泰勒公式在一类导数问题中的应用

泰勒公式在一类导数问题中的应用
泰勒公式在一类导数问题中的应用

2019年第9期中学数学研究?45?

取兀°=ln(一-1)>-Ina,则f(x0)=ae2x()+(a-a

2)e XQ-x>ae~x i+(a-2)e x°-e x°=ae2x°4-(a-

3)評=0.

由于几”仏)=/(In—)<0,所以/■(%)在(In

a

丄,+ 8)有一个零点.

a

当光丘(一8,0)时,0 (a-2)e x-x-(a-2)-x.

令(a-2)-光MO,得兀Wa-2.取街=a-2 <0(a a

-2)-(a-2)=0,又=/(ln-)<0.

a

故/(光)在(-oo,In丄)有一个零点.

a

参考文献

[1]李素波.浅析放缩法在应用零点存在判定定理时的作用[J].中国数学教育,2016(10)=53-57.

泰勒公式在一类导数问题中的应用福建省泉州第五中学(362000)王文佳杨苍洲

导数问题中参数范围的确定、分类讨论时界点的寻找,及如何恰当的构造函数是导数部分的难点,也是高考及各级模拟考常考的难点和热点?其中,大多数时候我们对自己所构造的函数有一种“不信任”,即不确定其是否会达到我们所预想的效果.究其原因是忽略了一元函数泰勒展式在解决含参数问题中的重要作用.本文以高频出现的指数函数/(%) =『为例,说明在一类问题中如何应用泰勒公式快速的确定参数范围,同时阐明此类问题中构造函数的隐含理论支撑之所在.

1-函数/(%)=e*在%°处的泰勒公式

函数/(%)在处的泰勒展开式:/(%)=/(%o) +f(%0)(x-%)+"(力-?0)2+??-+,J

(%_兀0)口+0((%-A;0)n).

特别地,当/"(%)二『,光0二0时,『二1+%+齐

n X

+…+石+???■

2.用泰勒展开式预测参数的取值范围

例1(2010新课标全国理科21)设函数/■(%) x12

=e-1-x-ax.

(I)若。二0,求/■&)的单调区间;

(II)若当光三0时/(兌)三0,求a的取值范围.

解析:(I)略;(H)先证当兀时M1+ %2

光+亍

构造函数g(光)二『-(1+兌+专■)(心0),则g,(%)=e x_1-x,g\x)=e x-1M0,所以g'(x)

为[0,+00)上的单调递增函数,从而有g'(%)> g(0)二0,从而g(%)为[0,+00)上的增函数,所以

g(光)M g(0)二0,即e x1+X+牙(当且仅当%二0时,等号成立),得证.

由e x-1-x-ax2M0等价于『-(1+%+牙) +(-a+/孑0.显然,当a W+时,上式恒成立.

下证:当a>y时,上式不恒成立.由f(兀)二b -1-2ax,f(x)=e x-2a,所以当兌丘(0,ln2a)时,fM<0,/(^)单调递减,故f g

综上所述,a W

评注:(i)关于构造函数gd),由于原题目中最高次项为兌$,所以只取函数y-e的泰勒展式前三项,即到二次项;

(ii)关于函数呂(光)的值域,由其泰勒展式可知g(兀)一定非负,所以可大胆证明g(光)M0;

(iii)关于参数在另一半取值不合题意的讨论,

导数公式的证明(最全版)

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) For personal use only in study and research; not for commercial use f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx For personal use only in study and research; not for commercial use =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)]

=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) For personal use only in study and research; not for commercial use 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx

f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx

泰勒公式及其在解题中的应用

本科生毕业设计(论文) ( 2014届) 设计(论文)题目泰勒公式及其在解题中应用 作者周立泉 分院理工分院用数学1001班 指导教师(职称)徐华(讲师) 专业班级数学与应用数学) 论文字数 8000 论文完成时间 2014年4月3日 杭州师范大学钱江学院教学部制

泰勒公式及其在解题中应用 数学与应用数学1001班周立泉指导教师徐华 摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用. 关键词:泰勒公式;数学分析;导数 Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHua Abstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications. Keyword:Taylor's formula;Mathematical analysis; derivative.

