LED发光的光谱及色度分析要点

LED发光的光谱及色度分析要点
LED发光的光谱及色度分析要点

武汉工业学院

毕业论文

论文题目:LED发光的光谱及色度分析

姓名谢鑫

学号 071203210

院系数理科学系

专业电子信息科学与技术

指导教师李鸣

2011年06月08日

目录

摘要 ................................................................... I ABSTRACT .............................................................. II 第一章绪论 .. (1)

1.1 研究背景 (1)

1.2 发展的历史和现状 (1)

1.3 LED的特点和分类 (2)

1.4 LED测试标准及检测技术研究现状 (3)

第二章相关光度学基本原理 (4)

2.1 LED的发光原理 (4)

2.2 LED的封装 (6)

2.3 LED的主要特性 (7)

2.3.1 光谱分布、峰值波长和光谱辐射带宽 (7)

2.3.2 光通量 (7)

2.3.3 发光强度 (8)

2.3.4 色温 (9)

2.3.5 发光效率 (9)

2.3.6 显色性 (9)

2.3.7 正向工作电压

V (10)

F

2.3.8 V-I 特性 (10)

2.3.9 P-I 特性 (10)

2.4 小结 (11)

第三章实验设计 (12)

3.1 实验用具 (12)

3.2 实验记录与数据处理 (12)

3.2.1 LED光通量的测量 (12)

3.2.2 测量V-I特性 (15)

3.2.3 测量P-I特性 (17)

3.3 结果与讨论 (19)

第四章总结与展望 (20)

致谢 (22)

参考文献 (23)

摘要

LED光源现今已经广泛应用于照明领域和信息技术领域,而且有希望成为未来

最主要的光源之一。随着LED产业的快速增长,LED的光度测量仍然是一个值得

探讨的问题。

本论文基于相关光度学理论,通过对现有测量LED光度特性的各种方法和标准的研究,针对LED本身作为光源所特有的结构和光学特性,提出了LED发光强度空间分布特性的测量方法及其系统设计方案,讨论了相关的测试条件,确定了测试步骤,并且分析了影响测量结果精度的可能因素。

在硬件设计方面,系统采用光栅单色仪(光谱仪),接收单元,扫描系统,电子放大器,A/D采集单元,计算机及打印机组成完成整个光度测量过程。该设备集光学、精密机械、电子学、计算机技术于一体。

系统软件采用WGD-9型色度实验系统。该系统能准确测量光源各个波长段的光强,其中驱动控制、光电信号采样、测试数据通讯传送等几个功能模块组成,都由PC机客户端程序来决定所需执行操作;实现LED的光度测量和光度定标,并对测得的数据进行处理,在用户界面上显示最大光强、偏差角、光束发散角等相关光度参数以及发光强度空间分布曲线等测试结果。

在完成设计和功能调试的基础上,对本系统的光度测试性能进行了一系列的实验评价。通过对一些典型LED样品的测试,获得不同品种的LED在各种不同条件下发光强度空间分布曲线以及相关光度参数等大量实验结果。

关键词:光度学,发光二极管,发光强度空间分布曲线,光束发散角

ABSTRACT

LED (light emitted diode) is now widely used in the field of illuminating engineering as well as information technology, and is expected to be one of the uppermost light sources in the future. Despite of the wide and rapidly growing application of LED, the reliable method for its photometric measurement is worth while to be researched.

Based on the photometry, the related methods and standards of LED's photometric test are studied, a system scheme is presented for measuring the luminous intensity distribution characteristics of LED, in which structure and optical characters are considered. In addition, the test condition, operation procedures, and the measurement uncertainty are discussed.

For the hardware of the system, the single-chip computer of AT89C52 is adopted as the MCU (micro-controller unit),and the photoelectric transformation and signal amplification circuit are designed for the sampling channel. A high-speed 16bit A/D converter is used to ensure the precision and respondent rate, while the data communication with PC (personal computer) is realized via RS-232 serial port.

The system software is comprised by the MCU program and the PC program. The MCU system software includes the modules of step-motor driver, signal sampling, and data communication, all of which are controlled by the PC. The PC directs the rotation of the step-motor, by means of RS-232,to implement the photometric measurement and its calibration of the LED. Then the data processing is performed, and the measurement results are displayed on the user interface of PC, including the photometric parameters such as the maximal luminous, misalignment angle, spread angle of light beam and the spatial distribution curve for the luminous intensity of the LED.

A series of experiments are carried out to evaluate the photometric measurement performance of this system. The experimental results of the typical LEDs show that the measurement meets the specification of related standard, the performance is reliable and stable, there by the system is applicable to industry. Finally, the aspects of this study are summarized, and the possible improvements in this scheme are proposed.

Key words: photometry, light emitted diode (LED), spatial distribution curve of luminous intensity, spread angle of light beam.

