic and organic ions Simultaneous separations of anions and cations Binary extraction a b s t r a c t Signi?cant advances within the ?eld of ion chromatography (IC)have often had their roots in research focussed on the development of new phase technologies,aimed to both simultaneously increase ef?-ciency and vary selectivity.To increase selectivity it is necessary to develop new selective ion-exchangers,achieved by varying the nature of functional groups and the matrix of the stationary phase.In this compre-hensive review,developments over the past decade in the production and application of zwitterionic and amphoteric ion-exchangers are presented and discussed.Zwitterionic and amphoteric ion-exchangers,where positive and negative charges are located in close proximity,exhibit alternative ion selectivity to standard anion and cation ion-exchangers,such as those traditionally used in IC,and have the potential for selectivity optimisation in IC due to control of the ratio of electrostatic attraction/repulsion forces between analyte ions and ion-exchange groups.This can result in the ability to utilise relatively dilute eluents,which increases detector sensitivity,with further advantages of zwitterionic ion-exchangers including their possible application to the simultaneous separation of cationic and anionic species. ? 2009 Elsevier B.V. All rights reserved. Contents 1.Introduction (4) 2. Zwitterionic stationary phases with covalently attached zwitterionic molecules..................................................................72.1.Stationary phases with covalently bonded zwitterionic molecules .........................................................................72.2.Stationary phases for hydrophilic interaction liquid chromatography (HILIC)..............................................................92.3.Immobilised arti?cial membranes...........................................................................................................92.4.Surface con?ned ionic liquid stationary phases .............................................................................................123. Stationary phases dynamically coated with zwitterionic molecules................................................................................133.1.Hydrophobic phases dynamically coated with zwitterionic molecules .....................................................................133.2.Binary extracting agents......................................................................................................................143.3.Other types of dynamically modi?ed materials .............................................................................................154. Pellicular type zwitterionic ion-exchangers.........................................................................................................154.1.Poly(amino acid)functionalised stationary phases https://www.360docs.net/doc/752198314.html,tex-coated porous monoliths..............................................................................................................164.3.Centrally localised ion-exchangers with anion-exchange core..............................................................................174.4.Immobilised ionenes......................................................................................................................... 17 Abbreviations:API,active pharmaceutical ingredients;CHAPS,3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate;CHAPSO,3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate;CSP,chiral stationary phase;DDAPS,3-(N -dodecyl-N ,N -dimethilammonio)propane-1-sulfonate;DDMAB,N -(dodecyl-N ,N -dimethylammonio)butyrate;DDMAU,N -(dodecyl-N ,N -dimethylammonio)undecanoate;DMAES,2-(dimethylamino)ethanesulfonic acid;DMPC,dimyristoylphosphadylcholine;DPPC,l -?-dipalmitoyl-phosphatidylcholine;EDTA,ethylenediaminetetraacetic acid;HEMA,2-hydroxyethyl methacrylate;HILIC,hydrophilic interaction chromatography;IAM,immobilised arti?cial membranes;IC,ion chromatography;LiSC,liquid separation cell technology;NSH,nano-polymer silica hybrid;ODS,octadecylsilica;PBS,physiological buffer;SCIL,surface con?ned ionic liquid;SCX,strong cation-exchange;Trizma,tris(hydroxymethyl)aminomethane hydrochloride;WAX,weak anion-exchange;ZIC,zwitterionic ion chromatography;Zwittergent-3-14,N -tetradecyl-N ,N -dimethylammonium-1-propane-3-sulfonate.?Corresponding author.Tel.:+35317005060;fax:+35317005503.E-mail address:Brett.Paull@dcu.ie (B.Paull).0003-2670/$–see front matter ? 2009 Elsevier B.V. All rights reserved.doi:10.1016/j.aca.2009.06.010

水溶性高分子材料及其应用

水溶性高分子材料及其应用 !Q:】 ScienceandTechnOIOgyInnovationHerald 水溶性高分子材料及其应用 房存金 (商丘职业技术学院河南商丘476000) 研究报告 摘要:水溶性高分子化合物是当今最受重视的聚合物之一,不管在生产上还是应用上,都处在迅速发展的阶段.在世界范围内受到 越来越高的重视,因为它对能源生产,环境保护,循环经济等都有重要作用.本文简要论述了水溶性高分子聚合物的分类,功能和应用,以及 研究发展现状. 关键词:水溶性高分子发展应用 中图分类号:To.1文献标识码:A文章编号:1674-098X(20o9)07(c)一0oo8—02 1水溶性高分子的概念和分类 水溶性高分子化合物又称为水溶性树 脂或水溶性聚合物.通常所说的水溶性高 分子是一种强亲水性的高分子材料,能溶 解或溶胀于水中形成水溶液或分散体系". 在水溶性聚合物的分子结构中含有大量的 亲水基团.亲水基团通常可分为三类:① 阳离子基团,如叔胺基,季胺基等;②阴离 子基团,如羧酸基,磺酸基,磷酸基,硫酸基 等;③极性非离子基团,如羟基,醚基,胺 基,酰胺基等. 水溶性高分子按来源通常分为三大类:

