热电材料的电学性能

热电材料的电学性能
热电材料的电学性能

1、实验目的

装订线

1. 通过实验了解热电材料的Seebeck系数和电阻率的测定方法;

2. 测量在特定温度范围内热电材料电学电学性能随温度的变化

关系;

3. 结合实验结果分析并热电材料电功率因子与温度的关系。2、实验原理

1. 塞贝克系数

塞贝克效应是材料的一个物理性能,是一种由电流引起的可逆热效应或者说是温度差引起的电效应,其示意图如下:

对于两种不同的导体串联组成的回路,在导体b的开路位置y和z之间,将会有一个电位差,称为热电动势,数值是:,当T不是很大时,为常数,定义为两种导体的相对Seebeck系

数,即

(1)

Seebeck系数常用的单是uV/K,

Seebeck系数的测量原理如下图所示,1、3和2、4分别是NiCr和NiSi热电偶臂。测量时两段温差保持10℃,S两端存在

温差时会产生热电势差Vs,相对于热电偶的其中一个电偶臂

1、3的Seebeck系数为

2. 电阻率

从原理上讲,对电阻为R,长度为L,截面积为A的样品,电导率=R(A/L)。然而,由于半导体热电材料通常电阻率较小,接触电阻相对较大,容易引入实验误差。实验中电阻率的测定采用下图所示的两探针原理以避免接触电阻的影响。电阻率测量在试样两端等温进行,当△T足够小时,才对样本施加测试电流,这是电阻

R=V R/I const,

V R为样品两端电压探针的电压降,I const为恒流源电流,取一特定值。为消除附加的Seebeck电压影响,试验通过改变电流方向进行两次电压测量,取其平均值。得R值后,有公式=R(A/L)算出其电阻率。

3、实验设备与装备

测量装置温度由AI-708P智能控制器控制。样品两端电压利用Agilent970A数据采集仪输入微机。

所用电源为恒流源。测量时抽真空以防样品氧化。

4、实验方法与步骤

1. 实验样品的制备方法:

原料称量→悬浮熔炼→(快速凝固→)机械研磨→热压成型(获

得样品)

2. 实验样品的安装

双眼中先将被测样品两端抛光,并真空镀银或覆盖银浆,形成欧姆接触,以保证样品与纯铜夹具间的良好接触。

3. 热电性能的测定

夹好样品后抽真空,然后根据两个AI-708P控制仪中事先设定的升温程序程序升温至不同的温度,在每一个选定的温度,待温度稳定后才开始测量。

4. 数据处理得到的Seebeck系数和电阻率

5、实验结果处理

本次实验采用5#组数据。

1.以Seebeck系数对温度作图:

首先以直线拟合,获得结果为y=-52.1-0.176x

但是由图上各点位置看出,并非理想结果。误差较大。

再以二次曲线拟合,如图:

可见曲线精确度高了不少,此时方程为

y=-188.87+0.54x-0.000935x2

个人认为还是二次曲线比较理想一些。

电阻率对温度作图

Image

^

公式为

此时曲线上的点主要集中于12个小区域,形成了12个点群。个人认为这张图只需要12各点即可以较好的表现出来。而且基于温度对称性原则降温过程可以相对省略,不予考虑。。

6、思考题

1 热电材料应用的主要方面有:热电发电和热电制冷。对遥远的深空探测器,采用放射性同位素作为热源的热电发电器(RTG),已应用于卫星、太空飞船中,热电发电在工业余热、废热和低品味热温差

发电方面也有很大的潜在应用。热电制冷已用于很多领域。除冰箱、空调、饮水机等家用电器外,热电制冷更重要的应用是信息技术领域,如红外探测器、激光器、计算机芯片等。

2 产生Seebeck效应的主要原因是热端的载流子往冷端扩散的结果。例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有负电荷,冷端有正电荷),同时在半导体内部出现电场;当扩散作用与电场的漂移作用相互抵消时,即达到稳定状态,在半导体的两端就出现了由于温度梯度所引起的电动势——温差电动势。自然,p型半导体的温差电动势的方向是从低温端指向高温端(Seebeck系数为正),相反,n型半导体的温差电动势的方向是高温端指向低温端(Seebeck系数为负),因此利用温差电动势的方向即可判断半导体的导电类型。

3误差主要来源接触电阻,电流大小分别引起的误差与附加的seebeck电压,虽取平均值亦不能完全消除。系统固有误差,等等。

材料的热电性能

材料的热电性能 热电材料是利用固体内部载流子运动实现热能和电能直接转换的功能材料。它的产生于材料的热电性能密不可分,材料的热电性能可以总结为塞贝克效应,帕尔贴效应,汤姆孙效应。 塞贝克效应 热电现象最早在1823年由德国人Seebeck发现。当两种不 同导体构成闭合回路时,如果两个节点处电温度不同,则在两个 节点之间将会产生电动势,且在回路中有电流通过,该现象被叫 图 1 塞贝克效应示意图 做Seebeck效应,此回路称为热电回路,回路中出现的电流称为热电流,回路中出现的电动势称为塞贝克电动势。塞贝克系数可表示为: 式中,V表示电动势;T表示温度,S的大小和符号取决于两种材料和两个结点的温度。当载流子是电子时,冷端为负,S是负值;如果空穴是主要载流子类型,那么热端是负,S是正值。帕尔贴效应 1834年,法国钟表匠Pletier发现了 Seebeck效应的逆效应,即电流通过两个不同导体形成的接点时接点处会发生放热或吸热现象,称为帕尔贴效应。帕尔贴系数可表示为: P表示单位时间接头处所吸收的帕尔贴热; I表示外加电源所提供的电流强度。 汤姆孙效应 当电流通过具有一定温度梯度的导体时,会有一横向热流流入或流出导体,其方向视电流方向和温度梯度的方向而定。 在实际应用中,以无量纲的ZT值来衡量材料的热电性能: 式中,σ为电导率;k为热导率;S是塞贝克系数;T为温度。 σS2又被称作功率因子,用于表征热电材料的电学性能。从上式可以得出,提高热电材料的能量转换效率可以通过增大其功率因子或降低其热导率来实现,但这3个参数并非独立的,它们