第一章绪论

1.1 研究背景

发光二极管(LED: Light Emitting Diode)是一种电致发光的半导体发光器件属于

冷光源[1],过去常规的LED多为红、橙、黄、绿光,只能在产品上充当指示信号灯。随着光电技术及材料科学的发展,在全球能源短缺的忧虑再度升高的背景下,欧美及日本等国成立了专门的LED研究机构,LED也向高亮度[2]、全彩化、显示大型化的方向发展,而且LED的发光效率正在逐步提高。随着对紫光、紫外、白光LED研究的深入,LED将有可能成为21世纪最有前途的光源。

1.2 发展的历史和现状

从20世纪60年代第一只发光二极管问世以来,LED经历了30多年的发展。早期所用的材料GaAsP发红光(650nm),在驱动电流20mA时,光通量只有千分之几流明(lm,光通量单位),发光效率只有0.11m/W,多用做做指示灯。20世纪70年代,材料研究不断深入,引入了In和P,使LED产生绿光(555nm)、黄光(590nm)和橙光(610nm),光效提高到1 lm/W,应用进入显示领域。80年代以后,出现了GaAlAs的LED,其封装技术也逐步提高,红、黄色LED光效可达10 lm/W。90年初,发红光、黄光的GaAlInP和发绿光、蓝光的GaInN两种新材料开发成功,使LED光效得到大幅度提高。1993年日本日亚化学公司率先在蓝色GaN LED技术上突破并很快产业化,进而于1996年实现白光LED之后,1998年推向市场,为LED找到了照明的新舞台。白光LED得到了迅速发展,并在普通照明领域显示出良好的应用前景。表1.1列出LED的发展进程。

如今LED已经广泛应用于仪器仪表、交通照明如城市交通、铁路、公路、机场、安全警示灯等日常生活领域和科学研究领域[3]。由于LED结构简单,安装灵活方便,能够满足车灯美观大方的要求,因此越来越受到车灯厂商的青睐,在我国汽车工业高速发展的带动下,汽车领域对高亮度LED的需求量预计到2010年将会达到65亿颗左右;而功率型白光LED则作为专用照明光源,也广泛应用于汽车和飞机内的阅读灯、建筑物装饰光源、舞台灯光、城市夜景以及便携式照明光源如钥匙灯、手电筒、背光源及矿工灯等各个生活及工业领域。

表1.1 LED发展进程

发光材料时间说明

GaAsP 六十年代低效的红色LED

GaP 七十年代高发光效率的红

色LED

GaAlAs 八十年代进一步提高发光

效率,超高亮度红色

LED

InGaAl 九十年代MOVPE技术得

到发展,白色LED问

InGaN 2000年后研制出超高亮度

的绿色和蓝色LED

1.3 LED的特点和分类

大多数LED的工作电为1.5V-4V,耗电少(l 0mA以下即可在室内得到适当的亮度),可通过调节电流(或电压)来对发光亮度进行调节,且响应速度快,并可直流驱动;LED比普通光源的单色性好;发光亮度和发光效率均较高,容易与集成电路配合使用,体积小、重量轻、抗冲击、耐振动、寿命长。

根据LED的发光颜色、出光面特征、结构、发光强度和工作电流等参数的不同,发光二极管可有多种分类方法。

(1)按发光管发光颜色分类

LED按其发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿),蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管适合做指示灯用。

(2)按出光面特征分类

按出光面特征分,LED可分为圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为Φ2mm,Φ4.4mm,Φ5mm,Φ8mm,Φ10mm及Φ20mm等。

(3)LED的半值角大小可以估计圆形发光强度角分布情况,所以从发光强度角分布图来分可以将LED分为三类:

a)高指向型。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°-20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。

b)标准型。通常作指示灯用,其半值角为20°-45°。

c)散射型。这是视角较大的指示灯,半值角为45°-90°或更大,散射剂的量较大。

(4)按结构分类

按照发光二极管的结构分类,有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。

(5)按发光强度和工作电流分类

按发光强度和工作电流的不同,LED可以分为普通亮度(发光强度<< l0mcd )、高亮度(发光强度为10 -100mcd )、超高亮度(发光强度>> 100mcd )等类型。

一般LED的工作电流在十几mA至几十mA,而低电流LED的工作电流在2mA 以下(亮度与普通发光管相同)。

除上述分类方法外,还有按芯片材料分类及按功能分类等其他方法。

1.4 LED测试标准及检测技术研究现状

由于LED的特殊性,无论在尺寸、光通量水平、光谱和空间强度分布方面都与通常所谓的“灯”非常不同。因此,把光度量从传统的发光强度标准(标准灯)传递到LED并不是一件简单的事情,它包含着很多的不确定性。LED输出的光和辐射与芯片温度有关的特性,以及光学设计上的巨大差异,使得测试LED并非易事,但如何准确测量它的光和辐射参数却引起了各国工业协会和CIE(国际照明委员会)的关注。长期以来,LED测试再现性差,不同测试装置之间的测试结果一致性差。为此CIE 专门成立了“TC2-45 LED测量”和“TC2-46 CIE/ISO关于LED强度测量标准”两个技术委员会专门化小组来研究解决相应的问题。CIE TC2-34小组在1997年10月22—25日在维也纳总部召开会议,制定并推荐了CIE 127-1997“Measurement of LEDs”(发光二极管测量),它涉及LED辐射度、光度和色度测量。

