集成功放也可出靓声:几款集成功放的制作工艺及比较

集成功放也可出靓声:几款集成功放的制作工艺及比较
集成功放也可出靓声:几款集成功放的制作工艺及比较

TDA2030集成电路功率放大器设计方案

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件字串5 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 字串3 输出功率:10 ~ 20W (额定功率); 字串9 频率响应:20Hz ~ 100kHz ( < 3dB 字串6 谐波失真:w 瑶(10W,30Hz~20kHz ); 字串9 输出阻抗:< 0.16 Q字串4 输入灵敏度:600mV (1000Hz,额定输出时) 三、设计内容 1 ?根据具体电路图计算电路参数字串8 2?选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。字串5 3 ?了解有关集成电路特点和性能资料情况 字串5 4?根据实际机壳大小设计1:1印刷板布线图字串3 5 ?制作印刷线路板

字串4 6 ?电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 字串2 导书》有关放大器测试过程字串5 7?实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 字串6 注意:将输入电位器调到最大输入的情况。 字串2 1测量输出电压放大倍数Au字串7 测试条件:直流电源电压14v,输入信号1KH z 70 mv (振幅值100mv),输出负载电阻分另为4Q 和8Q O 字串3 字串4 2.测量允许的最大输入信号(1KH z)和最大不失真输出功率 字串5 测试条件:①直流电源电压14v,负载电阻分别为4 Q和8 Q O 字串3 ②直流电源电压10v,负载电阻为8Q O

KSA50甲类功放详细制作流程

这里是事先声明: (1)我是第一次装机子而且是甲类机---别人会问:第一次就装甲,你厉害啊----不是甲我有必要装么?我以前用的国产乙类,甲乙类厂机。 (2)买了四块KSA50---烧毁了一块,另外一块电源接反烧了俩二极管以及电源输入线路上的铜箔,重新弄好,正式上机是后来的两块,板子是惠州老刘的KSA50 (3)我的目的是听音乐,不是焊机为娱乐滴人----我不折腾,可能的话一块线路调到我要的声音,如果可能的话。 (4)老鸟可以无视我的经验,以下的只对菜鸟起作用,因为我连电路图差不多都看不懂,我是个吃现成的人---老鸟可以鄙视下 (5)发帖的目的是为了别人少走弯路,以下经验所诉只针对KSA50,以前开过贴不全面问题没有表述清楚,这次汇总下,终于挂上双声道了----这说明声音接近自己调试目的了,这点很重要。目的是个人准备给滤波电容最后拍定,测试声场定位,高中音 表现很理想了已经。(个人意见) 以下是正文: (1)选择之前很困惑,到底什么线路好?论坛上放水得多,冒充大侠的不少,真理只在少部分人手里---我相信这句话,但是群总的眼睛是雪亮的—我也相信这句话。既然 卖了那么多,买了那么多,存在即是道理,所以我选择了KSA50(也是因为群里的 朋友在推荐),想装PASS但是很多人对低音有微词,所以暂不考虑, (2)备料----KSA50整个淘宝就那么几款板子,直刻原厂的还是算了吧,我自问没那水平,我要的是KSA50基本框架,有些卖家适当的改进未必不见得是坏事,适合国情。 滤波电容的选择因为之前只对ELNA有所耳闻所以找了几个库存全新的JVC定制品 (这是第一次买料),机箱找遍淘宝只能是这个小甲箱(散热面积最大),那些个动 辄几十斤散热的大侠你还是别忽悠了,除非你想让你的散热片工作在50度以下!经过推算,淘宝上卖的最多的大甲箱A1000A998之类的绝对可以对付50W甲类!但 是由于是多块拼接所以紫铜均热板是必需的!!越大越好!(当然这样搞成本很高) 以之前对于音响系统的了解,双单声道无疑是最好的,干扰最低,而且这样搞散热 也很大---事实证明我的选择是对的!变压器是定制的,基本不叫—开机一瞬间微哼,后面听不到了,初级和次级大电流线径很重要,国内的牛和外国的还是有差距,因 为做的是甲类,线径不到大电流输出不能保证,我定制的是800W36V四线线径不 过1.5mm而已,勉强达标。IR桥上面散热片是用硅胶粘的牢靠的很(记住是硅胶不是硅脂)另外又买了一小盒含银硅脂,桥装在底板或者上盖板散热效率确实比 散热片强些,当然大型的散热片除外,桥的发热比散热片低,要是劣质产品那就超 标了。第二次备料----日化滤波18000uf四只,飞利浦23000uf四只,尼康BP-S 无极一堆,思碧等等小容量电容一堆,还有负反馈各种各样(我就不说了,个人听 音取向不同选择不同)。整流桥我都是买的IR,整个淘宝适合IR的整流桥电路板就一家,我后来发现很多朋友选择的螺栓型无电路板滤波和整流其实是很方便的,用电源板局限性很大。。。线材的选择---这里有必要说下,淘宝里铜镀银特氟龙基本都是很硬的那种,多股线芯很粗铜质有待考证,而且不符合线径一定线芯越多越 好的原则。老刘的和另外两家都一样,说实话我很不喜欢,因为我的是引线连接, 硬线非常不好用,后来别家买了软的特氟龙(有点水,不是说线水,线很好铜的纯 度高很软,这个外皮是透明的不燃但是60W烙铁温度高了外皮会化的很软但是还没融掉)最终测试用的是这种,对于外接线的大管要像我这样给上标记,我用的是热 缩管,避免线接错的悲剧发生。喇叭走线是4mm的怪兽,这线也不能焊,物理直连。 开关是红波的19mm开孔自复位开关,因为有软启动,没有软启动的选择机箱自带

