药剂学综述分散片中常用高分子崩解剂

药剂学综述分散片中常用高分子崩解剂
药剂学综述分散片中常用高分子崩解剂

分散片中常用高分子崩解剂

摘要本文简要介绍了分散片中的几种常用崩解剂,包括羧甲基淀粉钠,交联聚维酮,交联羧甲基纤维素钠,低取代羟丙基纤维素,通过对基本性质,特点,及应用对其进行综述。此外,文章结尾对它们作为崩解剂时联用的情况做以介绍,以供药物工作者参考。

关键词分散片崩解剂羧甲基淀粉钠交联聚维酮交联羧甲基纤维

素钠低取代羟丙基纤维素

引言分散片(dispersible)是一种能在水中迅速崩解并均匀分散的剂型,既可以口中含服也可以吞服。分散片一般在19~21℃水中于

3min内崩解,2片放入100ml水中搅拌至完全分散后形成的均匀分散

体可通过2号筛网,这就对崩解剂提出了更高的要求。目前,国内外广泛用于分散片中的崩解剂主要有羧甲基淀粉钠(CMS-Na)、交联聚乙烯吡咯烷酮(PVPP)、交联羧甲纤维素钠(CCMC-Na)、低取代羧丙纤维素(L-HPC)等。近年来应用高分子崩解剂一般情况下比淀粉的用量少,

且明显缩短时间。例如口腔分散片,对于治疗的作用,服用阿司匹林的口腔分散片的受试者要明显好于服用安慰剂的受试者。在两小时内,阿司匹林的反应者为48%明显高于反应率为19%的安慰剂服用者[1]。

在治疗精神疾病中药物效果的失去通常伴随治疗的失败和其他不良

结果,分散剂的形式可以作为替代方式改善药效[2]。本文将简要介绍几种应用于分散片中的高分子崩解剂。

1 羧甲基淀粉钠(sodium carboxymethyl starch ,CMS-Na)

分子式为[C6H7O2(OH)2OCH2COONa]n ,白色或黄色粉末,无臭、无

味、无毒、热易吸潮。溶于水形成胶体状溶液,对光、热稳定。不溶于乙醇、乙醚、氯仿等有机溶剂。羧甲基淀粉钠是淀粉的羧甲醚的钠盐,不溶于水,吸水膨胀作用非常显著,其吸水后膨胀率为原体积的300倍,是一种超级崩解剂。在制药产业中,CMS是典型的片剂中的崩解剂,然而,只有低取代的羧甲基纤维素钠才会被使用[3]。阿奇霉素分散片,本品以CMS-Na 作为崩解剂崩解的速度要明显优于PVPP作为崩解剂的分散片。虽然CMS-Na 具有良好的崩解效果,但其用量应在一定范围内,文献认为其含量在3%~8% 时,崩解效果明显,而含量越高并不意味崩解越快[4]。刘晓燕[5]采用内外加法添加羧甲基淀粉钠,用微粉硅胶吸附原辅材料,湿法制粒压片,片芯迅速崩解为颗粒,然后再将其崩解为细粉,这样有利于颗粒继续崩解成细小颗粒,样品溶出度较为理想,符合质量标准要求。该方法制备工艺简单,设备要求低,且成品合格率高,可用于头孢呋辛酯片的规模化生产。

张祖俊[6]等人的单因素实验表明,载体的种类和用量、崩解剂的加入方法对溶出度的影响显著,应当优先考虑,表面活性剂的加入对溶出度有一定影响,在制备过程中适当调节即可。对于崩解剂CMC-Na、微晶纤维素、交联PVP 的正交实验表明:CMC-Na 对药物的溶出影响较大。CMC-Na、微晶纤维素及交联PVP 的比例以4∶3∶2 为佳。

2 交联聚维酮 (polyvinylpolypyrrolidone, PVPP)

交联聚维酮在水中不溶,但在水中迅速表现出毛细管活性和优异的水化能力,最大吸水量为60%,无凝胶倾向。PVPP的崩解性能十分优越,具有“超级崩解剂”之称。

PVPP化学名称为1-乙烯基-2-吡咯烷酮均聚物,分子式为C6H9NO,分子量大于1000000。PVPP为白色或近白色粉末,具有吸湿性、易流

动性,其吸水率随相对湿度增加而增大。无臭或微臭,不溶于水、碱、酸及常用有机溶剂,具有很强的膨胀性,能与多类物质络合。PVPP

具有优异的溶解性、低毒性,适合在药品中使用。加入PVPP制剂,有

理想的硬度和崩解时间,能明显增加难溶性药物的溶出度[7]。

在第二次世界大战中被首先用作血浆增溶剂。它无抗原性、不需交叉配血,并能避免疾病在血液中传染。60 年代后, PVP 开始用于制药工业,它的高溶解度和易加工的粘度性质,使药片成形的固体块状

容易粉碎,可大大降低干燥时间及生产成本。水溶性的PVP 能与药粉

的混合物进行干混合,然后在成型过程中用适当溶剂湿润。这样,PVP 起到散粒作用[8]。PVPP具有高毛细管活性和优异的水化能力,加入PVPP片剂能迅速地将水吸收到药片中,使内部压力(溶胀压力)超过药片的强度而迅速崩解。PVPP交联之间有着折叠分子链,当水或水溶液渗入时迫使其伸长并分离。因而PVPP是一种性质优良的高效崩解剂。中药浸膏片普遍存在黏性大、易吸潮、崩解慢的现象,使用一般的崩解剂效果不理想,PVPP则能有效地提高其崩解度[9]。周艳[10]等通过优选处方试验,采用进口辅料微晶纤维素、交联聚乙烯吡咯烷酮,聚维酮K30比采用国产辅料溶出度好。崩解剂交联聚乙烯吡咯烷酮优于交

联羧甲基纤维素钠、立崩、羧甲基淀粉钠。交联羧甲基纤维素钠制完粒后发漂,压片困难,立崩、羧甲基淀粉钠国产粉末控制粒径大批次不同影响溶出度也不同。

3 交联羧甲基纤维素钠(croscarmellose sodium, CCMC-Na)

本品为交联的、部分羧甲基化的纤维素钠盐,或羧甲基纤维素钠的交联聚合物。为白色或类白色粉末;有引湿性。本品在水中溶胀并形成混悬液,在无水乙醇、乙醚、丙酮或甲苯中不溶。由于交联键的存在不溶于水,能吸收数倍于本身重量的水而膨胀,膨胀体积为原体积的4~8倍,所以具有较好的崩解作用;当与羧甲基淀粉钠合用时,崩解效果更好,但与干淀粉合用时崩解作用会下降。CCMC-Na 具有较大的溶胀性,吸水膨胀后,体积可增大到原来的200~300倍而不溶解,具有良好的崩解作用。所以本实验采用MCC与CCMC-Na作为崩解剂,得出最佳处方中两者分别占78% 和4.5%,口崩片的崩解时间小于30s[11]。对于吸收能力的评价包括PH,药物的浓度和聚合物的性质,经过研究,在有交联羧甲基纤维素钠时,最好的结合能力是在PH7.6,最低的结合能力是在PH1.5。药物的吸收水平有赖于药物在多聚物中的浓度和吸收度以及PH环境[12]。

阎卉[13]等在处方中采用甘露醇、预胶化淀粉和微晶纤维素作为赋形剂,赋形剂溶解时吸热,使口腔有清凉感,用交联羧甲基纤维素钠作为崩解剂可使片剂硬度增大,弥补了由于使用微晶纤维素和甘露醇而造成的片剂硬度下降。同时,微晶纤维素和交联羧甲基纤维素钠都具有强烈的吸水膨胀作用,能使水分快速进入片剂内部,使片剂快速崩解。

4 低取代羟丙基纤维素(low-substituted hydroxypropylcellulose L-HPC)

低取代2-羟丙基醚纤维素,为白色或黄白色的粉末或颗粒,无臭、无味,在水中不溶解,10%NaOH溶液中溶解。由于表面积和空隙

率很大,具有快速吸水溶胀的性能。

羟丙基纤维素可分为低取代羟丙基纤维素(L-HPC)和高取代羟丙基纤维素(H-HPC)。低取代羟丙纤维素(L-HPC)主要作片剂崩解剂和粘合剂,用低取代羟丙纤维素(L-HPC)作粘合剂、崩解剂的特点是:容易压制成型,适用性较强,特别是不易成型,塑性和脆性大的片子,加入低取代羟丙纤维素(L-HPC)就能提高片剂崩解速度,即使片子的硬度达到13kg不碎,崩解也只需十几分钟,提高片子内在质量,并提高疗效;用低取代羟丙纤维素(L-HPC)制得的片剂长期保存崩解度不受影响。