发光二极管既是一个半导体二极管,又是一个光源,一般来说作为半导体器件,我们需要测量它的电参数。电参数是衡量一个发光二极管是否能正常工作的最基本的判据,通常包括正向电流和正向电压,反向电压和反向电流。作为一个光源,我们需要测量他们的光和辐射在空间分布的能量参数,测量光和辐射能量的光谱分布参数。

第二章相关光度学基本原理

2.1 LED的发光原理

50 年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960 年。LED属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。LED结构图如下面图2-1所示:

图2-1 LED的结构图

发光二极管的核心部分是由P型半导体和N型半导体组成的芯片。常规的发光二极管芯片的结构如图2-2所示,主要分为衬底,外延层(图2-3中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。钝化层的作用是保护透明接触层[4]。

图2-2 常规InGaN/蓝宝石LED芯片剖面图

图2-3 InGaN LED芯片俯视图

在p 型半导体和n 型半导体之间存在一个过渡层,称为p-n结。跨过此p-n 结,电子从n型材料扩散到p区,而空穴则从p 型材料扩散到n 区,如图2-4(a)所示。作为这一相互扩散的结果,在p-n结处形成了一个势垒,阻止电子和空穴的进一步扩散,达到平衡状态(见图2-4(b))。当外加一足够高的直流电压V,且p 型材料接正极,n型材料接负极时,电子和空穴将克服在p-n结处的势垒,分别流向p 区和n 区。在p-n结处,电子与空穴相遇[5],复合,电子由高能级跃迁到低能级,电子将多余的能量将以发射光子的形式释放出来,产生电致发光现象。这就是发光二极管的发光原理。(见图2-4(c))。通过材料的选择可以改变半导体的能带带隙,从而就可以发出从紫外到红外不同波长的光线,且发光的强弱与注入电流有关。例如,由目前流行的第三代半导体材料——GaN所制成的LED光谱分布很宽,可以从紫外

的380nm ,到蓝色的465nm ,直至翠绿色的525nm 。

图2-4 发光二极管的工作原理(a )电子和空穴扩散(b ) 形成势垒(c ) 电子和空穴复合发光

2.2 LED 的封装

e

i e

i ηηφ= (2-1)

从上式LED 发出的光通量正比于量子效率和转换效率,以及注入电流。要是发出的光真正得以输出,正确的封装尤为重要。其次,由于LED 发出的总光通量有限,在封装时还要考虑到使用用途,使其有限的光能得以有效的利用。由于以上因素,使得LED 的封装形状和光能输出各式各样,从发光面形状,有圆形的,方形的。从光束上分有聚焦的,有发散的,还有平行光束的。

有如下表达式:

I =

ΩΦV

=2

V d

S Φ (2-2) 从物理上看,这里的平均发光强度的概念,不再与发光强度的概念关联得那么紧密,而更多地与光通量的测量和测量机构的设计有关[6]。

2.3 LED的主要特性

2.3.1 光谱分布、峰值波长和光谱辐射带宽

发光二极管所发之光并非单一波长,其波长具有正态分布的特点,在最大光谱能量(功率)处的波长成为峰值波长。峰值波长在实际应用中其意义并不是十分明显,这是因为即使有两个LED的峰值波长是一样的[7],但它们在人眼中引起的色感觉也是可能不同的。光谱辐射带宽是指光谱辐射功率大于等于最大值一半的波长间隔,它表示发光管的光谱纯度。GaN基发光二极管的光谱射带宽在25至30nm范围。

2.3.2 光通量

LED光源发射的辐射通量中能引起人眼视觉的那部分,称为光通量(单位是流明(lm)),是指LED向整个空间在单位时间内发射的能引起人眼视觉的辐射通量[8]。但要考虑人眼对不同波长的可见光的光灵敏度是不同的,国际照明委员会(CIE)为人眼对不同波长单色光的灵敏度作了总结,在明视觉条件(亮度为3cd/m2以上)下,归结出人眼标准光度观测者光谱光效率函数V (λ ),它在555nm上有最大值,此时1W辐射通量等于683lm,如图2-5所示,其中V’(λ )为暗视觉条件(亮度为0.001cd/m2以下)下的光谱光视效率。例如一个100 W的灯泡可产生1500lm,一支40 W的日光灯可产生3500lm的光通量。