D类数字功率放大器

3.3 D类数字功放 D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。早先在音响领域里人们一直坚守着A类功放的阵地,认为A类功放声音最为清新透明,具有很高的保真度。但A类功放的低效率和高损耗却是它无法克服的先天顽疾。后来效率较高的B类功放得到广泛的应用,然而,虽然效率比A类功放提高很多,但实际效率仍只有50%左右,这在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,如今效率极高的D类功放,因其符合绿色革命的潮流正受着各方面的重视,并得到广泛的应用。 3.3.1 D类功放的特点与电路组成 1.D类功放的特点 (1)效率高。在理想情况下,D类功放的效率为100%(实际效率可达90%左右)。B类功放的效率为78.5%(实际效率约50%),A类功放的效率才50%或25%(按负载方式而定)。这是因为D类功放的放大元件是处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。 (2)功率大。在D类功放中,功率管的耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合,输出功率可达数百瓦。 (3)失真低。D类功放因工作在开关状态,因而功放管的线性已没有太大意义。在D 类功放中,没有B类功放的交越失真,也不存在功率管放大区的线性问题,更无需电路的负反馈来改善线性,也不需要电路工作点的调试。 (4)体积小、重量轻。D类功放的管耗很小,小功率时的功放管无需加装体积庞大的散热片,大功率时所用的散热片也要比一般功放小得多。而且一般的D类功放现在都有多种专用的IC芯片,使得整个D类功放电路的结构很紧凑,外接元器件很少,成本也不高。 2.D类功放的组成与原理 D类功放的电路组成可以分为三个部分:PWM调制器、脉冲控制的大电流开关放大器、低通滤波器。电路结构组成如图3.22所示。

数字集成电路的分类

数字集成电路的分类 数字集成电路有多种分类方法,以下是几种常用的分类方法。 1.按结构工艺分 按结构工艺分类,数字集成电路可以分为厚膜集成电路、薄膜集成电路、混合集成电路、半导体集成电路四大类。图如下所示。 世界上生产最多、使用最多的为半导体集成电路。半导体数字集成电路(以下简称数字集成电路)主要分为TTL、CMOS、ECL三大类。 ECL、TTL为双极型集成电路,构成的基本元器件为双极型半导体器件,其主要特点是速度快、负载能力强,但功耗较大、集成度较低。双极型集成电路主要有 TTL(Transistor-Transistor Logic)电路、ECL(Emitter Coupled Logic)电路和I2L(Integrated Injection Logic)电路等类型。其中TTL电路的性能价格比最佳,故应用最广泛。

ECL,即发射极耦合逻辑电路,也称电流开关型逻辑电路。它是利用运放原理通过晶体管射极耦合实现的门电路。在所有数字电路中,它工作速度最高,其平均延迟时间tpd可小至1ns。这种门电路输出阻抗低,负载能力强。它的主要缺点是抗干扰能力差,电路功耗大。 MOS电路为单极型集成电路,又称为MOS集成电路,它采用金属-氧化物半导体场效应管(Metal Oxide Semi-conductor Field Effect Transistor,缩写为MOSFET)制造,其主要特点是结构简单、制造方便、集成度高、功耗低,但速度较慢。 MOS集成电路又分为PMOS(P-channel Metal Oxide Semiconductor,P沟道金属氧化物半导体)、NMOS(N-channel Metal Oxide Semiconductor,N沟道金属氧化物半导体)和CMOS(Complement Metal Oxide Semiconductor,复合互补金属氧化物半导体)等类型。 MOS电路中应用最广泛的为CMOS电路,CMOS数字电路中,应用最广泛的为4000、4500系列,它不但适用于通用逻辑电路的设计,而且综合性能也很好,它与TTL电路一起成为数字集成电路中两大主流产品。CMOS数字集成电路电路主要分为4000(4500系列)系列、54HC/74HC系列、54HCT/74HCT系列等,实际上这三大系列之间的引脚功能、排列顺序是相同的,只是某些参数不同而已。例如,74HC4017与CD4017为功能相同、引脚排列相同的电路,前者的工作速度高,工作电源电压低。4000系列中目前最常用的是B系列,它采用了硅栅工艺和双缓冲输出结构。 Bi-CMOS是双极型CMOS(Bipolar-CMOS)电路的简称,这种门电路的特点是逻辑部分采用CMOS结构,输出级采用双极型三极管,因此兼有CMOS电路的低功耗和双极型电路输出阻抗低的优点。 (1)TTL类型 这类集成电路是以双极型晶体管(即通常所说的晶体管)为开关元件,输入级采用多发射极晶体管形式,开关放大电路也都是由晶体管构成,所以称为晶体管-晶体管-逻辑,即Transistor-Transistor-Logic,缩写为TTL。TTL电路在速度和功耗方面,都处于现代数字集成电路的中等水平。它的品种丰富、互换性强,一般均以74(民用)或54(军用)为型号前缀。 ① 74LS系列(简称LS,LSTTL等)。这是现代TTL类型的主要应用产品系列,也是逻辑集成电路的重要产品之一。其主要特点是功耗低、品种多、价格便宜。 ② 74S系列(简称S,STTL等)。这是TTL的高速型,也是目前应用较多的产品之一。其特点是速度较高,但功耗比LSTTL大得多。