取决于材料的电子结构和载流子的散射情况。为了提高塞贝克系数,材料中应该只有单一类型的载流子,n型和p型载流子同时存在会导致两种载流子都向冷端移动,从而降低塞贝克电压。低的载流子浓度会增大塞贝克系数,塞贝克系数公式如下: n为载流子浓度,m为载流子有效质量。 大的载流子有效质量会提高塞贝克系数,但是会降低电导率。m和态密度有关,载流子的有效质量会随着费米能及附近的态密度增加而增加。然而,载流子的有效质量越大,在同样作用力下,载流子的漂移速率就越慢,从而使迁移率减小,电导率降低。功率因子降低。因此需要寻求一合适载流子浓度n来提高功率因子。 热电材料 金属及其合金的塞贝克系数较小且热导率较高,因此相应的ZT值不高。前苏联科学家Loffe 在20世纪50年代提出了带隙半导体热电理论,同时发现了一系列半导体材料具有较大的塞贝克系数。如Bi-Te,Pb-Te,Si-Ge等合金类经典热电材料,它们的最佳工作区间分别是300~500K,500~900K,900~1200K。通过对以上材料的研究,热电现象的微观机理逐渐被解释,即高温端的高能电子向低温端扩散,使低温端电子堆积带负电,高温端逐渐缺少电子带正电,在高温端形成较高的电势,在物体内建立由高温端指向低温端的电场。当电子热扩散力和电场力相等时,两端间形成一稳定的温差电位,因两种材料不同,在各种材料中建立的电场以及热扩散力不同,因此产生的电势差不同,电位差不会完全抵消,因此在闭合回路中产生电动势。 热电材料的主要应用 利用热电效应主要可以制作温差发电机和热电制冷。 温差发电原理 将P型半导体和N型半导体在热端连接,则在冷端可得到一个电压,一个PN结产生的电动势有限,将很多个这样的PN结串联起来就可得到足够的电压,成为一个温差发电机,由于温差发电的效率很低,一般不超过4%,但是温差发电可以 图 2温差发电机示意图

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

纳米材料表面效应

纳米材料的表面效应 材料0701 李愿 学号:1002070101 参考文献: 1、卢柯、卢磊金属纳米材料力学性能的研究进展 金属学报 2000年8月第36卷第8期:785—789 摘要 金属纳米按体材料具有独特的力学性能如高强度、超高延展性等。近年来得到广泛深入的研究。在对其新进展进行简要评述的基础上,讨论了它的强度、塑性、弹性模量、应变强化、超塑性、蠕变及变形机理等相关问题。 2、吴锦雷纳米材料的电学、光学和光电性能及应用前景 真空电子学术 2002年第4期:23—27 摘要: 简要介绍了纳米材料的电学性能以及单电子器件的基本原理和应用;纳米材料的光学性能和光电性能,高的光吸收系数和光致荧光现象可使其应用于敏感元件,由于其光电特性具有超快响应速度,可望在超快光电子器件中得到应用。 3、齐卫宏、汪明朴纳米金属微粒表征量的基本关系 材料导报 2002年9月第16卷第9期:76—77 摘要: 在假定纳米微粒近似成球形的前提下,推导出了粒径、微粒原子数、表面原子百分数及比表面积之间的相互关系式,这些关系式对实验将会有一些指导作用。 4、梁海弋、倪向贵、王秀喜表面效应对纳米铜杆拉伸性能影响的原子模拟 金属学报 2001年8月第37卷第8期 833—836 摘要: 采用EAM势对纳米铜杆的拉伸力学性能进行零温分子动力学模拟。研究表面效应对原子能量、截面应力分布的影响模拟结果表明,表面原子弛豫降低了纳米杆初始阶段的拉伸弹性模量。表面效应明显影响截面应力的发展与分布。 5、黄丹、陶伟明、郭乙木分子动力学模拟纳米镍单晶的表面效应 固体力学学报 2005年6月第26卷第2期:241—244 摘要: 对单晶镍纳米丝、纳米薄膜零温准静态拉伸破坏过程进行了分子动力学模拟。模拟表明表面效应对单晶纳米材料的原子运动及整体力学行为有显著影响。自由表面增加纳米材料的塑

热电材料(全面的)