图2-5 明视觉和暗视觉条件下的光谱光效率函数

通常,光通量的测量以明视觉条件作为测量条件,在测量时为了得到准确的测量结果,必须把LED发射的光辐射能量收集起来,并用合适的探测器(应具有CIE标准光度观测者光谱光效率函数的光谱响应)将它线性地转换成光电流,再通过定标确定被测量的大小。这里可以用积分球来收集光能量,如图2-6。

图2-6 积分球结构示意图

积分球又叫光度球,是一个球形空腔,由内壁涂有均匀的白色漫反射层(硫酸钡或氧化镁)的球壳组装而成,被测LED置于空腔内。LED器件发射的光辐射经积分球壁的多次反射,使整个球壁上的照度均匀分布,可用一置于球壁上的探测器来测量这个与光通量成比例的光的照度。基于积分球的原理,图2-6中挡屏的设计是为了避免LED光直射到探测器。球和探测器组成的整体要进行校准,同时还要关注探测器与光谱光视效率V(λ )的匹配程度,使之比较符合人眼的观测效果[9]。

2.3.3 发光强度

发光二极管的发光强度取决于p-n结中辐射型复合机率与非辐射型复合机率之比,通常是指法线方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr(即一单位立体角度内光通量为1 lm)时,则称其发光强度为前面已出现,符号为cd。由于早期LED的发光强度小,所以发光强度也常用毫坎德拉(mcd)作单位。发光强度的概念要求光源是一个点光源,或者要求光源的尺寸和探测器的面积与离光探测器的距离相比足够小(这种要求被称为远场条件)。但是在LED测量的许多实际应用场合中,往往是测量距离不够长,光源的尺寸相对太大或者是LED与探测器表面构成的立体角太大,在这种近场条件下,并不能很好地保证距离平方反比定律,实际发光强度的测量值随上述几个因素的不同而不同,从而严格地说并不能测量得到真正的LED 的发光强度[10]。

为了解决这个问题,使测量结果可通用比较,CIE推荐使用“平均发光强度概念:照射在离LED一定距离处的光探测器上的通量,与由探测器构成的立体角的比值。其中立体角可将探测器的面积S 除以测量距离 d 的平方计算得到。

从物理上看,这里的平均发光强度的概念,与发光强度的概念不再紧密关联,而更多地与光通量的测量和测量机构的设计有关。CIE关于近场条件下的LED测量,有两个推荐的标准条件:CIE标准条件A和B。这两个条件都要求,所用的探测器有一个

面积为1cm 2(对应直径为11.3mm)的圆入射孔径,LED 面向探测器放置,并且要保证LED 的机械轴通过探测器的孔径中心。两个条件的主要区别是在于:LED 顶端到探测器的距离,立体角和平面角(全角)的不同,如表2-3所示:

表2.3 CIE 平均LED 发光强度标准测试条件

实际应用中,用得较多的是条件B ,它适用于大多数低亮度的LED 光源,高亮度且发射角很小的LED 光源应使用条件A 。

2.3.4 色温

不同的光源,由于发光物质成份不同,其光谱功率分布有很大差异,一种确定的光谱功率分布显示为一种相应的光色,我们可以将光源所发的光与“黑体”辐射的光相比较来描述它的光色。人们用黑体加热到不同温度所发出的不同光色来表达一个光源的颜色,称作光源的颜色温度,简称色温。用光源最接近黑体轨迹的颜色来确定该光源的色温,这样确定的色温叫做相关色温[11]。以绝对温度(k=℃+273.15)K 来表示,即将一黑体加热,温度升到一定程度时,颜色逐渐由深红-浅红-橙红-黄-黄白-白-蓝白-蓝变化。如:当黑体加热呈现深红时温度约为550℃,即色温为550℃ + 273 = 823K 。

2.3.5 发光效率

发光效率:光源发出的光通量除以所消耗的功率(单位是lm/w )。它是衡量光源节能的重要指标。测得发光二极管的光通量后,就可以进一步经计算获得

LED 器件的发光效率。其计算关系式定义[12]:发光效率:

F F V I ν

νηΦ= (2-3)

其中F I ,F V 分别是发光二极管的正向电流和正向电压。

2.3.6 显色性

光源对物体本身颜色呈现的程度称为显色性。也就是颜色的逼真程度。国际照明

委员会CIE 把太阳的显色指数(ra )定为100。各种类型的光源其显色指数各不相同。例如:白炽灯的显色指数大于90,荧光灯的显色指数在60至90之间[13]。

2.3.7 正向工作电压F V

正向工作电压是在给定的正向电流下得到的F I 。一般是在F I =20mA 时测得的。

以常见的GaN LED 为例,正向工作电压

F V 在3.2V 左右。

2.3.8 V -I 特性

在正向电压小于阈值时,正向电流极小,不发光。当电压超过阈值后,正向电流随电压迅速增加。由V -I 曲线可以得出LED 的正向电压,反向电流及反向电压等参数。正常情况下常见的GaN LED 反向漏电流在