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路图

制作晶体管靓声甲类功放电路 许多发烧友都乐于制作功放,但多局限于一些单片集成功放如LM1875、LM3886、LM4766、TDA7294等,用这些IC制作的功放其音质要好于市面上一些中、低档功放,但与一些高档Hi-Fi功放相比,音质仍有较大的差距。这里推荐几款容易制作的靓声甲类功放电路以供参考。其组成框图如图1所示。 该电路具有如下特点:1.采用板块积木式组合,可根据自身经济状况适当增减。2.电压放大部分与电流放大部分分开设计、布版,便于烧友采用高、低压两组电源分开供电,可选择众多特色的后级电路搭配,也便于安装固定散热片,为发烧友摩机提供方便。3.采用无大环负反馈设计,可进一步改善扬声器负反馈电动势对音质的影响。 限于篇幅,这里简介电压放大部分与电流放大部分。以下均为双声道设计,仅给出一个声道的原理图,另一声道、电源与保护电路图略。 一、电压放大部分使用厂家提供的成品板。该板双声道设计,采用双面镀金线路板制作,板上大量使用发烧器件,如五环金属膜电阻、ELNA发烧电容、音频专用高频管、低噪声恒流源专用场效应管等。原理简图如图2所示。使用孪生场效应管NPD5565输入,采用共源共基电路、有源负载及差分电路,与马兰士公司的HDAM模块电路及国内一些厂家生产的电压放大模块电路相比,本电路显得设计更趋于该电压放大板对电源适应范围较宽,±35V~±60V都可工作,建议电压放大部分供电采用并联式稳压电源,且比电流放大部分电压高出5V~10V。完善,音质也更理想。 二、电流放大部分有多种电流放大板可与上述电压放大板配套,下表列出所用功率管的部分参数供发烧友参考。 1.2SK2013/2SJ313推动3对2SK1529/J200,原理图如图3所示。 2.2SK2013/2SJ313推动3对2SC5200/2SA1943,原理图略,可参考图3,装配时只需把K1529/J200换为C5200/A1943即可。 3.2SC5171/2SA1930推动6只2SK851,原理图如图4所示,超大电流MOS场效应管2SK851具有开关速度快、导通电阻小、失真率低等特点。目前仍无场效应管与之配对,该电路采用准互补输出的形式,2SK851曾在天龙PWA-2000N功放中使用过。 4.2SC5171/2SA1930推动6只2SD1037,原理图略,可参考图4,装配时,只需把K851换为D1037即可。该电路采用准互补输出,只要设计得当,准互补输出电路同样可出靓声。比如深受好*的LM3886、LM4766内部就采用准互补输出电路。 5.采用3对三肯复合管SAP15N、SAP15P,原理图如图5所示。 6.2SK2013/2SJ313推动8对大功率场效应管或三极管(图略),方便发烧友制作100W×2纯甲类。 三、调试以上6种后级电路可根据P甲=2I02RL计算其所需甲类功率或末级静态电流,从而根据需要调试末级静态电流。如一台在8Ω负载下输出功率为80W的纯甲类机,末级静态电流为Io=2.236,则流过每管的静态电流为Io′=Io/n=2.236/3A=0.745A,即0.25Ω/5W电阻上直流压降为V=Io′?R=745×0.25≈186(Mv)。 虽然纯甲类功放声音柔和、甜美,但是它对变压器、滤波电容、功率管及散热片都有极其严格的要求。听一个月下来,电费负担重。在这种情况下,不妨把功放制作成高偏置甲乙类功放,比如20W以下为甲类输出,20W~100W为甲乙类输出。此时功放总静态电路为Io=1.118A,其实一般居室环境,20W左右的纯甲类输出,可满足大多数烧友的听音要求。 由于电压放大部分已被厂家调试好,只需装配好末级电流放大部分及相关接口。微调电压放大部分的W1使输出为0mV,再调节电流放大部分的多圈电位器W2,测量0.25Ω/5W电阻两端的直流电压,使其符合自己的要求,对图3、图4可直接测量0.25Ω/5W两端的电压,对图5应测量SAP15N④、⑤脚或SAP15P①、②脚两端的电压。 若测试一切正常,即可煲机1~2小时,重复检查各项参数,若无误,即可放音试听。若想装配纯甲类功放,可把整机先调成高偏置甲乙类功放,试听正常,再逐步加大静态电流至所需值,使该机成为纯甲类功放。 以上五种电流放大板,所配散热器尺寸均为360mm×120mm×50mm,成品板均调试成高偏置甲乙类功放(甲类20W+20W),若要装配80W+80W纯甲类功放,只需换掉散热片,把功放板装入两边外露散热器式专业功放机箱(480mm×430mm×150mm)调试好即可。 以上线路,稍作调整(如改变变压器功率及供电电压、功率管对数及静态电流)即可有多种用途使用。如:制作大功率功放(250W/4Ω);制作电子分频功放;制作高品质耳机放大器(用本电压放大板推动K214/J77或K2013/J313);用电压放大部分对一些分立元件中、低档功放进行摩机;制作顶级8声道纯后级功放(如用4块电压放大板,共用电源,每声道一对三肯2SC3858、2SA1494等)