以低取代羟丙基纤维素与羧甲基淀粉钠共同起崩解作用,替代

交联聚乙烯吡咯烷酮,虽然分散时间较原处方延长,但片面光滑细腻,而且其他各项质量指标都能达到要求[14]。陈志忠[15]等人以蔗糖、淀粉为稀释剂,以低取代羟丙基纤维素为崩解剂,碳酸氢钠为碱性添

加剂以增加制剂的稳定性,以低粘度的羟丙基纤维素一定比例的乙醇溶液为粘合剂,并添加一定量的表面活性剂吐温-80,来增加主药兰索拉唑的释放量。经过稳定性研究和耐酸力以及释放度检查,各项指标均符合要求。

5 多种崩解剂的联用

选用交联聚乙烯吡咯烷酮(PVPP)、低取代经丙基纤维素(L-HPC)和微晶纤维素(MCC)共用作为联合崩解剂。PVPP具有较强的吸水膨胀性, 是优良的崩解剂; L-HPC兼具有粘合和崩解作用, 崩解差的片剂本品可加速其崩解和增加崩解后分散的细度; MCC是优良的填充剂和

崩解剂, 此三种崩解剂按本文优化的用量合用, 能显著缩短崩解时间, 达到最佳的崩解效果,研制的分散片处方合理, 工艺可行, 符合分散片的质量要求[16]。卡马西平(Carbamazepine,CBZ)是临床常用的一线抗癫痫药物,对大发作、局限性发作和混合型癫痫均有效。将CBZ制成口腔速崩片,不仅可提高患者尤其是儿童和老年患者的服药顺应性,而且还可提高其生物利用度,降低不良反应。虽然在文献中较多制剂直接采用MCC和L-HPC 联用即可达到在30s内速崩的目的,但在本试验中,无论如何调节MCC/L-HPC 的比例均达不到在30s内崩解的效果,联合使用MCC/L-HPC/CCNa 则崩解迅速,随即又尝试了MCC/CCNa联用,崩解时间也很快。由于直接采用两相辅料的制备工艺较采用三相辅料联合使用更为简单,因此本试验最终采用两相辅料联合使用[17]。王方[18]等选用交联聚维酮、低取代羟丙纤维素和羧甲基淀粉钠3 种辅料联合使用作为崩解剂,聚维酮K30为黏合剂,阿斯帕坦为矫味剂、微粉硅胶为助流剂、硬脂酸镁为润滑剂、20%乙醇为润湿剂,并采用紫外分光光度法测定其溶出度。结果通过对苯磺酸氨氯地平分散片专属性、线性关系、稳定性、回收率、精密度、溶出度均一性实验的研究,建立了可控制其质量的溶出度测定方法。制剂处方工艺可靠,检测方法简便、准确、适用于医院配制和应用。

6 结论

综上所述,分散片中的常用崩解剂包括羧甲基淀粉钠,交联聚维酮,交联羧甲基纤维素钠,低取代羟丙基纤维素,由于经济、制备工艺、不同崩解剂的优缺点,分散片中也常采用联用崩解剂的形式。

参考文献

[1] E. Anne MacGregor ,Andrew Dowson ,Paul T.G. Davies.

Mouth-Dispersible Aspirin in the Treatment of Migraine: A

Placebo-Controlled Study[J] Headache,2002,42(4),249-255

[2] Luis San, Marta Casillas, Antonio Ciudad. Olanzapine Orally Disintegrating Tablet: A Review of Efficacy and Compliance[J] CNS Neuroscience & Therapeutics,2008,14(3),203-214

[3] Tadeusz Spychaj, Katarzyna Wilpiszewska,Magdalena Zdanowicz.Medium and high substituted carboxymethyl starch: Synthesis, characterization and

application[J] .Starch/Starke,2013,65(1-2),22-33

[4] 宗永斌,万元松,金春等.阿奇霉素分散片崩解剂优选研究[J]. 医药导报,2012 ,30(1):0072-0074

[5] 刘晓艳.头孢呋辛酯片制剂工艺研究[J].制剂与技术,2011,8(32):057-059

[6] 张祖俊,王秋颖.头孢呋辛酯片的制备及溶出因素的考察[J].河北化工,2009,32(10)0022-0024

[7] Vasanthakumar S, Vijaya R.Immediate release tablets of telmisartan using superdisintegrant-formulation, evaluation and stability studies[J]. Chem Pharm Bull, 2008, 56(4): 575-577.

[8] 马婷芳,史铁钧.聚乙烯吡咯烷酮的性能、合成及应用[J].应用化工, 2002, 31(3):0016-0019

[9] 刘秀萍,臧恒昌,孙海龙等.交联聚乙烯吡咯烷酮的生产应用与市场前景[J].食品与药品,2012,14(9):0366-0369

[10] 周艳,高旭光,王德霞.克拉霉素片处方及工艺研究[J].中国药业,2012,21(04):0042-0043

[11] 王文忠,罗亚珊,张立娜等.二次回归正交旋转组合设计法对元胡止痛口崩片处方的优化[J]. 现代中药研究与实

践,2012,26(1):0053-0055

[12] B. Grimling, J. Pluta .In Vitro Investigation on Interaction of Ranitidine Hydrochloride in the Presence of Cross-Linked Carboxymethyl Cellulose Sodium[J].Macromolecular

Symposia,2007,253(1),186-190

[13] 阎卉,刘欢,王成港.正交试验优化氯氮平口腔崩解片的处方[J].现代药物与临床.2012,27(2),0111-0113

[14] 高湘,张选军,刘珍等.罗红霉素分散片的处方工艺改进[J].制剂技术,2011,20(2):0044

[15] 陈志忠,廉洁,郝继红等.兰索拉唑肠溶微丸的制备和质量研究[J] 中国卫生产业,2011,8(04),0059-0061

[16] 卢旭波,李金胜.复方黄连素分散片的制备工艺研究[J].中国医药指南,2012,10(21):0399-0401

[17] 卫晓晓,焦海胜.卡马西平口腔速崩片的制备及质量评价[J].制剂与工艺,2011,05:0424-0427

[18] 王方,刘祖雄.苯磺酸氨氯地平分散片的制备及溶出度测定[J].临床军医杂志.2011,39(2),0355-0357

药剂学综述缓控释微丸制剂

缓控释微丸制剂 摘要:目前市面上涌现出多种缓控释制剂,其中微丸凭借其载药范围宽、流动性好、体积小等优点受到青睐。本文通过对缓控释制剂中微丸的定义、特点、在缓控释制剂类型中应用的原类型、释药机理及其制备工艺和辅料应用的介绍,让初次接触药剂学中缓控释微丸制剂的人对其有全面的了解和认识,为今后进一步深入研究微丸制剂铺垫坚实的药剂学基础。 引言:近几年药物剂型不断出新,如缓控释制剂、靶向制剂、透皮制剂、脉冲式和自调式给药制剂,其中缓控释制剂最为成熟、临床应用最广泛。缓控释微丸是缓控释制剂中最受青睐的剂型之一。药物的作用与其在作用部位的浓度有关,通过使药物定速释放来控制药物在作用部位浓度从而使血药浓度平稳,作用时间长,从而减少药物给药剂量和次数。因此微丸释药基于药物释放模式,包括以零级或慢一级释药、有一快速释放剂量再以零级或慢一级释药,注意确定释药模式前应先确定药物有效浓度范围,治疗指数小或半衰期短者均制为缓控释制剂。[1]微丸作为多单元型给药系统的代表,具有传统单剂量型缓释制剂不可比拟的诸多优点,如吸收个体差异小、剂量突释效应低以及释药速率稳定等,现已逐渐成为缓控释制剂研究的热点之一。 [2] 历史 我国古代就有中药微丸制剂,如“六神丸”、“喉炎丸”、“王