R V = -5V 时,反向漏电流R I <10μA 。

图2-7 LED V-I 特性测试电路图

2.3.9 P -I 特性

P -I 特性:即LED 轴向光强与正向注入电流关系特性。由于一个产品中往往要使用许多个LED ,各LED 的发光亮度必须相同或成一定比例后才能呈现均一的外观,因此我们必须使用恒流源控制好各LED 的工作电流,从而使各LED 的亮度达到的一致性。要研究LED 工作电流与亮度的关系,我们就必须测量它的P -I 特性[14]。

(a )电路图 (b )装置图

图2-8 LED P-I 特性测试

LED 光强的测量是按照光度学上的距离平方反比定律来实现的。我们的测量电路及装置如图8 和9 所示。根据CIE127-1997 标准,取LED 到探测器端面距离d =100mm ,探测器接收面直径a =11.3mm 。

2.4 小结

本章了解发光二极管的发光机理、光学特性与电学特性。接下来根据LED 的发光效率公式讨论电流对LED 的发光效率的影响,通过实验测量红光和绿光LED 的光通量。

第三章 实验设计

本章主要介绍试验系统总体设计,包括实验的用具,实验的记录和数据处理。

3.1 实验用具

实验用具:LED (绿光和红光)、精密数显直流稳流稳压电源、积分球(Φ=30cm )、多功能光度计(图3-1)。光功率计、直尺、万用表、导线。

图3-1 测量光通量Φ和V-I 特性

3.2 实验记录与数据处理 3.2.1 LED 光通量的测量

(1)测量红光LED 的光通量,记录数据如下表3-1所示,其中:功率P=U*I ,发光效率P

Φ

=

η

。 根据表3-1数据,在Origin 中作出发光效率η随功率P 的变化曲线,并进行S 曲线拟合,得图3-2,可看出,红光LED 的发光效率随着功率的增加而增加,最后趋于平衡。

表3-1 红光LED 光通量测量数据

U(V) 1.73 1.76 1.81 1.86 1.88 1.92 1.94 1.96I(mA)012357810P(mW)0.00 1.76 3.62 5.589.4013.4415.5219.60Φ(lm)0.030.060.160.320.500.740.91 1.18η(lm/W)34.0944.20

57.3553.1955.0658.6360.20

U(V) 1.97 1.99 2.00 2.01 2.02 2.05 2.06 2.07I(mA)1112141516192123P(mW)21.6723.882830.1532.3238.9543.2647.61Φ(lm) 1.28 1.45 1.70 1.85 1.95 2.40 2.64 2.89η(lm/W)

59.07

60.72

60.71

61.3660.33

61.62

61.03

60.70

10

20

30

40

50

30

354045505560

65发光效率η(l m /W )

功率P(mW)

B

Boltzmann fit of Data1_B

图3-2 红光LED 的η-P 曲线

(2)测量绿光LED 的光通量,记录数据如下表3-2所示:

表3-2 绿光LED 光通量测量数据

U(V) 2.83 2.87 2.94 3.04 3.07 3.10 3.13 3.18I(mA)01234578P(mW)0.00 2.87 5.889.1212.2815.5021.9125.44Φ(lm)0.95 1.21 1.80 3.03 3.63 4.07 4.83 6.14η(lm/W)421.60306.12

332.24295.60262.58220.45241.35

U(V) 3.20 3.23 3.24 3.26 3.28 3.29 3.31 3.33I(mA)911121315161820P(mW)28.8035.5338.8842.3849.2052.6459.5866.60Φ(lm) 6.667.588.178.749.559.9710.6711.29η(lm/W)231.25213.34210.13

206.23194.11189.40179.09169.52

U(V) 3.35 3.37 3.38

3.39 3.41I(mA)2224262830P(mW)73.7080.8887.889

4.92102.30Φ(lm)12.0712.7413.3813.8414.61η(lm/W)163.77

157.52

152.25

145.81

142.82

根据上表数据,在Origin 中作出发光效率η随功率P 的变化曲线,并进行指数衰减拟合,得图3-3,可以看出,绿光LED 的发光效率随着功率的增加而指数衰减。

20

40

60

80

100

120

100

150200250300350400450

发光效率η(l m /W )

功率P(mW)

B

ExpDec1 fit of Data1_B

图3-3 绿光LED 的η-P 曲线

3.2.2 测量V-I 特性

本部分实验注意事项如下:LED 安装时应分清正、负极(长脚端为正),严禁反装,以免烧毁。在进行LED 的V -I 特性和LED 的P -I 特性测量时,工作电压禁止超过4V ,避免烧毁。

(1)测量绿光LED 的V -I 特性,记录数据如下表3-3所示:

表3-3 绿光LED 的V -I 特性数据

U(V) 3.00 3.03 3.06 3.09 3.12 3.15 3.18 3.21I(mA)01223557

U(V) 3.24 3.27 3.30 3.33 3.36 3.39 3.42I(mA)9131416202428

根据上表数据,在Origin 中作出电压U 随电流I 的变化曲线,并进行指数增长拟合,得下图3-4:

3.0

3.1

3.2

3.3

3.4

3.5

5101520

2530电压U (V )

电流I(mA)

B

ExpGro1 fit of Data1_B

图3-4 绿光LED 的V -I 特性曲线

从上图可以看出,绿光LED 的电压随着电流的增加而指数增长。

(2)测量红光LED 的V -I 特性,记录数据如下表3-4所示:

表3-4 红光LED 的V -I 特性数据

U(V) 1.82 1.84 1.85 1.86 1.88 1.90 1.92 1.93I(mA)01123355

U(V) 1.94 1.96 1.97 1.98 2.00 2.01 2.02 2.04I(mA)679911131416

U(V) 2.05 2.06 2.08I(mA)181922

根据上表数据,在Origin 中作出电压U 随电流I 的变化曲线,并进行S 曲线拟合,得下图3-5:

5

10

15

20

25

1.80

1.851.901.95

2.002.05

2.10电压U (V )

电流I(mA)

B

Boltzmann fit of Data1_B

图3-5 红光LED 的V -I 特性曲线

从上图可以看出,红光LED 的电压随着电流的增加而指数增长。

视频信号基础常识

各种视频信号格式及端子介绍 RF/AV/SVIDEO/YUV/VGA/RGB/RGBS/DVI/HDMI/ 视频信号是我们接触最多的显示信号,但您并不一定对各种视频信号有所了解。因为国内用到的视频信号格式和端子非常有限,一般就是复合视频和S端子,稍高级一些的就是色差及VGA。对于那些经常接触国外电器和二手设备的朋友,就会遇到各种希奇古怪的信号端子,我们也经常接到读者这方面的提问。请读者注意:我们这 里所说的视频信号并不是严格意义上的带宽只有5MHz的视频信 号,而是泛指能作为输入输出的显示信号。本文试图把常用视频 信号做一简单叙述,有不全和不对的地方请读者朋友指出。 一、各种视频信号 复合视频信号(Video) 复合视频信号是我们日常生活中最为常见的视频信号,它在 一个传输信号中包含了亮度、色度和同步信号。由于彩色编码的 不同,复合视频又有PAL、NTSV、SECAM制式之分。复合视频信号本身的带宽只有5MHz (NTSC制式带宽仅4.5MHz),中间又加了彩色副载波信号(NTSC制为3.58MHz,PAL 和SECAM制为4.43MHz),正好落在亮度信号带宽之内,占去了一部分亮度信号,又造成 亮度和色度的相互干扰,使得复合视频成为最差的视频信 号。复合视频信号一般用RCA插头连接,就是通常说的莲 花插头,见图1。欧洲也用SCART接口,老式的视频设备 也有用BNC插头连接。 S视频信号(S-Video) S视频信号俗称S端子信 号,它同时传送两路信号:亮度 信号Y和色度信号C。由于将亮 度和色度分离,所以图象质量优 于复合视频信号,色度对亮度的 串扰现象也消失。由于S视频信 号亮度带宽没有改变,色度信号仍须解调,所以其图象质 量的提高是有限的,但肯定解决了亮色串扰,消除图象的 爬行现象。S端子用四芯插头,见图2。欧洲也用SCART 插头,老式的视频设备也有用两个BNC插头连接,计算机 显卡也有用七芯插头,其外形与S端子一样,只是又包含 了复合视频信号。 隔行色差信号(Y、Cr、Cb)