高等数学公式导数基本公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 222122an 11cos 12sin u du dx x t u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x x x x a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(cot sec )(tan 22= '='?-='?='-='='2 2 22 11 )cot (11 )(arctan 11 )(arccos 11 )(arcsin x x arc x x x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x xdx x C x dx x x C x xdx x dx C x xdx x dx x x )ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x a x a dx C x x xdx C x x xdx C x xdx C x xdx t +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln an 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

导数公式及证明

编辑本段导数公式及证明 这里将列举五类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来): 基本导数公式 1.y=c(c为常数) y'=0 2幂函数。y=x^n, y'=nx^(n-1)(n∈Q*) 熟记1/X的导数 3.(1)y=a^x ,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数 4.(1)y=logaX, y'=1/xlna (a>0且a不等于1,x>0) ;熟记 y=lnx ,y'=1/x 5.y=(sinx )y'=cosx 6.y=(cosx) y'=-sinx 7.y=(tanx) y'=1/(cosx)^2 8.y=(cotx) y'=-1/(sinx)^2 9.y=(arcsinx)y'=1/√1-x^2 10.y=(arccosx) y'=-1/√1-x^2 11.y=(arctanx) y'=1/(1+x^2) 12.y=(arccotx) y'=-1/(1+x^2) 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』 2.y=u/v,y'=(u'v-uv')/v^2 3. 原函数与反函数导数关系(由三角函数导数推反三角函数的): y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的: y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q。主要应用导数定义与

泰勒公式及其应用

泰勒公式及其应用 数学学院数学与应用数学专业 2009级杨立 指导教师吴春 摘要:泰勒公式以一种逼近的思想成为数学分析中的一个重要知识,在分析和研究数学问题中有着重要的作用。本文研究了利用泰勒公式证明微分中值定理,求函数的极限,进行近似计算,求函数的高阶导数和偏导数等方面的应用,恰当的运用泰勒公式能够给我们的解题带来极大的方便。 关键词:泰勒公式;微分中值定理;极限;高阶导数;偏导数 Abstract:Taylor formula is an important knowledge of mathematics analysis in an approximation of the thought, and it plays an important role in the analysis and study of mathematical problems. This paper studies the application of the Taylor formula in proving differential mean value theorem, the limit of function, approximate calculation, the application of high order derivative for function and partial derivative, and using Taylor formula appropriate can bring great convenience to our problem. Keywords:Taylor formula; approximate calculation; limit; higher derivative; partial derivative 引言 泰勒公式最早是以泰勒级数的形式出现在泰勒1715年出版的著作《增量及其逆》中,但在该书中却没有给出具体的证明,直到19世纪由柯西给出了现在的形式及其严格的证明。泰勒公式是一种逼近的思想,集中体现了逼近法的精髓,可以将有理分式函数﹑无理函数和初等超越函数等复杂函数用简单的多项式函

常见导数公式

常见导数公式: ① C'=0(C为常数函数); ② (x^n)'= nx^(n-1) (n∈Q*); ③ (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx ⑤ (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) 另外就是复合函数的求导: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2 后面这些高中用不到,但是多掌握点遇到时就可以直接写出来,不用再换算成常见函数来求解, (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) 1、x→0,sin(x)/x →1 2、x→0,(1 + x)^(1/x)→e x→∞ ,(1 + 1/x)^(1/x)→ 1 (其中e≈2.7182818... 是一个无理数)