氏保赤丸

”、“牛黄消炎丸等。最早的是手工泛丸(中药水泛丸),将微丸装入胶囊内给药最早出现在50年代初。1949年Smith Kline和French等认识了微丸在缓释制剂方面的潜力,把微丸装入胶囊开发成适合于临床的缓释型胶囊制剂,使得微丸制剂得到了较大发展。1999年度全球此类产品销售额接近100亿美元,并有持续上升的趋势。[13]目前,许多缓释、控释胶囊剂如“Theo-24”(茶碱)、“扑尔敏胶囊”“苯巴比妥”等都有微丸制剂,一些普通制剂也在逐步采用微丸制剂技术,如“伤风感冒胶囊”等。随着制剂设备、工艺及辅料的发展,微丸有了很大发展,生产由手工制造发展到半机械化和全自动化制备。 现状 1、定义:微丸剂是指直径小于215mm的丸状口服制剂。是一种剂量分散型制剂, 通常一个剂量由几十乃至一百多个小丸组成。[4]其应用方式包括将均一的小丸或不同粒径、不同包衣厚度的小丸混合装入空胶囊制成胶囊剂, 或者压制成片剂。按处方组成、结构及释药机制的不同, 微丸剂可分为膜控小丸、骨架型小丸及混合型小丸几种类型。[2]微丸通过改变辅料结合药物溶解、扩散的性质来控制释药速度,其辅料主要有聚丙烯酸树脂及纤维素衍生物类等。 2、优点: 2.1 改变微丸组合来改变释药速度 2.2 复方制剂配伍克提高药物制剂的稳定 2.3 在体内多个小丸广泛均匀地分布可防止局部药物浓度太大

天然药用高分子

药用天然高分子 摘要:随着材料科学的高速发展,人们对疾病的认识越来越深刻、明了,对天然药物的利用价值越来越看重,对药用天然高分子的研究也迎来了自己的高速发展的时期。本文主要对药用天然高分子的种类、结构、性质以及利用情况、发展前景进行陈述 关键字:药用天然高分子结构种类利用前景 一、常见药用天然高分子简介 1、药用天然高分子认识: 药用高分子材料(polymers for pharmaceuticals):具有生物相容性、经过安全评价且应用于药物制剂的一类高分子辅料,而药用天然高分子是指来源于自然界中的,在药品的生产和制造加工工程中使用的高分子材料的总称。它包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料。 应用药物缓释技术,通过医用高分子材料包覆在药物表面,当然药物不是成块状的,而是很小的。有高分子材料的保护,药物在短时间内不会被身体吸收,而是随血液流动到特定区域,当到达之后药物表面的高分子材料已经溶解到血液中,最终随体液排出。而药物能够有针对性的治疗病患处 而作为包装材料,应满足以下要求: (1)保证药品质量特性和成分的稳定;要根据药品及制剂的特

性来选用不同的包装材料。首先,药品包装材料必须具有安全、无毒、无污染等特性;其次,药品包装材料必须具有良好的物理化学和微生物方面的稳定性,在保质期内不会分解老化,不吸附药品,不与药品之间发生物质迁移或化学反应,不改变药物性能。 (2)适应流通中的各种要求;药品生产出后需要经过储存、运输等各个流通环节才能达到患者手中,每个环节的气候条件、流通周期、运输方式、装卸条件等各不相同甚至有很大的差异。因此,药品的包装材料还要与流通环境相适应。既要有一定的耐热性、耐寒性、阻隔性等物理性能,以满足流通区域中的温度、湿度变化的要求;又要有一定的耐撕裂、耐压、耐戳穿、防跌落等机械性能,以防止装卸、运输、堆码过程中的各种形式的破坏和损伤。 (3)具有一定的防伪功能和美观性;为防止假冒伪劣药品、保证药品的纯正,药品包装材料应具有一定的防伪能力,患者通过包装材料可以方便的辨别药品的真假。包装材料的美观在一定程度上会促进药品的销售,同时还能使患者心情愉快,有助于身体健康的好转和恢复,因此药品包装材料需有较好的印刷和装饰性能。 (4 )成本低廉、方便临床使用且不影响环境;药品包装材料应选择原料来源广泛、价格低廉且具有良好加工性能的材料,以降低药品包装的成本,从而降低药品的价格;还要能够方便临床使用,以利于提高医务人员的的工作效率;丢弃后不会对环境造成影响,能自然分解,易于回收

注射剂中常见附加剂的干扰及其排除

注射剂中常见附加剂的干扰及其排除 (一)常见的附加剂 注射剂中的附加剂种类较多,其主要作用是保持药液稳定,减少对人体组织的刺激。常用的附加剂有酸度调节剂、渗透压调节剂、助溶剂、抗氧剂(如亚硫酸钠、亚硫酸氢钠、焦亚硫酸钠和硫代硫酸钠)、抑菌剂(如三氯叔丁醇、苯酚等)、止痛剂(如苯甲醇)、冻干制剂中的赋形剂(如甘露醇或山梨醇)等。 (二)附加剂的干扰和排除 1.抗氧剂的干扰与排除 注射剂中常用的抗氧剂有亚硫酸钠、亚硫酸氢钠、焦亚硫酸钠、硫代硫酸钠和维生素C等。抗氧剂均为还原性物质,这些物质的存在,对氧化还原滴定结果会产牛干扰,对亚硝酸钠滴定法测定注射液含量的结果也有干扰,另外对维生素C还具有紫外吸收能力.对紫外分光光度法测定结果亦可能产生干扰。 往射剂中抗氧剂的干扰,常用下述方法排除。 (1)加入掩蔽剂法常用的掩蔽剂有甲醛或丙酮。注射剂中加入亚硫酸钠、焦亚硫酸钠或亚硫酸氢钠作抗氧剂时,主药测定采用碘量法、银量法、铈量法或重氮化法时,使用上述掩蔽剂可与抗氧剂发生加成反应从而排除其干扰。 例如,当采用碘量法测定维生素C注射液含量时,其中的抗氧剂亚硫酸氢钠也会消耗碘液而产生干扰,使用丙酮作掩蔽剂可消除其干扰。又如,采用碘量法测定安乃近注射液含量时,由于焦亚硫酸钠抗氧剂的存在会对测定产生干扰,使用甲醛作掩蔽剂可消除其干扰。 (2) 加酸加热使抗氧剂分解注射剂中如有亚硫酸钠、亚硫酸氢钠、焦亚硫酸钠、硫代硫酸钠等抗氧剂存在时.可加入酸并加热。使之分解为二氧化硫逸出。如亚硝酸钠测定盐酸普鲁蕾因胺注射液的含量时,其中的抗氧剂亚硫酸氢钠或焦亚硫酸钠也能消耗亚硝酸钠滴定液而产生干扰,采用加入盐酸并迅速加热煮沸的办法可使抗氧剂分解从而消除其干扰。 (3)加弱氧化剂氧化法注射剂中的亚硫酸盐、亚硫酸氢盐等抗氧剂可被一些弱氧化剂氧化,常用的弱氧化剂有过氧化氢或硝酸。但使用本法必须注意加入的弱氧化剂不能氧化待测组分,也不能消耗滴定液。 (4)选择适当测定波长法注射液中如使用了维生素C做抗氧剂,其最大吸收波长为243 nm,若主药的测定波长也在此波长附近,就会产生干扰。通常采用选择其他波长作测定波长的方法使主药有吸收,而维生素C几乎没有吸收。如盐酸氯丙嗪注射液中含有维生素c抗氧剂,而主药盐酸氯丙嗪在紫外区的254 nm和306 nm波长处有两个最大吸收峰,由于维生素C在254 nm处也有强吸收,但 在306 nm波长处无吸收.故选择3()6 nⅢ为测定波长。 2.等渗溶液的干扰及排除 注射剂中常用氯化钠作为等渗调节剂,但氯化钠的存在对用银量法或离子交换法测定主药含量会产生于扰,应根据不同的情况采用不同的方法予以排除。例如,复方乳酸钠注射液中加有氯化钠作为等渗调节剂,当用离子交换法测定主药含量时,氯化钠会干扰测定。先用强酸性阳离子交换树脂处理时,氯化钠会参与交换生成盐酸。继续用氢氧化钠标准溶液

药剂学综述栓剂的研究进展[1]