热电材料 thermoelectric material 将不同材料的导体连接起来,并通入电流,在不同导体的接触点——结点,将会吸收(或放出)热量.1834年,法国物理学家佩尔捷(J.C.A.Peltier)发现了上述热电效应.1838年,俄国物理学家楞次(L.Lenz)又做出了更具显示度的实验:用金属铋线和锑线构成结点,当电流沿某一方向流过结点时,结点上的水就会凝固成冰;如果反转电流方向,刚刚在结点上凝成的冰又会立即熔化成水. 热电效应本身是可逆的.如果把楞次实验中的直流电源换成灯泡,当我们向结点供给热量,灯泡便会亮起来.尽管当时的科学界对佩尔捷和楞次的发现十分重视,但发现并没有很快转化为应用.这是因为,金属的热电转换效率通常很低.直到20世纪50年代,一些具有优良热电转换性能的半导体材料被发现,热电技术(热电制冷和热电发电)的研究才成为一个热门课题. 目前,在室温附近使用的半导体制冷材料以碲化铋(Bi2Te3)合金为基础.通过掺杂制成P 型和N型半导体.如前所述,将一个P型柱和一个N型柱用金属板连接起来,便构成了半导体制冷器的一个基本单元,如果在结点处的电流方向是从N型柱流向P型柱,则结点将成为制冷单元的“冷头”(温度为Tc),而与直流电源连接的两个头将是制冷单元的“热端”(温度为Th). N型半导体的费米能级EF位于禁带的上部,P型的则位于禁带的下部.当二者连接在一起时,它们的费米能级趋于“持平”.于是,当电流从N型流向P型时(也就是空穴从N到P;电子从P到N),载流子的能量便会升高.因此,结点作为冷头就会从Tc端吸热,产生制冷效果. 佩尔捷系数,其中是单位时间内在结点处吸收的热量,I是电流强度,Π的物理意义是,单位电荷在越过结点时的能量差.在热电材料研究中,更容易测量的一个相关参数是泽贝克(Seebeck)系数α,,其中T是温度.显然,α描述单位电荷在越过结点时的熵差. 对于制冷应用来说,初看起来,电流越大越好,佩尔捷系数(或泽贝克系数)越大越好.不幸的是,实际非本征半导体的性质决定了二者不可兼得:电流大要求电导率σ高,而σ和α都是载流子浓度的函数.随着载流子浓度的增加,σ呈上升趋势,而α则下跌,结果ασ只可能在一个特定的载流子浓度下达到最大(注:由热激活产生的电子-空穴对本征载流子,对提高热电效益不起作用). 半导体制冷单元的P型柱和N型柱,都跨接在Tc和Th之间.这就要求它们具有大的热阻.否则,将会加大Tc和Th间的漏热熵增,从而抵消从Tc端吸热同时向Th端放热的制冷效果.最终决定热电材料性能优劣的是组合参数,其中κ是材料的热导率.参数Z和温度T的乘积ZT无量纲,它在评价材料时更常用.目前,性能最佳的热电材料,其ZT值大约是1.0.为要使热电设备与传统的制冷或发电设备竞争,ZT值应该大于2. Glen Slack把上述要求归纳为“电子-晶体和声子-玻璃”.也就是说,好的热电材料应该具有晶体那样的高电导和玻璃那样的低热导.在长程有序的晶体中,电子以布洛赫波的方式运动.刚性离子实点阵不会使传导电子的运动发生偏转.电阻的产生来源于电子同杂质、晶格缺陷以及热声子的碰撞.因此,在完善的晶体中σ可以很大. 半导体中的热导包含两方面的贡献:其一由载流子(假定是电子)的定向运动引起的(κe);其二是由于声子平衡分布集团的定向运动(κp).根据维德曼-弗兰兹定律,κe∝σ.人们不可能在要求大σ的同时,还要求小的κ e.减小热导的潜力在于减小κp,它与晶格的有序程度密切相关:在长程有序的晶体中,热阻只能来源于三声子倒逆(umklapp)过程和缺陷、

电学性能测试设备的制作方法

本技术新型公开了一种电学性能测试设备,包括加工装置、测试装置和分析装置,加工装置、测试装置和分析装置安装在基座上面并呈直线排布,加工装置在右侧,测试装置在中间,分析装置在左侧,传送带安装在加工装置与测试装置中间,线缆安装在电气设备连接处,支撑架安装在基座底部边缘;本电学性能测试设备,在使用时只需将所检测材料在加工装置加工成检测装置所需状态,通过传送带运输到检测装置,经检测后将数据传输到分析电脑中即可,本设备安装五种常用的检测装置,能够同时检测多种电学性能,并将数据统一传输到分析电脑,做到全方位系统的测试材料的电学性能。 技术要求

1.一种电学性能测试设备,包括加工装置(1)、测试装置(3)和分析装置(5),其特征在于:所述加工装置(1)、测试装置(3)和分析装置(5)安装在基座(6)上面并呈直线排布,加工装置(1)在右侧,测试装置(3)在中间,分析装置(5)在左侧,传送带(2)安装在加工装置(1)与测试装置(3)中间,线缆(4)安装在电气设备连接处,支撑架(7)安装在基座(6)底部边缘;所述加工装置(1)包括放料口(11)和加工台(12),放料口(11)放置在加工台(12)顶部中间,加工台(12)安装在基座(6)右侧,测试装置(3)包括介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35)、检测架(36)、排污口(37)和废料盒(38),介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35)安装在检测架(36)上面并且呈线性排布,从右到左以依次为介电强度检测装置(31)、介电常数检测装置(32)、介电损耗检测装置(33)、体积电阻系数和表面电阻系数检测装置(34)、耐电弧性检测装置(35),检测架(36)安装在基座(6)中部,排污口(37)安装在检测架(36)右侧下方,废料盒(38)放置在基座(6)之上并且在排污口(37)的下方,分析装置(5)包括分析电脑(51)和分析台(52),分析电脑(51)放置在分析台(52)上面,分析台(52)安装在基座(6)左侧。 2.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述电气设备均用线缆(4)连接。 3.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述检测装置均为标准设备。 4.根据权利要求1所述的一种电学性能测试设备,其特征在于:所述支撑架(7)共6个并均匀分布在基座(6)下方边缘。 技术说明书 一种电学性能测试设备 技术领域