常用大功率D类音频功放IC芯片选型说明

常用大功率D类音频功放IC芯片选型说明传统大功率功放芯片,一般都是模拟的功放芯片,象大家都熟悉的TDA2030、LM1875、TDA1521等。这些功放除了音质会好一点,其它的对于现在的D类功放来说,都是缺点。如今随着技术的进步,D类功放的音质技术早已突破,比传统功放芯片差不了多少。以HX8330为代表的D类功放,是替代这些优秀的前辈产品不二之选。 二、模拟功放的缺点: ●电源供电一般都要用正负双电源供电。 ●大部分都是插件式。 ●因本身发热严重,需要带一块沉重的铝片散热。 ●占用PCB板和机壳的空间很大。 ●外围元件多,特别是电解电容也用的多。 三、HX8330概述: HX8330是一款30W高效D类音频功率放大电路,主要应用于音响等消费类音频设备。此款电路可以驱动低至4Ω负载的立体声扬声器,功效高达90%,使得在播放音乐时不需要额外的散热器。其特点如下: ●15W功率输出(12V电压,4Ω负载,TND+N=10%); ●30W功率输出(16V电压,4Ω负载,TND+N=10%); ●效率高达90%,无需散热片; ●较大的电源电压范围8V~20V; ●免滤波功能,输出不需要电感进行滤波; ●输出管脚方便布线布局; ●良好短路保护和具备自动恢复功能的温度保护; ●良好的失真; ●增益36dB; ●差分输入; ●简单的外围设计;QQ:1207435600 ●封装形式:ESOP8。 四、应用领域: ●拉杆音箱: ●大功率喊话器: ●落地音箱: ●蓝牙音箱 ●扩音器

五、芯片对比分析: 六、 功能框图与引脚说明:

七、应用原理图: 如上图,可以很清晰的看出硬件的外围电路是极其简单的,bom成本低廉 八、HX8330优势说明: 1、外围元件少,电路简单, 2、效率高达90%,无需散热片 3、占用PCB板空间小 4、16V供电时,功率可以到达30W 九、总结: 我写这边文章的目的,并不是想要抵扉传统的模拟功放。只是想告诉各位同仁,在如今市场竞争激烈的环境下,一个成品的利润能多铮几毛钱,都是一件不容易的事。我们在选择功放的时候,如果不是做HIFI级别的音箱,音质要求不是很高的情况下。选择合适的D类功放也是一种有效降低生产成本的方法。 IPET

数字集成电路总结

数字集成电路基础学习总结

第一章数字电子技术概念 1.1 数字电子技术和模拟电子技术的区别 模拟信号:在时间上和数值上均作连续变化的电路信号。 数字信号:表示数字量的信号,一般来说数字信号是在两个稳定状态之间作阶跃式变化的信号,它有电位型和脉冲型两种表达形式:用高低不同的电位信号表示数字“1”和“0”是电位型表示法;拥有无脉冲表示数字“1”和“0”是脉冲型表示法。 数字电路包括:脉冲电路、数字逻辑电路。数字电路的特点:1)小、轻、功耗低2)抗干扰力强3)精度高 按电路组成的结构可分立元件电路 集成电路 数数字电路分类 小规模 按集成度的大小来分中规模 大规模 超大规模 双极型电路 按构成电路的半导体器件来分 单极型电路 组合逻辑电路 按电路有记忆功能来分 1.2 1.3 三极管:是一种三极(发射极E、基极B(发射结、集电结)半导体器件,他有NPN和PNP两种,可工作在截止、放大、饱和三种工作状态。 电流公式:I(E)=I(B)+I(C) 放大状态:I(C)=βI(B) 饱和状态:I(C)< βI(B) 1.4 数制,两要素基数 权 二进制,十进制,十六进制之间的转换: 二进制转换成十进制:二进制可按权相加法转化成十进制。 十进制转换成二进制:任何十进制数正数的整数部分均可用除2取余法转换成二进制数。 二进制转化成八进制:三位一组分组转换。 二进制转换成十六进制:四位一组分组转换。 八进制转换成十六进制:以二进制为桥梁进行转换。 1.5 码制 十进制数的代码表示法常用以下几种:8421BCD码、5421BCD码、余3BCD码。 8421BCD码+0011=5421BCD码 第二章逻辑代数基础及基本逻辑门电路

数字功放的设计概要

本科生毕业论文(设计) 题目: 数字功放的设计 姓名: 江丹 学院: 专业: 班级: 学号: 指导教师: 2014 年5月 25 日

目录 引言 (2) 1功放简介与发展现状 (3) 1.1 功放的种类 (3) 1.1.1 A类功率放大器 (3) 1.1.2 B类功率放大器 (3) 1.1.3 AB 类功率放大器 (3) 1.1.4 D类功率放大器 (4) 1.2数字功放的发展现状 (4) 2 数字功放的基本原理及电路组成 (5) 2.1 数字功放的工作原理 (5) 2.2 数字功放的电路组成 (6) 3 各模块电路设计 (7) 3.1 前置放大电路 (7) 3.2 三角波产生电路 (8) 3.3 比较器电路 (9) 3.4 驱动电路 (10) 3.5 功放与低通滤波电路 (11) 3.6 直流稳压电源 (13) 4 功能仿真与数据分析 (12) 4.1各电路仿真结果 (12) 4.1.1前置放大信号 (12) 4.1.2 三角波信号 (13) 4.1.3 PWM码 (13) 4.1.4 经过功放管的PWM码 (13) 4.4.5还原出的音频信号 (14) 4.2 数据计算与分析 (14) 4.2.1 电压放大倍数 (14) 4.2.2 效率 (14) 4.2.3 通频带宽度 (15) 5数字功放干扰抑制 (15) 6 D类功放的发展与技术展望 (16) 6.1 D类功放的不足 (16) 6.2 D类功放的最新发展——T类功率放大器 (16) 结论 (17) 致谢 (18) 参考文献 (18) 附录 (19)