栓剂的研究进展 【摘要】栓剂是古老剂型之一,栓剂不仅可以起局部治疗作用,还可以起全身治疗作用。近年来栓剂广泛应用于临床各科,应用筒单方便,效果明显可靠。对近年来栓刺的特点、处方组成、制备工艺、新型栓剂等方面进行了综述。随着新制药技术和新基质的不断出现,国内外对栓剂的研究及使用也显著增加,出现了很多新型栓剂,如中空栓剂、双层栓剂、泡腾栓剂等,中药栓剂也得到了一定发展。【关键词】栓剂;研究概况;综述;新剂型; 引言:栓剂是古老的外用固体制剂。在我国,汉代时期就已有对栓剂的记载。栓剂系将药物与适宜基质制成的有一定形状供腔道给药的固体制剂。随着栓剂新基质的不断出现和栓剂生产自动化的实现,栓剂现已生产的品种和数量都显著增加,如中空栓、泡腾栓、微囊栓、海绵栓、凝胶栓等新型栓剂,尤其中药栓剂不断涌现,栓剂的研发热潮仍在进行中。 1 .栓剂概述[1] 栓剂系指将药物和适宜的基质制成的具有一定形状供腔道给药的固 体状外用制剂。栓剂在常温下为固体,塞人人体腔道后,在体温下迅速软化,熔融或溶解于分泌液,逐渐释放药物而产生局部或全身作用。栓剂因使用腔道不同而有不同的名称,如肛门栓、阴道栓、尿道栓、喉道栓、耳用栓和鼻用栓等。目前,常用的栓剂有直肠栓和阴道栓。这两种栓剂的形状和大小各不相同。肛门栓的形状有圆锥形、圆柱形、鱼雷形等;阴道栓的形状有球形、卵形、鸭嘴形等;尿道栓呈笔形,一端稍尖。 2.栓剂分类 2.1按作用

分局部作用栓剂和全身作用栓剂。 2.2按应用部位 分直肠栓、阴道栓、尿道栓、脐栓、耳栓等,其中直肠栓和阴 道栓最为常见.Kyong-Hoon Eun等【2】曾用家兔做过栓剂直肠实验。2.3按形状大小 有圆锥形、圆柱形、鱼雷形和球形、卵形、鸭嘴形等,前者多为肛门栓,塞人肛门后,由于括约肌的收缩容易压人直肠内。后者多为阴道栓,亦称阴道弹剂,因相同重量的栓剂,鸭嘴形的表面积较大,因此以鸭嘴形较好。 2.4按基质 1.脂肪性基质,包括可可豆油、半合成甘油脂肪酸酯类、乌桕油和氢化油等。 2.水溶性及亲水性基质,包括甘油明胶、聚乙二醇类、吐温一6l等。 2.5按剂型 分双层栓剂、泡腾栓剂、微囊栓剂、中空栓剂、海绵栓剂、渗透泵栓剂、不溶性栓剂、凝胶栓剂等。【3】 3.栓剂作用特点【4】 栓剂给药的作用包括两个方面:其一为栓剂在腔道内起局部作用;其二为栓剂中的药物经由腔道吸收进入血液而发挥全身作用。局部作用主要为润滑抗菌、消炎、收敛、止痒、止痛局麻等作用,例如甘油栓,紫珠草栓及苯佐卡因栓等。这类局部作用是栓剂的特色和长处之所在,因其能够将药物直接送达病所。所以疗效显著,副作用小。全

注射级常用附加剂

1.pH调节剂:盐酸、氢氧化钠、碳酸氢钠、醋酸-醋酸钠缓冲剂等。增加稳定性和溶解度,减少刺激性。 2.表面活性剂:聚山梨酯类(吐温类)、泊洛沙姆(普朗尼克)、卵磷脂等,可用作增溶剂、润湿剂、乳化剂使用。 3.助悬剂:明胶、MC、CMC-Na等,混悬型用。 4.延缓药物氧化的附加剂: 1)抗氧剂亚硫酸氢钠(中性)、焦亚硫酸钠(酸性)、硫代硫酸钠(碱性)(药pH影响) 2)螯和剂EDTA-2Na采集者退散 3)惰性气体二氧化碳、氮气 5.等渗调节剂:氯化钠、葡萄糖 6.局部止痛剂:盐酸普鲁卡因、利多卡因、苯甲醇、三氯叔丁醇等。用于肌肉和皮下注射时产生疼痛的制剂。 7.抑菌剂:三氯叔丁醇、苯甲醇、硫柳汞等。只能在必要时加入。多剂量装的注射液,采取低温灭菌、滤过除菌或无菌操作法制备的注射液,应加入适宜的抑菌剂。静脉和脊椎注射禁用抑菌剂。一次用量超过5ml的注射液应慎重选择。 注射剂中除药物和溶剂外添加的其他物质统称为附加剂。加入附加剂的主要目的是:①增加药物的溶解度;②增加药物的物理和化学稳定性;③提高使用的安全性,减轻注射时的疼痛; ④抑制微生物生长。常用附加剂及选用原则是: (一)抗氧剂 抗氧剂为延缓或防止药物氧化的附加剂,用于易氧化药物的注射剂。金属离子可催化药物的氧化反应,故常加入金属螯合剂与由原辅料、溶剂及容器带入注射液的微量金属离子形成螯合物,消除其对药物稳定性的不良影响。医学教育|网收集整理制剂中通入惰性气体也可避免药物氧化。 (二)抑菌剂 抑菌剂的作用是杀灭注射剂中活的微生物或抑制其生长繁殖,提高制剂稳定性,用于多剂量装的注射剂及不经灭菌的无菌制剂。静脉和脊椎注射的产品不得加抑菌剂,一次用量超过5ml的注射液应慎加。常用抑菌剂如下。 (三)局部止痛剂

药剂学综述--新型栓剂的研究进展

新型栓剂的研究进展 药学2班万国运 2010071202【摘要】栓剂系指药物与适宜基质制成的供腔道给药的固体状制剂,具有适宜的硬度和韧性,无刺激性,引入腔道后在体温条件下能熔融、软化或溶解,且易与分泌液混合,逐渐释放药物。栓剂既可起局部作用,也可通过吸收进入血液循环而起全身作用。栓剂用于局部治疗时,药物直接作用于病灶,并逐渐释放药物,与其他药物相比,作用时间长、作用强。用于全身治疗时,由于药物在直肠吸收,药物避免了首过效应和胃中酶的破坏,不但可减少药物的毒副作用,而且起效快,并可免去打针吃药之痛苦。由于栓剂疗效确切,且不易受其他条件影响疗效的发挥,因此人们自然而然地想把更多的药物制成栓剂。但传统的普通栓剂又不能满足这一要求,所以各国相继开发了一些新型栓剂,笔者通过查阅文献就几种常用的新型栓剂的研究进展做一概述。 【关键词】新型栓剂;中空栓剂;双层栓剂;缓释栓剂;微囊栓剂;泡腾栓剂;凝胶栓剂 栓剂亦称塞药或坐药,是一种传统剂型,在国内外都有悠久的历史。我国用栓剂治疗疾病最早可上溯至《史记》,后汉《伤寒论》中有载有蜜煎导方,就是用于通便的肛门栓,晋代《肘后备急方》载有鼻用栓剂和耳用栓剂。国外公元前1550年埃及的《伊伯氏纸草本》中也有栓剂的记载[1]。栓剂的发展很迅速,近年来,随着制药新技术、新基质的出现,栓剂的研究及使用显著增加,出现了中空栓、双层栓、缓释栓、微囊栓、泡腾栓、凝胶栓等新型栓剂。 1. 中空栓剂

中空栓剂以空白或含药基质为外壳,中空部分填充液体或固体药物的一种栓剂。是1984年渡道善照等研制的新型栓剂,与普通栓相比,中空栓剂的栓壁薄,在2分钟内软化释放,起效远快,表明中空栓剂有释药速度快的优点;中空栓剂药量可以调整,在临床上预先制备中空栓剂外壳,据临床需要临时填充药物;对于治疗窗窄的药物,可根据血药浓度监测调整住院患者的用药方案,以确保疗效和减少不良反应,便于个体化用药;中空栓剂还可增加制剂稳定性[2]。 Shegokar等[3]在研究扑热息痛中空栓中加入辅料对药物在体内释放的影响时得出当加入硫代琥珀酸二辛钠和微分硅胶可以延长扑热息痛释放时间,甘油酯和Capryol PGMC可作为佐剂来加快扑热息痛的释放,增加疗效。李维等[4]制备环丙沙星中空栓时,先配置PVP不同浓度溶液待用,将半合成脂肪酸脂 (基质 ) 适量, 置合适容器中, 于 60 ℃水浴中融化后搅匀。采用内加辅料法将融化好的基质迅速注入涂有液体石蜡的栓模中, (栓模中心部分有一空心管) , 于室温 20 ℃静置两分钟, 形成空腔, 于空腔内定量注入 0.3 ml PVP液和环丙沙星原料药, 尾部封基质并刮平, 启模即得。外加辅料法: 融化好的基质按定量加入0.3 ml/粒 PVP液, 搅匀, 迅速注入中心有一空心管栓模中, 室温静置两分钟, 空腔内加环丙沙星,尾部封基质并刮平, 启模即得。研究结果显示该中空栓的制备对提高在胃内易受消化液影响的药物及难溶性药物的生物利用度问题具有非常重要的临床意义。吴德敏等[5]取半合成脂肪酸甘油酯适量于60℃水浴中融化,加入4%的吐温80,再加入过100 目筛的氨基葡萄糖细粉,搅拌均匀,注入事先消毒灭菌并涂抹甘油的栓模中,冷凝后