第三章 纳米材料的特性

(一)纳米材料的结构与形貌 ZnO nanotube (一)纳米材料的结构与形貌 1D ZnO nanostructures 热学性能电学性能磁学性能光学性能

开 热学性能 开始烧结温度下降 开始烧结温度下降 TiO2微粒的烧结与 尺寸关系 纳米颗粒的晶化温度降低

电阻特性介电特性压电效应 电阻特性 纳米金属与合金的电阻 Gleiter等对纳米金属Cu,Pd,Fe块体的电阻与温度关系,电阻温度系数与颗粒尺寸的关系进行与常规材料相比,Pd纳米相固体z 随颗粒尺寸减小,电阻温度系Pd纳米固相的电阻温度系 数与尺寸的关系 例如,纳米银细粒径20nm 18nm 11nm 纳米金属与合金的电阻 电阻特性

电阻特性介电特性是材料的基本物性? 介电常数:? 最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点常规材料的极化都与结构的有序相联系,而纳米材料在结构上与常规粗晶材料存在很大的差别.它的介电行为(介电常数、介电损耗)有自己的特点。介电特性 减小明显增大。在低频范围内远高于体材料。 介电特性 目前,对于不同粒径的纳米非晶氮化硅、纳米钛矿、金红石和纳米(个损耗峰.损耗峰的峰位随粒径增大移向高频。 7nm 27nm 84nm 258nm 介电特性 压电效应

压电效应 纳米压电电子学 (Nanopiezotronics) 全新研究领域和学科, 有机地把压电效应和 半导体效应在纳米尺 度结合起来 高磁化率超顺磁性 :当铁磁质的磁化达到饱和之后,如果将外 磁场去掉,由于介质中的掺杂内应力阻碍磁畴恢复到原来的 纳米微粒尺寸高于超顺磁 临界尺寸时通常呈现高的 矫顽力 右图为用惰性气体蒸发冷 凝方法制备的Fe纳米微粒

热电材料研究的进展

热电材料研究进展 热电材料研究进展 颜艳明1,应鹏展1,2,张晓军1,崔鑫3 (1中国矿业大学材料科学与工程学院,江苏徐州,221116 2中国矿业大学应用技术学院,江苏徐州,221008 3河南永煤集团城郊煤矿,河南永城,476600,) 摘要:本文介绍了热电材料的种类及各种热电材料的ZT值,提高热电材料热电性能的方法及热电材料在温差发电和制冷方面的应用,并对其发展前景进行了展望。 关键词:热电材料;热导率;载流子 Progress of thermoelectric materials Yanyanming1,Yingpengzhan1,2,zhangxiaojun1,cuixin3 (1:Shool of Materials, CUMT,Xuzhou , Jiangsu, 221116 2: School of applied Technology,CUMT,xuzhou,Jiangsu,221116 3: Yong suburban coal mine in Henan Coal Group,yongcheng,Henan,476600)

Abstract: This paper is described the types of thermoelectric materials and every thermoelectric materials’ZT value,the way to improve the thermoelectric materials’performance of thermal power and the application of thermoelectric materials’on thermal power generation and refrigeration, also give its future development prospects. Key words: Thermoelectric materials; Thermal conductivity; Carrier 1、引言 在以石油价格暴涨为标志的“能源危机”之后,世界上又相继出现以臭氧层破坏和温室气体效应为首的“地球危机”和“全球变暖危机”。各国科学家都在致力于寻求高效、无污染的新的能量转化利用方式, 以达到合理有效利用工农业余热及废热、汽车废气、地热、太阳能以及海洋温差等能量的目的。于是,从上个世纪九十年代以来, 能源转换材料(热电材料)的研究成为材料科学的一个研究热点。尤其是近几年, 国际上关于热电材料的研究更是非常火热。目前,热电材料的研究主要集中在三个领域:室温以下的低温领域、从室温到700K的中温领域和700K以上的高温领域。 热电材料(又称温差电材料)是利用固体内部载流子和声子的输运及其相互作用来实现将热能和电能之间相互转换的半导体功能材料,其具有无机械可动部分、运行安静、小型轻便及对环境无污染等优点,在温差发电和制冷领域具有重要的应用价值和广泛的应用前景。