数字功放的设计 电子信息工程专业学生 摘要:在日常生活中,我们已经感受到了电子技术给我们带来的便捷。在我们使用的各类电子设备中,数字功放正发挥着其不可替代的作用。所以设计出功能优异的数字功放已经是各大电子器件制造商的迫切任务。本文从数字功放的基本原理出发,着重介绍了它的各个电路组成部分。利用Multisim软件对所设计的电路进行功能仿真,并且达到了预期的效果。在实际电路中,针对其产生的电磁干扰提出了一些抑制方法。最后数字功放的发展趋势进行了简要描述。 关键词:PWM码门驱动电路滤波电路电磁干扰 引言 随着科学技术的不断发展,各种各样的电子产品层出不穷,例如笔记本电脑、移动通信终端、音箱等。这些事物的出现极大的丰富了我的日常生活,给我们的工作带来了很多便捷。然而,要使这些产品正常工作,数字功放是不可或缺的。数字功放其功放管的工作在导通和截止状态,如果输入信号使功放管处在导通状态,此时在理想状态下晶体管的内阻近似为零,所以管子两端没有压降,自然就不会产生功率消耗;如果输入信号使晶体管处在截止状态,那么晶体管的内阻就为无穷大,流经管子的电流就为零,也没有功率消耗。所以,晶体管在控制电路工作时是不会消耗功率的,这正是功放管能够达到比较高的效率的原因之一。正是由于数字功放的优越性能,所以它被广泛应用于电子设备中。因此,设计出符合要求的数字功放就显得格外重要。 1功放简介与发展现状 1.1 功放的种类 1.1.1 A类功率放大器 A类功放又称为甲类功放,如图1.1(a),对于此放大器的功率输出管,必须将其Q值设置在直流负载线的中点部分,因为这部分的线性最佳。这样输人信号在正负两个半周期内都能够使放大管在线性放大状态下工作,这时其导通角为360°。随之带来的问题就是能量转换效率很低,电路的最高效率也只有25%,并且需要两种晶体管交替互补才能使整个周期都处在放大状态,也不可避免地产

常用数字集成电路管脚排列及逻辑符号

常用数字集成电路管脚排列及逻辑符号
图 D-1 74LS00 四 2 输入与非门
图 D-2 74LS01 四 2 输入与非门(OC)
图 D-3 74LS02 四 2 输入或非门
图 D-4 74LS04 六反相器
图 D-5 74LS08 四 2 输入与门
图 D-6 74LS10 三 3 输入与非门
图 D-7 74LS20 双 4 输入与非门
图 D-8
R
74LS32 四 2 输入或门
S
Q
S R Q
R Q S
R
S
Q
图 D-9 74LS54 4 路 2-2-2-2 输入与或非门
图 D-10 74LS74 双上升沿 D 型触发器
图 D-11 74LS86 四 2 输入异或门
图 D-12
74LS112 双下降沿 J-K 触发器

图 D-13 74LS126 四总线缓冲器
图 D-14
74LS138 3 线-8 线译码器
图 D-15 74LS148 8 线-3 线优先编码器
图 D-16 74LS151 8 选 1 数据选择器
图 D-17 74LS153 双 4 选 1 数据选择器
图 D-18 74LS161 4 位二进制同步计数器
图 D-19 74LS194 4 位双向移位寄存器
图 D-20 74LS196 二-五-十进制计数器
图 D-21 74LS283 4 位二进制超前进位全加器
图 D-22
74LS290 二-五-十进制计数器
图 D-23
CD4011B 四 2 输入与非门
图 D-24 CD4081 四 2 输入与门

数字功放、D类功放、模拟功放区别

一、数字功放与D类功放的区别 常见D类功放(PWM功放)的工作原理:PWM功放只能接受模拟音频信号,用内部三角波发生器产生的三角波和它进行比较,其结果就是一个脉宽调制信号(PWM),然后将PWM信号放大并还原成模拟音频信号。因此,PWM功放是用脉冲宽度对模拟音频幅度进行模拟的,其信息的传递过程是模拟的、非量化的、非代码性的。并且由于目前器件性能的限制,PWM功放不可能采用太高的采样频率,在性能指标上尚达不到Hi-Fi级的水平。而数字功放采用一些宽度固定的脉冲来数字地量化、编码模拟音频信号,使音频信号的还原更为真实。 二、数字功放和模拟功放的区别 数字功放由于工作方式与传统模拟功放完全不同,因此克服了模拟功放固有的一些缺点,并且具备了一些独有的特点。 1. 过载能力与功率储备 数字功放电路的过载能力远远高于模拟功放。模拟功放电路分为A类、B类或AB类功率放大电路,正常工作时功放管工作在线性区;当过载后,功放管工作在饱和区,出现谐波失真,失真程度呈指数级增加,音质迅速变坏。而数字功放在功率放大时一直处于饱和区和截止区,只要功放管不损坏,失真度不会迅速增加,如图1所示。 图1 全数字功放与普通功放过载失真度比较 由于数字功放采用开关放大电路,效率极高,可达75%"90%(模拟功放效率仅为30%"50%),在工作时基本不发热。因此它没有模拟功放的静态电流消耗,所有能量几乎都是为音频输出而储备,加之前后无模拟放大、无负反馈的牵制,故具有更好的“动力”特性,瞬态响应好,“爆棚感”极强。 2. 交越失真和失配失真 模拟B类功放在过零失真,这是由于晶体管在小电流时的非线性特性而引起的在输出波形正负交叉处的失真(小信号时晶体管会工作在截止区,无电流通过,导致输出严重失真)。而数字功放只工作在开关状态,不会产生交越失真。