(一)天然水溶性高分子.以天然动植物为原料提取而得.如淀粉类,纤维素,植物胶, 动物胶等.(二)化学改性天然聚合物.主要有改性淀粉和改性纤维素.如羧甲基淀粉, 醋酸淀粉,羟甲基纤维素,羧甲基纤维素等.(三)合成聚合物.有聚合类树脂和缩合类树脂两类,如聚丙烯酰胺(PAM),水解聚丙烯酰胺(HPAM)),聚乙烯吡咯烷酮(PVP) 等.按大分子链连接的水化基团分为[2]:非离子型和离子型.按荷电性质分为:非离子,阳离子,阴离子和两性离子高分子,其 中后三类为聚电解质.按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物. 2水溶性高分子的功能和应用 2.1功能 水溶性聚合物中的亲水基团不仅使其 具有水溶性,而且还具有化学反应功能,以及分散,絮凝,增粘,减阻,粘合,成膜,成 胶,螯合等多种物理功能.水溶性高分子材料的几种主要功能是:①水溶性,水是最廉价的溶剂,来源广,无污染.水溶性高分子 之所以溶于水,是因为在水分子与聚合物的极性侧基之间形成了氢键.水溶性高分子的溶解具有一个重要的条件,即溶质和溶剂的溶度参数必须相近,但这仅为溶解的必要条件而非充分条件,还需考虑高分子的结晶结构的影响.②分散作用,由于绝大多数水溶性高分子都含有亲水基团和一

[高分子材料] 封面文章-北京大学吕华:两性离子聚合物的研究进展

封面说明:背景中“双星体系”分别代表两性离子聚合物中的阴离子和阳离子。阴阳离子的同时存在使得两性离子聚合物不仅兼具离子型和中性聚合物的性质(如极强的亲水性、较好的生物相容性),而且表现出某些独特特征(如“反聚电解质效应”)。正是由于这些优异的性能,两性离子聚合物被广泛应用于防污涂层、蛋白质改性、药物递送及膜分离材料等多个领域。科研工作者对于两性离子聚合物的探究(如拓宽种类、构效关系、作用机理、应用前景等)正如人类对宇宙奥秘的探索一样永不止步。 两性离子聚合物是一类整体呈电中性,且在同一单体侧链上同时含有阴、阳离子基团的聚电解质。由于阴阳离子的存在使得两性离子聚合物具有极高的亲水性,被认为是聚乙二醇的一种理想替代物。迄今为止,两性离子聚合物在防污涂层、蛋白质改性、药物递送、膜分离材料等多个领域展现出良好的应用前景。 两性离子聚合物自身超强的亲水性使其能够在材料表面形成致密的水化层,从而有效阻碍蛋白质、血小板、细胞、微生物等在医用材料表面的非特异性吸附(防污涂层),防污效果可达到100%。另外,利用两性离子聚合物对酶类和蛋白质类药物(如酶、胰岛素、干扰素等)进行修饰,可有效延长药物蛋白在体内的循环时间并降低其免疫原性。并且两性离子聚合物还可以通过增强酶与底物之间的疏水作用来提高两者之间的亲和力,进而提高酶的活性。此外,两性离子聚合物的优异防污性能和生物相容性使其成为一种重要的

纳米药物载体。两性离子的修饰不仅能够增加载药体系的溶解性和稳定性,还能降低或克服“加快血液清除”(ABC) 现象的发生。另一方面,在分离膜(污水处理、海水淡化、血液透析等)中引入两性离子聚合物可有效提高膜表面的耐污染性,保持较高的水通量和选择性,延长使用寿命。 两性离子聚合物还在医疗诊断、生物传感器、石油工业、电池电极、结晶控制等众多研究领域有着广泛应用。未来,在拓宽两性离子聚合物种类和应用领域的基础上,可从以下几个方面进行考虑:(1)进一步探讨两性离子聚合物的构效关系及作用机理,如离子种类、离子间间距、亲疏水性、主链结构等对材料性能的影响;(2)简化合成工艺,降低两性离子聚合物的制备成本;(3)合成结构精确的两性离子聚合物。通过与其他不同性质材料相结合,制备性能优异且能满足多种需求的复合材料。 北京大学化学与分子工程学院吕华课题组的研究工作主要致力于氨基酸单体的可控开环聚合、聚氨基酸等生态高分子材料以及蛋白质-高分子偶联物等,在J. Am. Chem., ACS Cent. Sci., Adv. Funct. Mater., Biomaterials, ACS Appl. Mater. Interfaces, ACS Macro Lett., Chem. Commun.等期刊发表多篇文章。 上述工作发表在《功能高分子学报》2020年第1期(DOI:),并作为期刊封面文章介绍。第一作者为北京大学化学与分子工程学院博士生闫树鹏,通讯作者为北京大学化学与分子工程学院张冲博士及吕华研究员。该研究工作获得了国家自然科学基金等资助。 通讯作者简介:

相关文档
最新文档