纳米材料的力学和电学性能

纳米材料地力学和电学性能及其应用 摘要:主要介绍了纳米材料地力学性能(包括超硬、高强、高韧、超塑性以及高性能陶瓷)和电学性能(包括压敏材料、量子器材、非线性电阻等),以及这些性能地应用. 关键词:纳米材料;力学性能;电学性能;应用领域. 随着人类社会地发展和进步,现代科学技术探索地主要领域有:航空航天、火箭、卫星;热核反应发电站;深海探索;高温燃气轮机;高压贮罐以及生物环境仿生学等.在大多数情况下,其工作条件非常复杂和恶劣.如:超高压、超高温、超真空、强辐射、强腐蚀等,这些恶劣地条件对我们地材料提出了更高地要求.而传统地金属、非金属等材料已经远远不能满足这些极其苛刻地要求了,这就需要我们发展新型地高性能材料.这时,纳米材料以其卓越地性能进入了人们地视野,纳米材料在力学和电学方面地性能满足了多领域地需求.文档收集自网络,仅用于个人学习 普通多晶材料地强度(或硬度).随晶粒尺寸地变化通常服从一关系 Σ=σ+kd-1/2 其中,为σ一强度常数, 为一正常数.即随晶粒细化材料地强度(或硬度)按-1/2关系线性增大.等人利用分子动力学计算模拟,发现在0及,纳米(晶粒尺寸在一范围)屈服强度和流变强度均表现出反常一关系,即< .表明“ 理想” 纳米材料(无污染、全致密、完全驰豫态、细小均匀晶粒) 地性能可能与常规多晶材料完全不同.文档收集自网络,仅用于个人学习 材料超塑变形基本上是晶界在高温下滑移造成地.根据晶界滑移地理论模型, 如晶界扩散蠕变模型, 其形变速率ε可表述为文档收集自网络,仅用于个人学习 ε=BωσξDgb/d3KT 其中σ为拉伸应力,ω为原子体积, 为平均晶粒尺寸, 为常数, Dgb为晶界扩散率, ξ为晶界厚度, 为常数.文档收集自网络,仅用于个人学习 介电特性是材料地重要性能之一, 当材料处于交变电场下, 材料内部会发生极化, 这种极化过程对交变电场有一个滞后响应时间, 即弛豫时间.弛豫时间长, 则会产生较大地介电损耗.纳米材料地微粒尺寸对介电常数和介电损耗有很大影响, 介电常数与交变电场地频率也有密切关系.例如纳米在频率不太高地电场作用下,介电常数是随粒径增大而增大,达到最大值后下降,出现介电常数最大值时地粒径为.一般讲, 纳米材料比块体材料地介电常数要大, 介电常数大地材料可以应用于制造大容量电容器, 或者说在相同电容量下可减小体积, 这对电子设备地小型化来讲很有用. 文档收集自网络,仅用于个人学习 一维纳米材料有望成为纳米装置中地连接线和功能单元,如用做扫描隧道显微镜()地针尖、光导纤维、超大规模集成电路() 中地连线、微型钻头等.文档收集自网络,仅用于个人学习一维纳米材料在光电转换效应方面有很多特有地性能,当金属纳米微粒埋藏于半导体介质中,纳米微粒要向周围介质输运电子,在微粒表面形成电荷积累,于是界面地等效位垒高度降低,当电子受到光地激发,电子容易逸出薄膜表面而发射到真空中去.文档收集自网络,仅用于个人学习 纳米材料在微电子学上地应用:连接超高密度集成线路元件地纳米导线,日本理化研究所科学家青野正和等使用有机导电高分子材料研制出线宽仅为纳米地极微细导线, 大大突破了现在半导体加工技术地极限线宽; 文档收集自网络,仅用于个人学习 制备金属鲍缘体多层膜地新方法,中国科技大学通过紫外光照射地方法将有机混合溶液中地无机盐还原,合成出被有机配位体所包裹地稳定地纳米颗粒; 然后利用电泳法将这些有机配位体包裹地纳米粒子沉淀到涂碳显微栅格上; 文档收集自网络,仅用于个人学习纳米陶瓷基板,低温共烧多层基板(),可采用一等电阻率低地金属作多层布线导体材料, 可使布线更加细微化,提高布线密度和组装密度;文档收集自网络,仅用于个人学习

热电材料应用

热电材料 关键字:热电材料分类探究与展望 热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。 较好的热电材料必须具有较高的Seebeck系数,从而保证有较明显的热电效应,同时应有低的热导率,使能量能保持在接头附近。另外还要求热阻率较小,使产生的焦耳热量小。目前限制热电材料得以大规模应用的问题是其热电转换效率太低。热电材料的热电转换效率可用无量纲热电优值—ZT值来表征,ZT= S2Tσ/λ, ZT越大, 热电材料的性能越好,这里的T为绝对温度,Z=S2σ/λ,式中S为材料的热电系数,即材料的Seebeck系数,σ为材料的电导率,S2σ 又称为材料的功率因子,它决定了材料的电学性能。由Z的表达式可以看出,要提高材料的热电转换效率,应选用同时具有较大功率因子和尽可能低热导率的热电材料。影响热电材料的优值Z的3个参数Seebeck系数、热导率、电导率都是温度的函数。同时优值Z又敏感地依赖于材料种类、组分、掺杂水平和结构。因此每种热电材料都有各自的适宜工作温度范围。 1半导体金属合金型热电材料 金属材料的热电效应非常小,除在测温方面的应用外,其他没有实际的应用价值。直到20世纪50年代,人们发现小带隙(small band gap)掺杂半导体比金属大很多热电效应,研制温差电源和热电制冷器已具有现实意义。这类材料以Ⅲ,Ⅳ,Ⅴ族及稀土元素为主。目前,研究较为成熟并且已经应用于热电设备中的 材料主要是金属化合物及其固溶体合金如Bi 2Te 3 /Sb 2 Te 3 、PbTe、SiGe、CrSi等, 这些材料都可以通过掺杂分别制成P型和n型材料。有报道称在实验室得到的最 高ZT值达到2.2 (AgPb m SbTe 2+m , 800K) 到2.4(Bi 2 Te 3 /Sb 2 Te 3 超晶格, 300K)。通 过调整成分、掺杂和改进制备方法可以进一步提高这些材料的ZT,通过化学气相 沉积( CVD )过程得到综合两维Sb 2Te 3 /Bi 2 Te 3 超晶格薄膜的ZT高达2.5,ZT的 研究还在继续进行。但是这些热电材料存在制备条件要求较高,需在一定的气体保护下进行,不适于在高温下工作以及含有对人体有害的重金属等缺点[1]。 2方钴矿(Skutterudite)热电材料 Skutterudide是CoSb 3的矿物名称,名称为方钴矿,是一类通式为AB 3 的化 合物(其中A是金属元素,如Ir、Co、Rh、Fe等;B是V族元素,如As、Sb、P 等)。二元Skutterudite化合物是窄带隙半导体,其带隙仅为几百毫电子伏,同时此类化合物具有较高的载流子迁移率和中等大小的反Seebeek系数,但热导率比传统的热电材料要高.此类化合物的显著特点是,外来小原子可以插入晶体结构的孔隙,在平衡位置附近振动,从而可以有效地散射热声子,大大降低晶格 热导率。最初的研究集中在等结的IrSb 3, RhSb 3 和CoSb 3 等二元合金,其中CoSb 3 的热性能相比较而言最好。尽管二元合金有良好的电性能,但其热电数据受到热 导率的限制。因此对多元合金的研究得到了重视,实验得到P型CeFe 3.5Co 0.5 Sb 12 方钴矿化合物ZT值在620K时达到1.4。目前进一步提高Skutterudite材料热电性能的途径有两条:(l)通过各种拾杂调节电学性能,(2)引入额外的声子散射降低晶格热导率[2]。