实验五 集成功率放大器

实验五 集成功率放大器 一、实验目的 (1) 熟悉集成功率放大器的工作原理。 (2) 掌握集成功率放大器性能指标测试方法。 .二、实验仪器 .〈1〉双踪示波器1台 (2)数字毫伏表1台 (3)模拟实验台1台 (4)数字万用表1块 .三、预习要求 (1)复习集成功率放大器的工作原理,阅读实验内容,对照图1-1及图1-2分析工作原理。 (2)在图1-2电路中,若Vcc=12V , RL=10Ω, 计算电路的输出功率Pom, 电源供给功率Pc 、效率η。 四、实验原理 实验电路由集成电路LM386加外围元件组成, 该电路为美国国家半导体公司产品。采用8引线双列直插封装,电源电压VCC 使用范围(VCC=5-18V )、静态功耗低(VCC= 12V 时为6mA 左右),由于该集成电路外接元件少,因而在便携式无线电设备、收音机、录音机、小型放大设备中得到广泛应用。 LM386是单电源互补对称功放集成电路,该电路内部包括由Vl 构成的射极输出器、V2、V3构成的差动放大电路、V5、V6构成的镜像电流源以及由V8、V9、V10组成互补对称电路构成的输出级。为使电路工作在甲乙类放大量状态,利用VD1、VD2提供偏置电压。该电路静态工作电流很小,约4mA-8mA 。输入电阻较高约5M Ω左右,故可以获得很高的电压增益,由于V1、V2采用截止频率较低的横向PNP 管,故几十赫以下的低频噪音很小。该电路内部原理如图1-1所示。 图1-2为外部接线原理图,图中Rw 为输入衰减电位器(音量控制),信号由③脚同相端输入,②脚反相端接地。C1、C2为接在直流电源Vcc 端(⑥脚)的退耦电容,C4为输出(⑤脚)耦合电容,C5为旁路电容(⑦脚),C3为跨接在①脚与⑧)脚之间的增益控制电容。当①脚和⑧脚之间开路时,电压增益为26dB ;若在①脚和⑧脚之间接阻容串联元件,则增益最高可达46dB ,改变阻容值则增益可在26dB-46dB 之间任意选取,电阻值越小增益越大。 (虚线框测数据时不接入)。 123 4 5678增益增益-输入+输入地输出 +V 旁路LM386引脚图 音箱 8欧 黑 红 LM386功率放大器原理图 om 图1-2

动手制作 再造hood jlh 1969M小甲类功放 教程方法 制作图纸 科技小制作新满多

动手制作再造hood jlh 1969M小甲类功放教程方法制 作图纸科技小制作新满多 讲1969M之前,得讲一下JOHN LINSLEY HOOD 1969这个经典线路。。。 线路原形如下: John Linsley Hood 在1969年发表了这个电路,10W纯甲类功放,电路很简单,每声道由4只晶体管构成,虽然功率不大,但音色优美,吸引了不少DIY爱好者。。。 里不得不说一下老哥DIY过的1969。。。 小风扇起到一定的散热作用

A10的格局 搭焊在电路板上的零件 功放的输出电容,有7个并联在一起一个不太大的变压器 军工钽电容 输入插口 喇叭接线柱

John Linsley Hood 的1969 电路简洁,易于制作,音色也不错,因此衍生了许多个版本的1969。。。 1969M就是其中的一个。。 某高人根据1969设计的1969M(1969MOS)电路如下,因为末级改为场效应管,因此简称1969M,此版本可以工作在AB类,意味着不用那么大的工作电流,功率也比1969大。。。而原形的1969只能工作在纯甲类,效率低,只有10W 的输出,电流大,更需要体积不小的散热片。 为了做好1969M,于是把线路做了一次仿真,按照现有的条件,如电压,使用的管子进行测试,调整参数,使谐波失真达到最小。。 仿真软件是大名鼎鼎的Multisim!!!这是DIY烧友电脑上

必装软件,如果你没有,那就OUT了啊。。 Multim 10 启动画面 Multim 10 工作界面。。。看上去好像很专业。。不过玩几下基本上就能掌握。。。 新完成的1969M电源滤波用两只25V15000U的电容串联,没办法,单只的耐压不够啊。。。内部图 实际应用的电路图。。。 说明一下图中红色圈起来的部分