药物制剂常用的辅料

药物制剂中常用附加剂(辅料)种类简介 附加剂是药物制剂中除主药以外的一切附加材料的总称,也称辅料。 一、要求: 1、对人体无毒害作用,几无副作用; 2、化学性质稳定,不易受温度、pH值、保存时间等的影响; 3、与主药无配伍禁忌,不影响主药的疗效和质量检查; 4、不与包装材料相互发生作用; 5、尽可能用较小的用量发挥较大的作用。 二、分类:按其使用目的和作用可分为数十个大类,在此只列出主要的七大类。(一)防腐剂:也叫抑菌剂。是为防止药剂受微生物污染而引起霉败变质,确保药剂质量。但静脉和脊髓注射剂一律不准加入防腐剂,其他注射剂加防腐剂时,在标签上必须注明使用品种和用量。常用防腐剂见下: 1.苯甲酸 Benzoic Acid 白色或微黄色轻质鳞片或针状结晶,无臭,熔点121.5-123.5℃,受热可升华。难溶于水(0.29%,20℃),易溶于沸水、乙醇(1:2:3,20℃)及油脂,溶于甘油。抑菌力与pH值关系很大,酸性时抑菌力较好,pH超过4.4时,效果显著下降。适用于内服外用液体制剂,一般浓度为0.05-0.1%,口服日许量5mg/kg。 不适用于眼用溶液和注射剂 2.山梨酸 Sorbic Acid 白色结晶性粉末,有微弱特臭熔点134.5℃,溶解度:冷水1:700、沸水1:27、乙醇1:10、氯仿1:16、乙醚1:20、甘油1:300、丙二醇1:16、油脂约1:150。对霉菌和细菌有较强作用、特别适用于含有吐温的液体制剂,浓度为0.2%,不含吐温的制剂为0.05-0.2%。pH3.0时抑菌作用较尼泊金强,可用于内服制剂。在碱性溶液中效力骤降。 3.乙醇 Alcohol 无色透明具挥发性液体,沸点78℃,易燃烧,与水、乙醚、氯仿可任意混合。20%时有抑菌作用,若同时含有甘油、挥发油等抑菌性物质时,稍低浓度也可抑菌。 液体药剂中单独添加乙醇为抑菌剂的不多见。 4.对羟基苯甲酸酯类(尼泊金类)Parabene(Nipagin) 常用的有:甲、乙、丙三种。为白色或微黄色结晶性粉末,无嗅或有轻微香味,味灼麻而苦。 抑制霉菌作用较强,但对细菌较弱。适用于弱酸和中性溶液,最适条件pH<6或7。广泛用于内服制剂。低浓度丙二醇可加强其作用。浓度为0.02-0.05%。乙酯应用较多。 因水中溶解度小,需先加热至80℃左右,搅拌溶解,温度过高细粉将熔融后聚结在一起,则不易溶解。其水溶液加热灭,pH>7易分解。 5.苯甲醇 Benzyl Alcohol 无色液体,几无臭,苛辣味,比重1.04-1.05,沸点203-208℃,溶解度:水1:25,水溶液中性,与乙醇\氯仿、脂肪油等任意混合。 苯甲醇 Benzyl Alcohol 无色液体,几无臭,苛辣味,比重 1.04-1.05,沸点203-208℃,溶解度:水1:25,水溶液中性,与乙醇\氯仿、脂肪油等任意混合为局部止痛剂,有抑菌作用,用于偏碱性溶液,常用浓度为1-3%。 有的产品在水中澄明度不好,主要是含不溶性氯化苄杂质的缘故。 6.苯乙醇 Phenethanolum

药剂学综述靶向制剂的应用及发展方向

靶向制剂的应用及发展方向 摘要靶向制剂可以高效提高血药浓度,减少毒副作用。此文简要介绍靶向制剂的分类,剂型及其应用。 关键词靶向制剂;微球;纳米粒;脂质体;应用 靶向制剂的概念起始于诺贝尔医学奖获得者德国科学家Paul Ehrlich于20世纪初提出[1]。随着现代分子生物学、细胞生物学、药物化学以及材料科学等的不断进步和发展,人们开始针对特定疾病的相关靶点,设计和构建靶向制剂,靶向制剂的研究已经成为国内外药剂学研究的热门之一。 靶向制剂的主要优势是可以提高靶组织的药理作用,增强药物疗效,同时减小全身的不良反应,为第四代给药系统(DDs)。由于癌症为世界上较为难治愈的疾病之一,而放射性治疗和化学药物治疗对患者的正常细胞损伤太大,毒副作用强。所以目前,靶向制剂被认为是抗癌药的最适宜的剂型。 1.概述 靶向药物可以通过特异性识别肿瘤组织、肿瘤细胞的特定结构和靶点,将治疗药物最大限度地运送到靶区,使治疗药物在靶区浓集超出传统制剂的数倍乃至数百倍,具有特异性的肿瘤杀伤效果,同时减少药物的用量,降低药物不良反应,而且便于控制给药的速度和方式,达到高效低毒的治疗效果[2]。靶向制剂的作用特点[3]主要有:①提高药物对靶组织的指向型;②降低药物对于正常细胞的毒性减少剂量;③增加药物的生物利用度;④提高药物的稳定性。 1.1靶向制剂的分类 靶向制剂的特点是定位浓度、高效、低毒、控制释药、血浓恒定、顺应性提高。靶向制剂通过作用机制上分类,可分为:①被动靶向制剂,药物以微粒(乳剂、脂质体、微囊、微球等)为载体通过正常的生理过程运送至肝、脾、肺等器官;②主动靶向制剂,是指表面经修饰后的药物微粒,不被单核吞噬系统识别,或其上连接有特殊的配体,是其能够与靶细胞的受体结合等;③物理化学靶向制剂,是应用温度、pH或磁场等外力将微粒导向特定部位。靶向制剂目前常用的药物载体有乳剂、脂质体、微囊、微球、纳米囊、纳米球、磁性导向微粒,也有

药剂学思考题09-精简版

药剂学思考题 第一章绪论 1.剂型、制剂、药剂学的概念是什么? 2.药典的定义和性质 3.什么是处方药与非处方药 4.什么是GMP与GLP 第三章液体制剂 1. 口服液体制剂的定义、特点和质量要求是什么? 2. 口服液体制剂按分散系统如何分类? 3. 什么叫表面活性剂、胶束和临界胶束浓度?分哪几类,在药剂中主要有哪几个作用? 4.什么是HLB值,其值的大小意味着什么?与应用有什么关系? 5. 表面活性剂是怎样进行增溶的? 6.液体制剂常用附加剂有哪些? 7. 简述增加药物溶解度的方法有哪些? 8. 简述影响溶解速度的因素有哪些? 9. 溶液剂的制备方法及注意事项。 10. 什么是糖浆剂,其制备方法有哪些? 11. 什么是芳香水剂、酊剂、醑剂和甘油剂? 12. 混悬剂的的定义、特点及质量要求有哪些? 13. 用stoke’s公式描述影响沉降的因素,并说明加入高分子助悬剂具有哪些作用? 14. 简述混悬剂中常用的稳定剂及在制剂中的作用。 13. 混悬剂的制备方法有哪些? 14.说明混悬剂物理不稳定性的表现及其解决方法? 15. 混悬剂质量评定的指标有哪些? 16. 什么叫乳剂?主要有哪几种类型?其组成、特点如何? 17. 如何选择乳化剂? 18. 说明乳剂物理不稳定性的表现及其解决方法? 19. 乳剂的制备方法有哪些? 20. 简述乳剂中药物加入方法。 21. 乳剂的质量评定有哪些? 第四、五章固体制剂 1.写出散剂的概念与制备工艺。 2.散剂的质量要求有哪些? 3.简述颗粒剂的概念。颗粒剂和干混悬剂有和区别? 4.简述颗粒剂的制备工艺。 5.颗粒剂的质量检查项目有哪些? 6.胶囊剂的概念、分类与特点是什么? 4.空胶囊的组成是什么?有哪些规格? 5.简述软胶囊剂的组成与质量控制 6.胶囊剂的质量要求是什么? 7.片剂的概念和特点是什么? 8.片剂的可分哪几类? 9.片剂的质量要求有哪些? 10.片剂常用的辅料有哪些? 11.什么是湿法制粒,常用方法有哪些? 12.写出湿法制粒压片的工艺流程。 13.简述单冲压片机的工作原理。 14.简述压片中可能发生的问题及原因。 15.片剂包衣的目的何在。 16.包糖衣的基本过程及包各层的目的。 17.薄膜包衣的材料有哪些? 18.简述包衣中出现的问题及原因。 19.片剂的质量检查项目有哪些? 18.简述片剂崩解的机理,常用的崩解有那些? 19.何为溶出度,哪些类型药物需做溶出度实验? 20.以片剂为例说明固体制剂在体内的过程?如何改善固体制剂的药物溶出速度? 22.某复方药物片剂主药为茶碱和巴比妥,其中茶碱标示量为每片100mg,巴比妥标示量为每片40mg。质量要求其含量为标示量的90.0—110%。加完所有辅料的颗粒经测定茶碱含量为36.2%,巴比妥含量15.0%,求理论片重应为多少?