纳米材料物理基础

讲课内容——纳米半导体光催化技术 主要内容 一、简介 ?纳米 纳米——10-9米,由于颗粒尺寸的微细化,使得纳 米材料具有块状材料所不具备的独特性质,如比表面 积大大增大,吸附能力大大增强。 ?半导体 半导体——常温下导电性能介于导体与绝缘体之间 的材料,具有热敏、光敏等特性。 半导体的能带结构 半导体存在一系列的满带,最下面的满带成为价带(valence band,VB);存在一系列的空带,最上面的空带称为导带(conduction band,CB);价带和导带之间为禁带。 当用能量等于或大于禁带宽度(Eg)的光照射时,半导体价带上的电子可被激发跃迁到导带,同时在价带上产生相应的空穴,这样就在半导体内部生成电子(e-)-空穴(h+)对。 为了形象地说明电子空穴对,利用生活中常见的石榴来比喻:石榴籽:光致电子 石榴籽留下的空洞:光致空穴 光致电子:存在于导带中。光致空穴:存在

于价带中。 二者有复合的趋势,即在持续的光照射下,光子不断的轰击价带,导致光致电子和光致空穴不断产生,该分离过程以纳秒计算,然后,光致电子重新回到光致空穴中,二者复合。 ?光催化 光催化于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛单晶进行了紫外灯照射,结果发现水被分解成了氧和氢。这一效果作为“本多·藤岛效果”(Honda-Fujishima Effect)而闻名于世,该名称组合了藤岛教授和当时他的指导教师----东京大学校长本多健一的名字。 1976 年,John.H.Carey报道了TiO2光催化氧化法用于污水中PCB 化合物脱氯去毒的成功结果后,自从那时起,针对光催化技术,学术界围绕太阳能利用、光催化降解有机物等展开了多方面的研究。 1985年,Mutsunaga等发现在金属卤灯发出的近紫外光照射下,TiO2 - Pt电极具用杀菌效果,这一发现开创了用光催化方法杀菌消毒的先河。因其具备良好的耐候性、耐化学腐蚀性、抗紫外线能力强、透明性优异等特点,被广泛应用于汽车、感光材料、光催化剂、化妆品、食品包装材料、陶瓷添加剂、气体传感器及电子材料等。 我国的光催化研究 起步于上世纪90年代,现在正在蓬勃发展; 国家环境光催化工程技术研究中心,位于福州大学内,付贤智院士领衔,是我国目前光催化领域中规模最大、科研实验条件最好、在国内外光催化领域具有重要影响的研究机构。 中科院化学所光化学重点实验室,赵进才院士领衔,致力于可见光下有毒有机污染物催化降解,取得重要成果,在国内外具有广泛影响。 南京大学长江学者特聘教授邹志刚教授,973计划“光催化材料及其应用的基础研究”的

纳米材料特性

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。 原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。

P型SnTe基热电材料的电声输运及性能优化

P型SnTe基热电材料的电声输运及性能优化IV-VI族化合物是使用最早、研究最多的热电材料之一。其中,SnTe基热电材料在近年来以其具有与PbTe相似的能带结构、但无毒且环境友好而备受关注。本征SnTe因具有高浓度的本征Sn空位,一般呈现重掺杂P型半导体特性。 但过高的载流子浓度极大地抑制了其本征Seebeck系数,过大的轻重价带能量差距也增大了通过能带简并等手段提升Seebeck系数的难度。此外,过高的晶格热导率和过小的带隙,也都极大抑制了 SnTe的本征热电性能。本文以SnTe基热电材料为研究对象,利用高温熔炼结合热压烧结工艺制备试样,通过共振掺杂、载流子浓度优化、能带简并等手段提升材料的电学性质,通过引入点缺陷、第二相等多重散射机制降低材料的晶格热导率,并通过物相分析、微结构表征、物理建模等方式,进一步分析材料高性能的原因。 此外,本文还系统研究了新型层状热电材料SnTe·Sb2Te3多晶及区熔铸锭的热电输运特性。获得的主要结论如下:1)通过双带模型的构建,计算了 SnTe的理论Pisarenko曲线;通过第一性原理计算,证实了 In在SnTe中掺杂可以引入共振能级,增加费米能级附近态密度,有效提升其室温Seebeck系数。分别以 Sn0.995In0.005Te和(SnTe)2.88(In2Te3)0.04为基体,进行了载流子浓度的再优化。 其中,Sn0.995In0.o05Te中加入Sb有效抑制了基体过高的载流子浓度,且迁移率也得到一定的提升;Seebeck系数也获得进一步提高,电学性能整体优化。最终,成分为Sno.915In0.oosSbo.08Te的材料在825 K时获得最大zT值约1.1,说明In-Sb双掺杂可以有效提升SnTe基材料的热电性能。此外,利用SnTe较强的热塑性,成功制备SnTe热变形试样。