数字功放和模拟功放优缺点对比

数字功放和模拟功放优缺点对比 数字功放的根本电路是早已存在的D类放大器(国内称丁类放大器)。以前,由于价钱和技术上的缘由,这种放大电路只是在实验室或高价位的测试仪器中应用。这几年的技术开展使数字功放的元件集成到一两块芯片中,价钱也在不时降落。理论证明,D类放大器的效率可到达100%。但是,迄今还没有找到理想的开关元件,难免会产生一局部功率损耗,假如运用的器件不良,损耗就会更大些。但是不论怎样,它的放大效率还是到达90%以上。 由于功耗和体积的优势,数字功放首先在能源有限的汽车声响和请求较高的重低音有源音箱中得到应用。随着DVD家庭影院、迷你声响系统、机顶盒、个人电脑、LCD电视、平板显现器和挪动电话等消费类产品一日千里的开展,特别是SACD、DVDAudio等一些高采样频率的新音源规格的呈现,以及声响系统从平面声到多声道环绕系统的进化,都加速了数字功放的开展。近年来,数字功放的价钱呈不时降落的趋向,有关这方面的专利也层出不穷。 一、D类输出功率和耗费功率与AB类功率放大器耗费比例 采用低频音频信号调制一个固定高频频率的脉宽的一种放大器被人们称为D类放大器又有人称为数字音频放大器,他最大的特性是效率特别高(理论上能够到达100%,实践在85%以上),采用十分小的电子器件就能够制造出很大功率的音频放大器。 小功率,即1W-3W的功率放大器而言,在相同播放内容的情况下,AB类功率放大器与D类功率放大器的功率效率各约为AB=15%及D=75%。在播放1W音乐的情况下,AB类功率放大器需求耗费6.7W的功率,但D 类功率放大器在同样的播放条件下只耗费1.33W。因而,运用D类功率放大器可延长电池的运用时间达5倍(6.7W/1.33W)。低功率的运用除了手机,DVD、MP3及PMP之外还有一些盛行产品如iPod、手机、及数字相框。那么中功率的状况下,即10W-30W的功率放大器而言在相同播放内容以语音为主的情况下,AB类功率放大器与D类功率放大器的功率效率分别为AB=25%及D=80%。 在播放10W语音的情况下,AB类功率放大器需求损耗40W的功率,但D类功率放大器在同样的条件下播放只损耗12.5Watts。因而运用D类功率放大器可降低电源的本钱将近3倍(40W/12.5W),而且D类功率放大器所产生的2.5W的热可由普通功率封装及PCB设计即可处置不用额外的散热器。在大功率输出的状况下,即100W-200W的D类数字功率放大器在汽车声响亦将占有一席之地,在此高功率之下D类功率放大器仍免不了运用散热片,但散热面积与散热量比AB类功率放大器所需的要小,由于高效率的缘由,D类功率放大器能够在不启动汽车引擎的情况下有较长的运用时间而不耗费太多电瓶的电量,D类功率放大器成为如今汽车声响的主要应用产品。 二、数字功放和数字化功放、数码功放的区别 所谓的数字化功放只是在前置级上采用数字信号处置的方式,在模仿音频信号或数字音频信号输入后,采用现有的数字音频处置集成电路,完成一些比方声场处置、数字延时、混响等功用,最后再经过模仿功率放大模块停止音频放大。 固然目前各集成电路厂家都推出了数字声场处置、数字卡拉OK和数字杜比解码集成电路。 但是由于目前功放大都只能接纳模仿音频信号,所以各集成电路的接口也大多是模仿的,这就需求重复地停止模/数、数/模转换,由此会引入量化噪声,使音质恶化。全数字功放除了针对扬声器的接口以外(这

场效应管特性及单端甲类功放制作全过程

场效应管特性及单端甲类功放制作全过程 场效应管控制工作电流的原理与普通晶体管完全不一样,要比普通晶体管简单得多,场效应管只是单纯地利用外加的输入信号以改变半导体的电阻,实际上是改变工作电流流通的通道大小,而晶体管是利用加在发射结上的信号电压以改变流经发射结的结电流,还包括少数载流子渡越基区后进入集电区等极为复杂的作用过程。场效应管的独特而简单的作用原理赋予了场效应管许多优良的性能,它向使用者散发出诱人的光辉。 场效应管不仅兼有普通晶体管和电子管的优点,而且还具备两者所缺少的优点。场效应管具有双向对称性,即场效应管的源极和漏极是可以互换的(无阻尼),一般的晶体管是不容易做到这一点的,电子管是根本不可能达到这一点。所谓双向对称性,对普通晶体管来说,就是发射极和集电极互换,对电子管来说,就是将阴极和阳极互换。 一、场效应管的特性 场效应管与普通晶体管相比具有输入阻抗高、噪声系数小、热稳定性好、动态范围大等优点。它是一种压控器件,有与电子管相似的传输特性,因而在高保真音响设备和集成电路中得到了广泛的应用,其特点有以下一些。 高输入阻抗容易驱动,输入阻抗随频率的变化比较小。输入结电容小(反馈电容),输出端负载的变化对输入端影响小,驱动负载能力强,电源利用率高。 场效应管的噪声是非常低的,噪声系数可以做到1dB以下,现在大部分的场效应管的噪声系数为0.5dB左右,这是一般晶体管和电子管难以达到的。 场效应管具有更好的热稳定性和较大的动态范围。 场效应管的输出为输入的2次幂函数,失真度低于晶体管,比胆管略大一些。场效应管的失真多为偶次谐波失真,听感好,高中低频能量分配适当,声音有密度感,低频潜得较深,音场较稳,透明感适中,层次感、解析力和定位感均有较好表现,具有良好的声场空间描绘能力,对音乐细节有很好表现。 普通晶体管在工作时,由于输入端(发射结)加的是正向偏压,因此输入电阻是很低的,场效应管的输入端(栅极与源极之间)工作时可以施加负偏压即反向偏压,也可以加正向偏压,因此增加了电路设计的变通性和多样性。通常在加反向偏压时,它的输入电阻更高,高达100MΩ以上,场效应管的这一特性弥补了普通晶体管及电子管在某些方面应用的不足。 场效应管的防辐射能力比普通晶体管提高10倍左右。 转换速率快,高频特性好。 场效应管的电压与电流特性曲线与五极电子管输出特性曲线十分相似。 场效应管的品种较多,大体上可分为结型场效应管和绝缘栅场效应管两类,且都有N型沟道(电流通道)和P型沟道两种,每种又有增强型和耗尽型共四类。 绝缘栅场效应管又称金属(M)氧化物(O)半导体(S)场效应管,简称MOS管。按其内部结构又可分为一般MOS管和VMOS管两种,每种又有N型沟道和P型沟道两种、增强型和耗尽型四类。 VMOS场效应管,其全称为V型槽MOS场效应管,是在一般MOS场效应管的基础上发展起来的新型高效功率开关器件。它不仅继承了MOS场效应管输入阻抗高(大于100MΩ)、驱动电流小(0.1uA左右),还具有耐压高(最高1200V)、工作电流大(1.5~100A)、输出功率高(1~250W)、跨导线性好、开关速度快等优良特性。目前已在高速开关、电压放大(电压放大倍数可达数千倍)、射频功放、开关电源和逆变器等电路中得到了广泛应用。由于它兼有电子管和晶体管的优点,用它制作的高保真音频功放,音质温暖甜润而又不失力度,备受