现代药剂学的发展

现代药剂学的发展 药剂学是研究药物剂型及制剂的一门综合性学科,其主要研究内容包括:剂型的基础理论、制剂的生产技术、产品的质量控制以及合理的临床应用,研究、设计和开发药物新剂型及新制剂是其核心内容。随着科学技术的飞速进步,特别是数理、生命、材料、电子和信息等科学领域的发展和创造,极大地推动了药剂学的发展,使药剂学从经验探索阶段步入了科学研究阶段。 现代药剂学的核心内容是:在现代理论指导下,应用现代技术开展药物剂型及制剂的研究,在完善和提高现有普通剂型及制剂的生产技术、质量控制的同时,药物传递系统(drug delivery system, DDS)的出现是药剂学领域中现代科学技术进步的结晶,大量新型药物剂型及制剂的问世是药剂学研究领域中取得突破性进展的重要标志性成果。 药剂学总体发展方向: ?基本理论(缓控释、透皮、靶向理论) ?新剂型、新制剂、新辅料(高分子胶束等) ?新技术、新机械和设备(粉末直接压片等) ?中药、生物技术药物制剂 剂型重要性(作用特点): 1)剂量准确、给药方便 2)改变药理作用 3)降低毒副作用(“三小”:毒、副作用、剂量小) 4)增加稳定性 5)调节给药速度(“三效”:高、速、长效) 6)提高疗效(“三定”:定量、定时、定位) 药物制剂或剂型必须具备的基本要素:安全、有效、稳定、质量可控、使用方便综合现代药剂学研究领域中取得的主要成果,概括为:快速起效、缓控释和靶向性新技术、新制剂与新剂型。本文主要综述近年来现代药剂学研究领域中取得的新进展。 1.快速起效新技术、新制剂与新剂型 根据某些需及时治疗的疾病(如心绞痛等),尽管临床首选方案是采用注射给药,但该用药方案必须在医疗机构中实施,对处理远离医疗机构的突发性病例无能为力,虽然散剂、颗粒剂、泡腾制剂的冲服固然有快速起效作用,但携带和使用极为不便,因此,研制具有快速起效、携带方便的药物制剂及剂型是其主要研究方向,口腔、鼻腔和肺部给药系统为研究热点速释型口腔给药系统药物经口腔粘膜吸收直接入血,具有快速起效,生物利用度高(避免胃

药剂学实验1

实验一溶液型液体制剂的制备 一、实验目的 1.掌握液体制剂制备的各项基本操作。 2.掌握常用溶液型液体制剂制备方法、质量标准及检查方法。 3.了解液体制剂中常用附加剂的正确使用、作用机制及常用量。 二、实验原理 溶液型液体制剂是指药物以分子或离子状态溶解于适当溶剂中制成的澄明的液体制剂。溶液型液体制剂可以口服,也可以外用。常用的溶剂有水、乙醇、甘油、丙二醇、液状石蜡、植物油等。 就分散系统而言,溶液型液体制剂主要为低分子溶液,其分散相(药物)小于1nm,通常以分子或离子状态溶解在分散介质中。 溶液型液体药剂的制法有溶解法、稀释法和化学反应法,以溶解法应用最多。其操作步骤如下: (1)药物的称量和量取固体药物常以克为单位,根据药物量的大小,选用不同的架盘天平称量。液体药物常以毫升为单位,选用不同的量杯或量筒进行量取。用量少的液体药物,也可采用滴管计滴数量取(标准滴管在20℃时,1ml蒸馏水应为20滴,其重量误差在±0.10g 之间),量取液体药物后,应用少量蒸馏水洗涤器具,洗液合并于容器中,以减少药物的损失。 (2)溶解及加入药物取处方溶液的1/2~3/4量,加入药物搅拌溶解,必要时加热。难溶性药物应先加入溶解,也可加入适量助溶剂或采用复合溶剂,帮助溶解。易溶药物、液体药物及挥发性药物最后加入。酊剂加至水溶液中时,速度要慢,且应边加边搅拌。 (3)过滤固体药物溶解后,一般都要过滤,要选用玻璃漏斗、布氏漏斗、垂熔液玻璃漏斗等,滤材有脱脂棉、滤纸、纱布、绢布等。 (4)质量检查成品应进行质量检查。 (5)包装及贴标签质量合格后,定量分装于适当容器内,内服液体药剂用蓝色标签,外用则为红色标签。 三、实验仪器与材料 仪器:烧杯,试剂瓶,玻璃漏斗,量筒,磨塞小口玻璃瓶,普通天平,恒温水浴箱。 材料:薄荷油、滑石粉、轻质碳酸镁、活性碳、碘化钾、碘、硫酸亚铁、枸橼酸、蔗糖、纯化水、稀盐酸、甘油、胃蛋白酶。 四、实验内容 (一)低分子溶液型液体制剂 1、芳香水剂(薄荷水)的制备(分散溶解法) 【处方】薄荷油1ml 纯化水加至500ml 【制备】(1)取薄荷油,加5.0g滑石粉,在研钵中研匀,移至细口瓶中。 (2)加入蒸馏水,加盖,振摇10min。 (3)反复过滤至澄明,再由滤器上加适量蒸馏水,使成500ml,即得。 (4)另用轻质碳酸镁、活性碳各7.5g,分别按上法制备薄荷水。记录不同分散剂制备薄荷水观察到的结果。 【质量检查】比较三种分散剂制备的薄荷水pH、澄明度、嗅味等。 【注释】(1)本品为薄荷油的饱和水溶液(约0.05%,ml/ml),处方用量为溶解量的4倍,

药剂学考试重点

填空: 1.溶出度或释放度:普通片剂,规定在45min内溶出标示量的70%以上;缓控释制剂,规定至少取三个时间点,即在0.5~2h内累计释放约30%(考察突释),释放50%的时间点(考察释药特性),最后取样点的累计释放率为标示量的75%以上(考察释放是否完全)。 2.中国药典规定的片剂崩解时限:普通片15min,薄膜衣30min,肠溶衣、糖衣1h 重量差异:糖衣片包衣前检查,薄膜衣包衣后。 3.制备高分子溶液要经过的两个过程有限溶胀和无限溶胀。 4.制剂技术、药用辅料、制剂设备是制备优良制剂不可缺少的三大支柱。 5.物料混合时,若各组分比例相差较大,宜采用等量递增法进行混合。 6.缓控释制剂的释药原理有溶出、扩散、溶蚀、渗透压和离子交换。 7.药物制剂的稳定性考察可以分为加速试验和长期实验。 8.脂质体的组成成分是卵磷脂和胆固醇。 9.活性炭在酸性溶液中吸附作用强,使用之前应活化。 10.含有毒剧药品的酊剂,每100ml相当于原药物10g,其他酊剂,每100g相当于原药物20g。 11.胃肠道吸收快慢顺序:溶液剂>乳剂>混悬剂>散剂>颗粒剂>胶囊剂>片剂>丸剂 12. 控制药物释放的机制:溶出、扩散、溶蚀、渗透压、离子交换。 13.滴丸常用基质,水溶性基质有聚乙二醇PEG,非水溶性基质如硬脂酸,很少用;滴丸的冷凝液,水性有水和不同浓度乙醇,油性有液状石蜡。影响滴丸的因素:处方、药液温度、滴嘴的内外径、冷凝液温度和黏度、滴距、滴速。 14.正吸附:表面活性剂在溶液表面层聚集的现象。 15. Krafft点:随温度升高,离子型表面活性剂的溶解度会增大,当升高至一定温度是,其溶解度急剧升高,该温度称为Krafft点,相应的溶解度即为该离子表面活性剂的CMC。