第二章-红外光谱和拉曼光谱技术

第二章红外光谱和拉曼光谱技术研究阴离子型层状及插层材料的结构红外光谱和拉曼光谱技术是相当成熟的分子结构研究手段,目前已经应用于多种阴离子型层状结构LDHs的层板阳离子、层间阴离子的研究[1-21]。LDHs中的水是一个很强的红外吸收体,因此,红外光谱中很难观察到层板羟基的伸缩振动吸收峰。但是,水又是一个很差的散射体,层板羟基的伸缩振动可以很容易在拉曼光谱中观察到,因此拉曼光谱法在LDHs研究中逐渐得到人们的重视[18]。近年来,红外发射光谱技术、热分析/红外光谱联用技术、原位红外和拉曼光谱技术等已经被用来研究LDHs的热稳定性及有机阴离子插层LDHs的热分解过程[21-26]。相关红外光谱和拉曼光谱技术在LDHs中的应用研究综述详见文献[27]。 2.1. LDHs层板的振动光谱 2.1.1. MgAl-LDHs的振动光谱 MgAl-LDHs在目前的文献中研究最多,下面以MgAl-LDHs为例说明LDHs层板的振动光谱峰位归属,并且对不同金属阳离子组成的LDHs层板的振动光谱进行比较分析。MgAl-LDHs的红外光谱谱图在3450cm-1处可以观察到一个强而宽的吸收峰(图2-1),这是由两个或三个羟基伸缩振动和层间水分子伸缩振动重叠而成的;在3000~3300cm-1附近有时还出现一个肩峰,这是由羟基和层间碳酸根的相互作用而产生的;在650cm-1以下可观察到晶格的平移振动,而在700~1000cm-1范围内观察到归属于羟基和水的平移振动模式的宽而强的吸收峰,450cm-1处的吸收峰归属于[AlO6]3-基团或Al-O的单键振动。在600~650cm-1之间,观察到由多组分峰相重叠而成的一个宽峰,在555cm-1附近有时有一个独立的峰。680cm-1处峰形比较复杂,这是由于Al-O和Mg-O键的振动峰与碳酸根的ν4振动峰发生重叠的缘故。对870cm-1附近的吸收峰的归属存在争议,一些研究者认为此峰是由层间CO32-的ν2振动产生的[28-30],而Kagunya等人[31]则认为856cm-1附近的峰归属于LDHs的层间阴离子CO32-、NO3-及OH-的转动振动模式E u(R)(OH)。而拉曼光谱中羟基伸缩振动很弱,但要比红外光谱中相应振动模式的峰更尖锐。Kagunya等[31]将695cm-1和1061cm-1处的两个峰归属于平移振动模式E g(T)和转动振动模式E g(R),这两个峰与相应层间CO32-产生的ν4(约680cm-1)和ν1(约1063cm-1)振动峰位置接近,可能会发生重叠。Kloprogge等[29]在1061cm-1和1053cm-1处分别观察到一个尖峰和一个宽而弱的重叠峰。在476cm-1和552cm-1处的两个峰是由与主体Al相连的羟基振动产生的,但也可能受到配体中Mg的影响。476cm-1峰具有拉曼活性,而552cm-1峰与红外光谱中553cm-1峰具有相同的振动模式。 与水镁石相比(3570~3555cm-1),MgAl-LDHs中羟基的伸缩振动峰发生了位移,出现在3450cm-1附近[31],表明LDHs层板中部分Mg2+被具有较高电荷和较小离子半径的Al3+取代,使其层板与层间阴离子之间存在较强的氢键作用。同时由于LDHs层间静电吸引力增强,使LDHs中的O-H键增强,

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

红外与拉曼光谱 案例教学

FT-IR和Raman光谱在硼酸盐化学研究中的应用 一、FT-IR和Raman光谱表征硼氧酸盐的结构 振动光谱法(Vibrational Spectroscopy)主要包括红外光谱法(Infrared Spectroscopy, IR)和拉曼光谱法(Raman Spectroscopy),是现代实验技术中广泛应用的物理分析方法,不但可以用于分子组成的分析和结构的研究,而且还可以用于动态的物理行为和化学反应的研究。 从量子力学的观点来看,如果振动时,分子的偶极矩发生变化,则该振动是红外活性的;如果振动时,分子的极化率发生变化,则该振动是拉曼活性的。一般来说,极性基团的振动和分子非对称振动使分子偶极矩发生变化;非极性基团和分子的全对称振动使分子的极化率发生变化。利用群论的观点,从对称性出发,对照特征标表,可以预示在IR光谱或Raman光谱中可能出现的对应于简正振动模式的谱带数。 1. 固体无机硼氧酸盐的振动光谱 由硼氧酸盐晶体结构研究可知,B–O键的强度比M–O键(M=Metal)强度大得多,而M–O振动也多在远红外区。因此,硼氧酸盐中硼氧配阴离子基团的内模振动可看作是硼氧酸盐的主要特征振动,且主要集中在中红外区(4000cm-1~400 cm-1)。但由于硼氧酸盐结构的复杂多变性使得其振动光谱特别是IR光谱也表现出相当的复杂性。 1.1 硼氧酸盐振动光谱的理论分析 (1) 孤立[BO3]基团的正则坐标分析 [BO3]的最高对称点群为D3h,但实际晶体中位置群要低得多,为便于计算,假设它处于C3v对称条件下。内振动模式Γvib = 2A1(IR, R) + 2E(IR, R),表1.1给出C3v对称条件下孤立[BO3]的正则坐标分析结果及IR光谱实验观测值。 表1.1 C3v对称孤立[BO3]的正则坐标分析结果及实验观测值 Modes Frequencies (cm-1) Calculated a[1]Observed b[2] A1ν1(sym. str.) 944 939 ν2(out-of-plane bend) 754 740 E ν3(asym. str.) 1247 1330 ν4(in-plane bend) 594 606 a By using a general valence force field (GVFF);b IR spectrum of LaBO 3