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

泰勒公式与导数的应用

泰勒公式与导数的应用

巩固练习 ★1.按)1(-x 的幂展开多项式43)(24++=x x x f 。 知识点:泰勒公式。 思路:直接展开法。求)(x f 按)(0x x -的幂展开的n 阶泰勒公式,则依次求)(x f 直到1+n 阶的导 数在0x x =处的值,然后带代入公式即可。 解:3()46f x x x '=+,(1)10f '=;2 ()126f x x ''=+,f (1)18''=; ()24f x x '''=,(1)24f '''=;24)()4(=x f ;24)1()4(=f ;0)()5(=x f ; 将以上结果代入泰勒公式,得 (4)23 4 (1)(1)(1)(1)()(1)(1)(1)(1)(1)1!2!3!4!f f f f f x f x x x x ''''''=+-+-+-+-432)1()1(4)1(9)1(108-+-+-+-+=x x x x 。 ★★2.求函数 x x f =)(按)4(-x 的幂展开的带有拉格朗日型余项的三阶泰勒公式。 知识点:泰勒公式。 思路:同1。 解 :()f x '= , 1(4)4f '=;321()4f x x -''=-,1 (4)32 f ''=-; 52 3()8f x x -'''=,3(4)256 f '''=;27 41615)(--=x x f )(;将以上结果代入泰勒公式,得 (4)23 4(4)(4)(4)()()(4)(4)(4)(4)(4)1!2!3!4!f f f f ξf x f x x x x ''''''=+-+-+-+- 42 7 32)4(1285)4(512 1 )4(641)4(412-- -+---+=x ξ x x x ,(ξ介于x 与4之间)。 ★★★3.把 2 2 11)(x x x x x f +-++= 在0=x 点展开到含4x 项,并求)0() 3(f 。 知识点:麦克劳林公式。 思路:间接展开法。)(x f 为有理分式时通常利用已知的结论 )(111 2n n x o x x x x +++++=-Λ。

导数公式证明大全(更新版)

(麻烦那些盗取他人成果的人素质点,最近总有人把我的作品抄袭过去,改改标题就作为他的东西。愤怒啊!!!!!!) 导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)

证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx

=lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx

《泰勒公式及其应用》的开题报告

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的开题报告 关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:20XX年12月—20XX年4月

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

常用的基本求导公式

1.基本求导公式 ⑴ 0)(='C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln =';一般地,)1,0( ln 1 )(log ≠>='a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1 ; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 5、定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则

泰勒公式的应用

泰勒公式及其应用

摘要 文章简要介绍了泰勒公式的证明及其推导过程,详细讨论了泰勒公式在最优化理论领域的应用,分别讨论了泰勒公式在理论证明和算法设计上面的应用,并用简单的算例加以说明。 关键词:泰勒公式,最优化理论,应用

一、泰勒公式 1.1 一元泰勒公式 若函数)(x f 在含有x 的开区间),(b a 内有直到1+n 阶的导数,则当函数在此区间内时,可展开为一个关于)(0x x -的多项式和一个余项的和: 1 0)1(00)(200000)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n x x n f x x n x f x x x f x x x f x f x f ξ 其中=)(x R n 10)1()()!1() (++-+n n x x n f ξ ξ在x 和0x 之间的一个数, 该余项)(x R n 为拉格朗日余项。 1.1.1 泰勒公式的推导过程 我们知道α+-'+=))(()()(000x x x f x f x f ,其在近似计算中往往不够精确,于是我们需要一个能够精确计算的而且能估计出误差的多项式: n n x x a x x a x x a a x p )()()()(0202010-++-+-+= 来近似表达函数)(x f ; 设多项式)(x p 满足)()()()(),()(0)(0)(0000x f x p x f x p x f x p n n ='='= 因此可以得出n a a a 10,.显然,00)(a x p =,所以)(00x f a =;10)(a x p =',所以 )(01x f a '=;20!2)(a x p ='',所以 !2)(02x f a ''= n n a n x p !)(0) (=,所以有! )(0)(n x f a n n = 所以,n n x x n x f x x x f x x x f x f x p )(! )()(!2)())(()()(00)(2 00000-++-''+ -'+= 1.1.2 泰勒公式余项的证明 我们利用柯西中值定理来推出泰勒公式的余项(拉格朗日余项): 设)()()(x p x f x R n -= 于是有0)()()(000=-=x p x f x R n 所以有0)()()()(0) (000===''='=x R x R x R x R n n n n n 根据柯西中值定理可得: n n n n n n n x n R x x x R x R x x x R ))(1()(0)()()()()(011)1(00)1(0-+'=---=-++ξξ 1ξ是在x 和0x 之间的一个数; 对上式再次使用柯西中值定理,可得:

泰勒公式及其应用

泰勒公式及其应用 [摘 要] 文章简要介绍了泰勒公式及其几个常见函数的展开式,针对泰勒公式的应用讨论了九个问题, 即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等函数的幂级数展开式,进行近似计算,求高阶导数在某些点的数值,求行列式的值. [关键词] 泰勒公式;极限;不等式;敛散性;根的唯一存在性;极值;展开式;近似计算;行列式. 1 引言 泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识 定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有 '''200000()() ()()()()1!2! f x f x f x f x x x x x =+-+-+ ()000() ()(())! n n n f x x x o x x n +-+- (1) 这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式. 当0x =0时,(1)式变成)(! )0(!2)0(!1)0()0()()(2'''n n n x o x n f x f x f f x f +++++= ,称此式 为(带有佩亚诺余项的)麦克劳林公式.

定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则 ''()' 2 0000000()()()()()()()...()()2!! n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ , (2)这里 ()n R x 为拉格朗日余项(1)10() ()()(1)! n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒 公式. 当0x =0时,(2)式变成''()' 2(0)(0)()(0)(0)...()2!! n n n f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式. 常见函数的展开式: 12)! 1(!!21+++++++=n x n x x n e n x x x e θ . )()! 12()1(!5!3sin 221 253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)! n n n x x x x x o x n =-+-++-+ . )(1 )1(32)1ln(11 32++++-+-+-=+n n n x o n x x x x x . )(111 2n n x o x x x x +++++=- +-+ +=+2 ! 2)1(1)1(x m m mx x m . 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得

泰勒公式及其应用(数学考研)

第2章 预备知识 前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的. 给定一个函数)(x f 在点0x 处可微,则有: )()()()(000x x x f x f x x f ?+?'+=?+ο 这样当1<

泰勒公式及其应用

泰勒公式的应用 内容摘要:泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位,在近似计算、极限计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及行列式的计算等方面有重要的应用。本文着重对极限计算、敛散性的判断、中值问题以及等式与不等式的证明这四个方面进行论述。 关键词:泰勒公式皮亚诺余项级数拉格朗日余项未定式

目录 内容摘要 0 关键词 0 1.引言 (2) 2.泰勒公式 (2) 2.1具有拉格朗日余项的泰勒公式 (2) 2.2带有皮亚诺型余项的泰勒公式 (2) 2.3带有积分型余项的泰勒公式 (2) 2.4带有柯西型余项的泰勒公式 (3) 3.泰勒公式的应用 (3) 3.1利用泰勒公式求未定式的极限 (3) 3.2利用泰勒公式判断敛散性 (6) 3.3 利用泰勒公式证明中值问题 (11) 3.4 利用泰勒公式证明不等式和等式 (13) 4. 结束语 (19) 参考文献 (20)

1.引言 泰勒公式是数学分析中一个非常重要的内容,微分学理论中最一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。我们可以使用泰勒公式, 来很好的解决某些问题, 如求某些极限, 确定无穷小的阶, 证明等式和不等式,判断收敛性,判断函数的凹凸性以及解决中值问题等。本文着重论述泰勒公式在极限,敛散性判断,中值问题以及等式与不等式的证明这四个方面的具体应用方法。 2.泰勒公式 2.1具有拉格朗日余项的泰勒公式 如果函数()x f 在点0x 的某邻域内具有n+1阶导数,则对该邻域内异于0x 的任意点x,在0x 和x 之间至少?一个ξ使得: 当0x =0时,上式称为麦克劳林公式。 2.2带有皮亚诺型余项的泰勒公式 如果函数()x f 在点0x 的某邻域内具有n 阶导数,则对此邻域内的点x 有: 2.3带有积分型余项的泰勒公式