1液体制剂常用附加剂及其作用

1液体制剂常用附加剂及其作用:增溶剂:具有增溶能力的表面活性剂,助溶剂:难容的药物与加入的第三种物质在溶剂中形成与分子等同的络合物,潜溶剂:能提高难容性药物溶解度的混合溶剂,防腐剂:防止药物制剂由于细菌微生物生长的物质。2评定混悬剂质量的方法:微粒大小的测定沉降容积比的测定.絮凝度的测定重新分散试验ζ电位测定流变学测定3乳剂稳定性变化:乳剂的分层:指乳剂放置后出现分散相粒子上浮或下沉现象,主要由内外相密度差引起。乳剂的絮凝:乳剂中的乳滴(分散相)发生可逆的(可以复原的)聚集称为絮凝。乳剂的转相:乳剂由于某些条件的变化而改变乳剂的类型称为转相。转相主要由乳化剂性质的改变或添加了相反类型乳化剂引起,乳剂的合并与破坏:乳滴大小不一4注射剂主要附加剂和作用:抑菌剂抗氧剂PH调节剂局部止痛剂等渗调节剂5粉碎操作对制剂过程的意义::①有利于提高难溶性药物的溶出速度和生物利用度;②有利于提高药物在制剂中的分散性;③有利于提高有效成分从药材中的浸出;④有利于各种制剂的制备。6片剂的制备方法与分类:湿法制粒压片法,干法制粒粉末直接压片半平式颗粒压片法7压片过程发生的问题原因分析:1.松片黏合力差,压缩力不足 2.裂片压力分布不均及物料的压缩成型性差3黏冲颗粒不干燥,物料较易吸湿润滑剂使用不当或量不足,冲头表面绣浊刻字粗糙,4-片面差异迟缓颗粒流动性不好,颗粒内的细粉太多或颗粒大小差悬殊,冲头与模孔吻合性不好5崩解迟缓6溶出超限片剂不崩解,颗粒过硬7片剂中药物含量BU均8中药浸出过程;1.浸润阶段:溶剂附着于药粉表面,使之润湿,然后渗入细胞内。2.溶解阶段:溶剂逐渐溶解可溶性成分。3.扩散阶段:溶剂在细胞中溶解,胶溶可溶性成分后,细胞内形成高浓度的溶液而具有较高渗透压,细胞外溶剂不断渗入细胞内,细胞内溶质不断向外扩散。4.置换阶段:用浸出溶剂或稀浸出液随时置换药材粉粒周围的浓浸出液,医学教育|网收集整理使之浓度梯度保持最大。影响浸出的因素: 药材粗细、浸出时间、浸出温度、浸出梯度、提取压力。浸出方法:煎煮法渗溶法大孔吸附树脂分离技术超临界萃取技术8延缓药物水解方法:①调节PH②选用适当的溶剂制成维溶性盐或酯④形成络合物⑤加入表面活性剂制成固体制剂控制湿度氧化的方法①除去氧气;②加入抗氧剂;③调节PH值。微囊与微球释要的过程:1)透过囊壁扩散释药2)囊壁溶解释药3)囊壁降解释药10影响药物释放速率的因素1)微囊与微球粒径:在厚度相同的情况下,粒径越小释药越快。2)囊壁的厚度:囊材相同时,囊壁越厚,释药越慢。3)囊材的理化性质:孔隙率较小的囊材,释药较慢。常用几种材料形成的囊壁释药速度的比较:明胶>乙基纤维素>苯乙烯-马来酐共聚物>聚酰胺4)药物的性质:在囊材等相同时,溶解度大的药物释药较快。5)附加剂的性质:加入疏水性物质如硬脂酸、蜂蜡、十六醇等,可使药物缓释6)工艺条件:成囊时采用不同工艺,对释药速度有影响。7)pH值的影响:不同pH值对释药速度有影响。8)离子强度的影响:在不同的释放介质中微囊的释药速度不同。固体分撒体的类型1简单低共溶混合物-——微晶形式2固态溶液——分子状态3共沉淀物——无定形物固体分散体的制备方法1熔融法2溶剂法3溶剂熔融干燥法4溶剂喷雾干燥法5研磨法6双螺旋挤压法。固体分散剂速解原理1药物的高速分散状态有利于速解分子状态分散,胶体无定型和微晶的状态分散2载体材料对药物溶出的促进作用,可润湿性高度分散性抑晶作用缓解原理;载体材料形成网状骨架结构,药物以分子或微晶状态分散于骨架内,药物的溶出必须首先通过载体材料的网状骨架扩散。包合物制备方法1饱和水溶滴法研磨法冷冻干燥法喷雾干燥法药物微囊化得目的;掩盖药物的不良气味及口味2提高药物稳定性3可防止药物在胃内失活4使液态药物固态化便于应用和贮存5使药物浓集与靶区6可制备缓释或抗释制剂7可将活细胞或生物活性物质包囊微囊的制备;1物理化学法单凝聚法复凝聚法溶剂非溶剂法改变温度法液中干燥法2化学法界面聚集法辐射交联法3物理机械法喷雾干燥法喷雾凝结法流氏床包衣法多孔离心法超临界流体法影响粒径的因素;1药物的粒径2载体材料的用量3附加剂的浓度4材料的黏度5制备方法6制备温度7制备时搅拌速率 微囊中药物的释放机理;1扩散微囊或微球进入体后体液向其中渗透而逐渐使其中药物溶解并扩散出来2囊膜或骨架溶解物理化学过程3囊膜与骨架的消化与降解脂质体的特点:细胞亲和性和靶向性2缓释性3降低药物毒性4提高药物稳定性脂质体的制备方法:1薄膜分散法2逆向蒸发法3冷冻干燥法4注入法5超声波分散法6PH梯度法7前脂质体法脂质体修饰:长循环脂质体2免疫脂质体3糖基脂质体4温度敏感脂质体5PH敏感脂质体 脂质体的质量评价;1形态与粒径及其分布2包封率3渗透率4磷脂的氧化程度5氧化指数的测定6有机溶剂残留量7脂质体制剂缓释控释制剂的特点1对半衰期短的或需要频繁给药的药物2血药浓度峰谷波动小血浓平稳3可减少用药的总剂量

药剂学综述浅谈阿莫西林类药物的研究发展

浅谈阿莫西林类药物研究进展 【摘要】本文首先讲述的是阿莫西林类药物的不同剂型及不同剂型的作用机理、优势。阿莫西林的制剂有阿莫西林胶囊、颗粒、分散剂、片剂、注射剂等,它们在临床应用中发挥了不同的作用,可见剂型对一个药物的药理作用的影响是重要,充分证明的药剂学的重要性,阿莫西林类药物虽为光谱抗生药,但它们的不良反应也是不容忽视的,本文简略的介绍了各种剂型的常见不良反应,阿莫西林类药物性质相对稳定,与其他药物联用可以发挥不同的疗效,也能在原有功效的基础上有所提高。近几年的阿莫西林类药物在市场上应用广泛,各界人士也在积极开发研究它们的新工效及不良反应,本文结合近期的期刊等文献做出了小结,简单介绍阿莫西林类药物发展近况, 【关键词】阿莫西林类;不同剂型;临床应用;联合用药 引言阿莫西林作为一种广谱抗生素,用以治疗伤寒、其他沙门菌感染和伤寒带菌者可获得满意疗效。在过去的十几年里阿莫西林可以说是伴随着我们这一代长大的,然而在日常生活中人们无法区分自身和家人是否患有伤寒、其他沙门菌等引起的疾病,有些患者只要感冒咳嗽就会自己去药店自行购买阿莫西林,甚至有时周围的诊所也会随便开给患者阿莫西林。在这个抗生素乱用滥用的时代,虽然国家正在积极采取措施呼吁医生和患者慎重使用这类药品,但我想公民自身真正了解这类药物的正确使用情况才能真正减少阿莫西林这类药物的乱用。