提高热电材料性能的途径-2019年精选文档

提高热电材料性能的途径 文献标识码:A 0 引言 热电材料又称温差电材料,具有交叉耦合的热电输送性质。 利用此性质,可以在固体状态下实现热能与电能的直接相互转化,能够用于热电发电和热电制冷。 为了满足发展的需求,人类对地球上的自然资源进行长期掠夺式的开发和利用,致使部分自然资源接近枯竭,这使得我们将在不久的未来陷入严重的能源危机。此外,矿物能源在燃烧过程中释放的大量碳化物、氮化物、硫化物等有害气体,造成了环境的污染。因此,发展可再生能源和对环境友好的能源转换技术已成为人们日益关注的焦点。其中热电转换技术由于其对环境友好的特点越来越引起材料科学和能源科学界科学家们的重视。 热电转换技术是基于热电材料的效应来实现热能与电能在固体状态下直接相互转换的一项技术,它可以将热能(包括地热、风能、太阳能和工业余热等)转换成电能。 N-型和P-型半导体之间通过电气连接可组成发电器件和制 冷装置。利用半导体热电材料制得的发电器和制冷器具有结构简单、装置体积小、无噪音、无污染、无排弃物、可靠性高、无机械传送部件、制造及运行成本低、使用寿命长等对环境友好的优点,在工业废热、可替代能源、国防科技、信息技术和航空航天

等领域有很大的应用潜力。目前,在高性能接收器和传感器、人造卫星和太空飞船上等领域已成功运用了热电材料。 1 热电材料性能 1.1Seebeck 系数 对于半导体热电材料,假设载流子的分布服从经典统计理论,并采用单带模型(驰豫时间近似,态密度具有常规正态分布)则其Seebeck 系数可表示为: a=± kBe S - Y +52 (1) 其中,正负号表示传导类型(空穴或电子);kB 为波尔兹曼常数;S 为简约费米能级,对于大部分热电材料,其值在 -2 Symbol?A5之间;Y为散射因子(包括光学波散射、声学 波散射、合金散射、电离杂质散射、载流子散射等)。从式(1) 中可知,Seebeck 系数主要和材料的晶体结构、化学组分及能带结构密切相关。通常上式可以简化成如下公式: a = Y -Inn 2) 式中n 表示载流子浓度。由此可见,假如材料的化学组分已确定,则其Seebeck 系数随散射因子增大而增大,随载流子浓度升高而减小。 1.2 电导率 半导体材料的电导率可表示为: (r=nea (3)

热电材料作为环境友好的能源转化材料

热电材料作为环境友好的能源转化材料,已显示出了引人瞩目的应用前景,但是热电器件走向实际应用的最大问题在于它的转换效率。从热力学的基本定理来说,热电优值没有上限。即使是应用固体理论模型和较为实际的数据计算得到的优值上限为ZT=4,仍远远大于目前己获得的最大ZT值。通过寻求新类型或新结构的热电材料,优化制备工艺等,将有可能使材料优值得到明显提高。 从目前的研究现状来看,未来热电材料的研究方向趋于以下几个方面: 2.纳米复合热电材料的研究 1.低维热电材料的研究 降低材料维度,使用二维量子阱,一维量子线超晶格可以有效提高费米能级附近的态密度,增加载流子有效质量,提高Seebeek系数,同时材料中大量晶界对声子的散射使热导率大幅降低,两方面的共同作用使材料ZT值大幅提高。 即在三维块体材料中引入或原位生成纳米结构,或者将低维材料体系聚合成微纳复合材料,纳米结构的引入一方面可以大幅降低热导率,另一方面,可以通过量子限制效应大幅提高费米能级附近的电子态密度,提高Seebeck系数。 电子跃迁示意图 导电聚合物的热电优值(ZT)优化只是处于起步阶段,还需要关于形态,化学和电子结构对三个主要的热电参数的影响进行了系统的了解。因为热电特性都彼此相关,以及导电聚合物众所周知的形态复杂性及其物理性质的各向异性,这一问题变得困难起来。就在过去几十年的导体和半导体聚合物研究的基础上,为聚合物基有机热电材料的发展奠定了坚实的基础。这一新兴研究领域的一个主要挑战是理解在导电聚合物各种塞贝克效应的来源以获得高的能量因子。此外,材料的热电性能表征也应得到发展。今天,从废物和太阳热能中大面积地进行热电能量收

(整理)南昌大学材料性能学重点 材料电学性能.

第二章材料电学性能 内容概要:本章介绍金属的导电机理,以及影响金属导电的因素,导电率的测量方法及其它材料的电学性质。 具体内容和学时安排如下: 第一节导电性能及本质 要求学生掌握导电的三大理论:经典电子理论;电子的量子理论;能带理论。这三大理论的成功或不足点。理解自由电子、能级和能带、周期性势场、能带密度、K空间的概念。 第二节金属导电性能影响因素 理解温度、相变、应力和热处理(淬火和退火)对材料导电性能的影响。 第三节合金的导电性能 理解固溶体和化合物的导电性 第四节电阻率的测量 电阻率的测量方法有单电桥法;双电桥法;电子四探针法。重点要求掌握单电桥法。第五节电阻分析应用 根据电阻率与温度的线性关系,可来研究材料的相变,材料的组织结构变化。 第六节超导电性 掌握超导的两大性能:完全导电性和完全抗磁性。掌握超导态转变为正常态的三个条件:临界温度;临界电流;临界磁场。超导的本质-BCS理论。 第七节材料的热电性能 了解三大热电现象:第一热导效应、第二热电效应、第三热电效应。 第八节半导体导电性的敏感效应 了解半导体能带结构特点;半导体导电有本征导电和杂质导电;实现导电的条件。 第九节介电极化与介电性能 掌握电介质极化机理和介电常数的本质 第十节电介质的介电损耗 了解电介质的能量损耗。 (共12个学时) 第一节导电性能及本质