浅谈泰勒公式及其应用

论文提要 泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具集中体现了微积分“逼近法”的精髓,它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具,它的用途很广泛,本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值。

浅谈泰勒公式及其应用 摘 要: 本文介绍了泰勒公式及几个常见函数的展开式,针对泰勒公式的应用讨论了八个问题.即应用泰勒公式求极限,利用泰勒公式证明中值公式,判断函数敛散性,证明不等式,判断函数的极值,求幂级数展开式,进行近似计算,求高阶导数在某些点的数值. 关键词:泰勒公式 泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 1 预备知识 定义 1.1 若函数f 在点0x 存在直至n 阶导数,则有()()()n n f x T x T x ==+ ()0n o x x +,即 ()()()()()()()()()().! !20002 00000n n n x x o x x n x f x x x f x x x f x f x f -+-+?+-''+ -'+=为⑴式. ⑴式称为函数f 在点0x 处的泰勒公式,()()()x T x f x R n n -=称为泰勒公式的余项,形如()n x x o 0-的余项称为佩亚诺型余项.所以⑴式又称为带有佩亚诺余项的泰勒公 式. 当00=x 时,得到泰勒公式: ()()()()()()() n n x o n f x f x f f x f ++?+''+'+=! 0!20002. 它也称为(带有佩亚诺余项的)麦克劳林公式. 定义1.2 若函数f 在[]b a ,上存在直至n 阶的连续导函数,在()b a ,内存在()1+n 阶导函数,则对任意给定的x ,[]b a x ,0∈,至少存在一点()b a ,∈ξ,使得

基本函数求导公式

基本函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

隐函数存在定理 1 设函数),(y x F 在点),(0 0y x P 的 某一邻域内具有连续的偏导数,且0),(0 =y x F ,, ),(00≠y x F y ,则方程),(y x F =0在点),(0 y x 的某一邻域内 恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件) (00 x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求 导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 ))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F 由于y F 连续,且0),(0 ≠y x F y ,所以存在(x 0,y 0)的一个

函数导数公式及证明.doc

函数导数公式及证明 函数类型常量函数 幂函数 指数函数 对数函数 三角函数 原函数 f (x) C ,C为常量 f (x)x a f (x)x m f (x)a x f (x)e x f ( x)lo g a x f (x) ln x f (x)sin x f (x)cosx 求导公式 f ' ( x)0 ( x a )'ax a 1 ( x a )( n)a(a 1)...(a n1)x a n ( a 0,1,2..., n1) ( x m )( n) m! x m n, (n m) (m n)! ( a x )' a xln a ( a x )( n) a x ln n a , (0 a 1) (e x )'e x (e x )(n ) e x (log a x)' 1 x ln a (log a x)(n ) ( 1)n 1 (n 1)! ,(0 a 1) x n ln a (ln x)' 1 x (ln x) (n ) ( 1)n 1 (n 1)! x n (sin x)' cosx (sin x)( n) sin(x n ) 2 (cosx)' sin x

反三角函数双曲函数反双曲函数f (x)tan x f (x)cot x f (x) arcsinx f (x)arccosx f (x) arctanx f (x)arccot x f ( x)sinh x f ( x) coshx f (x)tanh x f ( x)coth x f (x)arsinh x f (x) arcoshx f (x)ar tanh x (cosx)( n) cos(x n ) 2 (tan x)' sec2 x 1 x 1 (tan x)2 cos2 (cot x)' csc2 x 1 1 (cot x)2 sin2 x (arcsin x) ' 1 1 x2 (arccos x)' 1 1 x2 (arctan x)' 1 1 x2 (arccot x)' 1 1 x2 (sinh x)' coshx (cosh x)' sinh x (tanh x)' 1 cosh2 x (coth x)' 1 x sinh2 ( ar sinh x)' 1 x2 1 ( ar cosh x) ' 1 x2 1 (ar tanh x)' 1 1 x2 复合函数导数公式 复合函数求导公式

相关文档
最新文档