阿莫西林,也称之为羟氨苄青霉素,由于青霉素类广谱β-内酰胺类抗生素是20世纪70年代推广应用的一种抗菌类药物,这个药物具有广泛性和耐酸性,并且疗效显著[1],阿西莫林其化学结构中含有氨基侧链,与氨苄西林相比,在其侧链苯环上多一个羟基,所以二者性质较为相似。阿莫西林性状为类白色或白色粉末、呈结晶状、味微苦、不溶于乙醇、微溶于水。阿莫西林杀菌作用强,穿透细胞壁的能力也强。是目前应用较为广泛的口服青霉素之一,其制剂有胶囊、片剂、颗粒剂、分散片等等。阿莫西林适用于溶血链球菌、肺炎链球菌、葡萄球菌或流感嗜血杆菌所致中耳炎、鼻窦炎、咽炎、扁桃体炎等上呼吸道感染,急性支气管炎、肺炎等下呼吸道感染,并用于大肠埃希菌、奇异变形杆菌或粪肠球菌所致的泌尿生殖道感染,溶血链球菌、葡萄球菌或大肠埃希菌所致的皮肤软组织感染,以及急性单纯性淋病,等等。在阿莫西林被用为治疗支气管和慢性肺阻塞性疾病的抗生素后,在之后几年已有人开始呼吁这类药的使用应该被控制,由于嗜血杆菌属和肺炎双球菌的耐受性、阿莫西林联用价格较贵、其他广谱抗生素较高的耐受菌株,对于轻微到中等疾病的治疗在使用阿莫西林类抗生素时要仔细考虑[2]。 一、不同剂型不同作用 1、阿莫西林胶囊 口服后迅速吸收,约75~90%可自胃肠道吸收。使其在体内抗菌作用明显优于氨芐青霉素(约为氨苄西林的2 倍)。在临床上,口服本品0.5g 的高峰血清浓度于1 小时达到,为10.0 g/ml,约为口服同

药剂学论文

生物技术药物制剂研究现状及展望蛋白与多肽类药物剂型的研究现状和展望 生命科学学院 生131-1 吴定柳 201370501142 2015/12/28

综述蛋白与多肽类药物剂型的研究现状和展望 摘要:目的介绍多肤及蛋白质类药物在可注射性及非注射性系统药物释放系统中稳定性和生物利用度研究的最新进展,为多肤及蛋白质类药物缓释制剂的研究与开发提供理论依据。方法通过查阅近几年来生物技术药物释放系统中多肽及蛋白质类药物的稳定性、半衰期及生物利用度研究资料分析归纳造成此类药物不稳定性、半衰期短、生物利用度低及个体差异严重的主要原因以及相应采取的处方及工艺学措施。结论蛋白质和多肽类药物的二级、三级以及空间结果受外界的温度、压力和pH影响较大。同时进入人体内也容易被各种酶类降解掉,使其药性减小或丧失,不能在体内长时间停留,它们的半衰期和生物利用度自然没有达到预期的效果。而药物剂型能够对药物起到很好的保护作用。通过改善药物剂型的加工处方和工艺的方法来保护多肽和蛋白质类药物的药性。 关键词:蛋白质;多肽;稳定性;生物利用度;药物剂型 根据生物技术药物的含义,其物理化学性质的最大特点是分子量大。分子量较小的是多肽类药物,但其分子量也是接近或超过1000个道尔顿,而分子量较大的多数是蛋白类药物,如抗体其分子量可达到150kD。分子量巨大的直接后果是大多数生物技术药物都不能自由通过生物体内的各类生物屏障系统,因而生物技术本身通过口服、透皮或黏膜吸收的生物利用度底,药效不明显,通常采用的给药的方式是注射给药,这大大限制了药物的应用和病人的顺应性。很多研究者多年来一直想突破这一难题,但成功的例子寥寥无几,除了少数几个多肽、寡肽药物有口服、鼻喷剂上市外,其他的几乎都是以失败而告终。 我国在过去的二十里的生物技术药物一直以仿制为主,多数也只是多肽或细胞因子及胰岛素等分子量较小的产品。其中仅有的创新品种“重组人P53腺病毒注射夜”,其上市剂型不够完善,需要在“-20℃冷藏保存,用前拿出,防止反复冻融”,它的使用方式极不方便。 即使是生物技术药物通过了生物的各种屏障系统,但在体内又遇到了另一个问题。由于生物分子的结构和功能对温度、pH、离子强度及酶等条件极为敏感,很容易被降解或失活。所就会大大影响了它的作用强度和作用时间,从而使生物技术药物治疗没有达到预期的效果。我们就不得不通过多次给药和增加给药量才有可能达到治疗的效果。因此,如何使生物技术药物在制备、包装、贮存、运输、

药剂学实验.doc

实验二溶液型液体制剂的制备 一、实验目的 1.掌握液体制剂制备过程的各项基本操作。 2.掌握常用溶液型液体制剂制备方法、质量标准及检查方法。 3.了解液体制剂中常用附加剂的正确使用、作用机制及常用量。 二、实验原理 (一)溶液型液体制剂的概念 液体制剂(liquid pharmaceutical preparations)系指药物分散在适宜的分散介质中制成的可供内服或外用的液体形态的制剂。溶液型液体制剂分为低分子溶液型和高分子溶液型。常用溶剂为水、乙醇、丙二醇、甘油或混合液、脂肪油等。 1.低分子溶液剂系指小分子药物以分子或离子状态分散在溶剂中形成的均相的可供内服或外用的液体制剂。有溶液剂、芳香水剂、糖浆剂、甘油剂、酊剂、醑剂和涂剂等。溶液型液体制剂为澄明液体,溶液中药物的分散度大,能较快的吸收。 2.高分子溶液剂系指高分子化合物溶解于溶剂中制成的均相液体制剂。高分子溶液剂以水为溶剂的,称为亲水性高分子溶液剂,或称胶浆剂。以非水溶剂制备的高分子溶液剂,称为非水性高分子溶液剂。由于高分子的分子大小较大(100nm以下),因此也属于胶体。高分子溶液剂属于热力学稳定系统。(二)溶液型液体制剂的制备方法 低分子溶液型液体制剂的制备方法主要有溶解法、稀释法和化学反应法。其中溶解法最为常用。芳香水剂和醑剂等制剂的制备过程中,如以挥发油和化学药物为原料时多采用溶解法和稀释法,以药材为原料时多用水蒸气蒸馏法。酊剂的制备还可以采用渗漉法。 胶体溶液和高分子溶液的配制过程基本上与低分子溶液型液体制剂类同,但将药物溶解时宜采用分次撒布在水面或将药物粘附于已湿润的器壁上,使之迅速地自然膨胀而胶溶。 根据液体制剂的不同的目的和需要可加入一些必要的添加剂,如增溶剂、助溶剂、潜溶剂、抗氧剂、矫味剂、着色剂等附加剂。 制备时,通常液体药物量取比称取方便。量取体积单位常用ml或L,固体药物是称重,单位是g或kg。相对密度有显著差异的药物量取或称取时,需要考虑其相对密度。滴管以液滴计数的药物要用标准滴管,且需预先进行测定,标准滴管在20℃时1ml蒸馏水为20滴,其重量差异可在0.90~1.10g之间。药物的称量次序通常按处方记载顺序进行,有时亦需变更,特别是麻醉药应最后称取,且需有人核对,并登记用量。 量取液体药物应用少量蒸馏水荡洗量具,荡洗液合并于容器中。 加入的次序,一般以助溶剂、稳定剂等附加剂应先加入;固体药物中难溶性的应先加入溶解;易溶药物、液体药物及挥发性药物后加入;酊剂特别是含树脂性的药物加到水溶性的混合液中时,速度宜慢,且需随加随搅。为了加速溶解,可将药物研细,以处方溶剂的1/2~3/4量来溶解,必要时可搅拌或加热,但受热不稳定的药物以及遇热反而难溶解的药物则不应加热。固体药物原则上应另用容器溶解,以便必要时加以过滤(有异物混入或者为了避免溶液间发生配伍变化者),并加溶剂至定量。 最后成品应进行质量检查,合格后选用清洁适宜的容器包装,并以标签(内

相关文档
最新文档