材料的电学性能是指材料的导电性能,与材料的结构、组织、成分等因素有关。 一、电阻与导电的概念 R=U/I R 不仅与材料的性质有关,还与材料的几何形状有关 。 S L R ρ= L 与材料的长度,s与材料的横截面积,ρ为电阻率,单位为 m Ω? ρ σ1 = 值越小,a 值越大。 ρ 值愈小,σ值愈大。 纯金属:e 为10-8~10-7 合金: 10-7~10-5 半导体:10-3~10 9 绝缘体:﹥10 9 导电性能最好的金属是银、铜、金,其电阻率分别为1.5×10-8Ω?m 、1.73×10-8Ω?m 、等 二、导电机理及能带理论 关于材料的导电机理有三大理论:经典电子理论;电子的量子理论;能带理论。 1 金属及半导体的导电机理 1〉经典电子理论 经典电子理论认为(以Drude 和Lorentz 为代表):在金属晶体中,离子构成晶格点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此称为“电子气”。它们的运动遵循经典气体分子的运动规律,自由电子之间以及自由电子与正离子之间仅仅是机械碰撞而已。在没有外加电场时,金属中的自由电子沿各个方向的运动几率相同,因此不产生电流。当对金属施加外电场,自由电子沿电场方向加速运动,从而产生电流。在自由电子定向运动时,要与正离子发生碰撞,使电子受阻,这就是电阻。 设电子两次碰撞之间所经历的时间为τ 2* 2n e m τσ*= m*为电子的有效质量(考虑了晶体场对电子的相互作用) τ为电子在两次碰撞之间的时间间隔,τ为时间自由程. v 为电子运动的平均速度。 在T=0K 时,电子不受到散射.p=0.σ→∞。理想晶体。 T ≠0K 时,晶体的阵热振动或经典电子理论成功计算了电导率以及电导率与热导率的关系;但经典电子理论不能解释以下几种现象:电子的长平均自由程;材料导电性能差异;金属电子比热小。 2〉量子自由电子理论 量子自由电子理论认为:金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,且为整个金属所有,可以在整个金属中自由运动。但这一理论认为:金属中每个原子的内层电子基本保持单个原子时的能量状态,而所有的价电子却按量子规律具有不同的能量状态,即具有不同的能级。 量子电子理论认为:电子具有波粒二象性。运动着的电子作为物质波,其频率与电子的运动速

纳米材料的物理化学性能

第四章纳米材料的物理化学性能 纳米微粒的物理性能 第一节热学性能 ※1.1. 纳米颗粒的熔点下降 由于颗粒小,纳米颗粒的表面能高、比表面原子多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料的纳米粒子熔化时所需要增加的内能小得多,这就使纳米微粒熔点急剧下降。 金的熔点:1064o C;2nm的金粒子的熔点为327o C。 银的熔点:960.5o C;银纳米粒子在低于100o C开始熔化。 铅的熔点:327.4o C;20nm球形铅粒子的熔点降低至39o C。 铜的熔点:1053o C;平均粒径为40nm的铜粒子,750o C。 ※1.2. 开始烧结温度下降 所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末结合成块,密度接近常规材料的最低加热温度。 纳米颗粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮灭,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。 ※1.3. NPs 晶化温度降低 非晶纳米颗粒的晶化温度低于常规粉末,且纳米颗粒开始长大温度随粒径的减小而降低。 ※熔点降低、烧结温度降低、晶化温度降低等热学性质的显著变化来源于纳米材料的表(界)面效应。 第二节电学性能 2.1 纳米金属与合金的电阻特性 1. 与常规材料相比,Pd纳米相固体的比电阻增大; 2. 比电阻随粒径的减小而逐渐增加; 3. 比电阻随温度的升高而上升 4. 随粒子尺寸的减小,电阻温度系数逐渐下降。电阻的温度变化规律与常规粗晶基本相似,差别在于温度系数强烈依赖于晶粒尺寸。 随着尺寸的不断减小,温度依赖关系发生根本性变化。当粒径为11nm时,电阻随温度的升高而下降。 5. 当颗粒小于某一临界尺寸时(电子平均自由程),电阻的温度系数可能会由正变负,即随着温度的升高,电阻反而下降(与半导体性质类似). 电子在晶体中传播由于散射使其运动受阻,而产生电阻。 ※纳米材料的电阻来源可以分为两部分: 颗粒组元(晶内):当晶粒大于电子平均自由程时主要来自晶内散射 界面组元(晶界):晶粒尺寸与电子平均自由程相当时,主要来自界面电子散射?纳米材料中大量的晶界存在,几乎使大量电子运动局限在小颗粒范围。 ?晶界原子排列越混乱,晶界厚度越大,对电子散射能力就越强。 ?界面的这种高能垒是使电阻升高的主要原因。 总之:纳米材料体系的大量界面使得界面散射对电阻的贡献非常大,当纳米材料尺寸非常小时,这种贡献对总电阻占支配地位。当粒径低于临界尺寸时,量子尺寸效应造成的能级离散性不可忽视,最后温升造成的热激发电子对电导的贡献增大,即温度系数变负。 ※金属纳米颗粒材料的电阻增大的现象主要归因于小尺寸效应。 第三节磁学性能 许多生物体内就有天然的纳米磁性粒子,如向磁性细菌,蜜蜂,螃蟹,海龟等。

相关文档
最新文档