各种集成电路介绍

第一节三端稳压IC 电子产品中常见到的三端稳压集成电路有正电压输出的78××系列和负电压输出的79××系列。故名思义,三端IC是指这种稳压用的集成电路只有三条引脚输出,分别是输入端、接地端和输出端。它的样子象是普通的三极管,TO-220的标准封装,也有9013样子的TO-92封装。 用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压,如7806表示输出电压为正6V,7909表示输出电压为负9V。 78/79系列三端稳压IC有很多电子厂家生产,80年代就有了,通常前缀为生产厂家的代号,如TA7805是东芝的产品,AN7909是松下的产品。(点击这里,查看有关看前缀识别集成电路的知识) 有时在数字78或79后面还有一个M或L,如78M12或79L24,用来区别输出电流和封装形式等,其中78L调系列的最大输出电流为100mA,78M系列最大输出电流为1A,78系列最大输出电流为1.5A。它的封装也有多种,详见图。塑料封装的稳压电路具有安装容易、价格低廉等优点,因此用得比较多。79系列除了输出电压为负。引出脚排列不同以外,命名方法、外形等均与78系列的相同。 因为三端固定集成稳压电路的使用方便,电子制作中经常采用,可以用来改装分立元件的稳压电源,也经常用作电子设备的工作电源。电路图如图所示。 注意三端集成稳压电路的输入、输出和接地端绝不能接错,不然容易烧坏。一般三端集成稳压电路的最小输入、输出电压差约为2V,否则不能输出稳定的电压,一般应使电压差保持在4-5V,即经变压器变压,二极管整流,电容器滤波后的电压应比稳压值高一些。 在实际应用中,应在三端集成稳压电路上安装足够大的散热器(当然小功率的条件下不用)。当稳压管温度过高时,稳压性能将变差,甚至损坏。 当制作中需要一个能输出1.5A以上电流的稳压电源,通常采用几块三端稳压电路并联起来,使其最大输出电流为N个1.5A,但应用时需注意:并联使用的集成稳压电路应采用同一厂家、同一批号的产品,以保证参数的一致。另外在输出电流上留有一定的余量,以避免个别集成稳压电路失效时导致其他电路的连锁烧毁。 第二节语音集成电路 电子制作中经常用到音乐集成电路和语言集成电路,一般称为语言片和音乐片。它们一般都是软包封,即芯片直接用黑胶封装在一小块电路板上。语音IC一般还需要少量外围元件才能工作,它们可直接焊到这块电路板上。

STA328 完美数字音频功放集成块

May 2008 Rev 41/57 STA328 2.1-channel high-efficiency digital audio system Features !Wide supply voltage range (10 V - 36V)! Three power output configurations –2x 40W + 1x 80W –2x 80W –1x 160W !PowerSO-36 package ! 2.1 channels of 24-bit DDX ?!100-dB SNR and dynamic range !32kHz to 192kHz input sample rates !Digital gain/attenuation +48dB to -80dB in 0.5-dB steps !Four 28-bit user programmable biquads (EQ) per channel !I 2C control !2-channel I 2S input data interface !Individual channel and master gain/attenuation !Individual channel and master soft/hard mute !Individual channel volume and EQ bypass !Bass/treble tone control !Dual independent programmable limiters/compressors ! AutoModes –32 preset EQ curves –15 preset crossover settings –Auto volume controlled loudness – 3 preset volume curves – 2 preset anti-clipping modes –Preset night-time listening mode –Preset TV AGC !Input and output channel mapping ! AM noise-reduction and PWM frequency-shifting modes !Software volume update and muting !Auto zero detect and invalid input detect muting !Selectable DDX ? ternary or binary PWM output + variable PWM speeds !Selectable de-emphasis !Post-EQ user programmable mix with default 2.1 bass-management settings !Variable max power correction for lower full-power THD !Four output routing configurations !Selectable clock input ratio !96kHz internal processing sample rate, 24 to 28-bit precision !Video application supports 576 * fs input mode. Table 1. Device summary Order code Package Packaging ST A328PowerSO-36Tube ST A32813TR PowerSO-36 Tape and reel https://www.360docs.net/doc/7d3846336.html,

相关文档
最新文档