光学基础之色度——三原色及CIE标准色度系统知识介绍

1.5 色度 色度学中所应用的方法和工具,都是以目视颜色匹配定律和国际上一致采用的标准为基础的。国际照明委员会(CIE ),通过其色度学委员会,推荐了色度学方法和基本的标准。 1.5.2 三原色 三原色:(红R 、绿G 、兰B )或(品红、绿、兰) 三原色不能由其他色混合得到,三原色的波长如下: 红:700nm ,绿:546.1nm ,兰:435.8nm 由RGB 构成白光,得亮度比为L R =L G :L B =1:4.5907:0.0601 Lm/(s r ·m 2 ) 色度坐标和色品坐标 三原色坐标:R ,G ,B ,是三维色度坐标。 色品坐标(归一化坐标):r=R R+G+B , g= G R+G+B ,b= B R+G+B , 并有 r+g+b=1 光谱三刺激值(色匹配函数) )(λr ,)(λg ,)(λb 代表匹配一种颜色,需要R 、G 、B 的比例。即取 )(λc = B b G g R r )()()(λλλ++, 就可以匹配出所要求的)(λc 颜色.并且)(λr ,)(λg ,)(λb 是有表可查的,其规律可参见图1.5-1。 图1.5-1 色匹配函数

(6)色度图及色品图 三原色坐标见图1.5-2a,色品坐标见图1.5-2b,实际色谱的色品则示于图1.5-2c 中。由图1.5-2c 可见,三原色系统的色品图中有很大部分出现负值,使用很不方便,为此,国际照明委员会建立了CIE 标准色度系统,解决了这一问题。 图1.5-2 色度及色品图 1.5.4 CIE 标准色度系统 设立标准光源和标准观察者,建立假想色度坐标 ),,(Z Y X ,归一化坐标),,(z y x 和色匹配函数),,(z y x ,以此来建立CIE 标准色度系统。 1) CIE1931标准色度系统 这一色度系统是在观测视场为2°的情况下制订出来的。 (1)标准色度坐标的变换 CIE1931标准色度系统的变换关系为: []???? ????????????????=????????????????????=??????????B G R B G R Z Y X 5943.50565.000601.05907.40002.11302.17517.17689.299.001.000106.08124.01770.02.03100.04900.06508.5 及

信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()s i n ()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: s i n ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

拉曼光谱.

拉曼光谱 拉曼谱是以印度物理学家拉曼(C.V.Raman)命名的一种散射光谱.1928年拉曼和克利希南(K.S.Krishnan)在研究单色光在液体中散射时,不仅观察到与入射光频率相同的瑞利散射,而且还发现有强度很弱,与入射光频率不同的散射光谱.同年,前苏联的曼迭利斯塔姆和兰兹贝尔格在石英的散射中也观察到了这一现象.这种新谱线对应于散射分子中能级的跃迁,为研究分子结构提供了一种重要手段,引起学术界极大兴趣,拉曼也因此荣获1930年的诺贝尔物理学奖.但由于拉曼光谱很弱,受当时光源和检测手段的限制,它的发展曾停滞了一段时期.19世纪60年代激光技术的出现使拉曼光谱得以迅速发展,再加上近年来发展的高分辨率的单色仪和高灵敏度的光电检测系统,使拉曼光谱学进入崭新的阶段,应用领域遍及物理、化学、生物、医学等.利用各种类型的材料作为散射物质,几乎都可能得到相应的拉曼谱.这种新型的实验技术正日益显示其重要意义。通过实验了解激光拉曼光谱仪的基本结构与工作原理;了解拉曼散射的原理及其在现代科学研究中的作用;测量典型的CCl4拉曼散射谱。 一、实验原理 当一束单色光入射在固、液或气态介质上时,从介质中有散射光向四面八方射出.散射光中较强的是瑞利散射,其频率与入射光频率ν 相同,其强度和数量级约为入射光强的10-4~10-3.除瑞利散射外还有拉曼散射,拉曼散射的散射光 频率ν与入射光频率相比有明显的变化,即ν=ν ±|Δν|,其强度数量级约为瑞利 散射的10-8-10-6,最强的也只是瑞利散射的10-3.瑞利线ν 长波一侧出现的散射 线ν=ν 0-|Δν|称为斯托克斯(Stokes)线,又称为红伴线;把短波一侧出现的ν=ν +| Δν|称为反斯托克斯(anti-Stokes)线,又称紫伴线.斯托克斯线比反斯托克斯线通常要强一些. 散射光频率ν相对于入射光频率ν 的偏移,即拉曼光谱的频移Δν,是拉曼谱的一个重要特征量.散射线的±|Δν|相对于瑞利线是对称的,而且这些谱线的频移Δν不随入射光频率而变化,只决定于散射物质的性质.换句话说,在不同频率单色光的入射下都能得到类似的拉曼谱.拉曼散射是由分子振动,固体中的光学声子等元激发与激发光相互作用产生的非弹性散射。由液体或固体的声学声子产生非弹性散射称为布里渊散射。用拉曼光谱可以研究固体中的各种元激发的状态,当改变外部条件(如温度和压力等)时,可以研究固体内部状态的变化。拉曼谱的这个特征是拉曼光谱技术的一大优点,它使得有可能在可见光区研究分子的振动和转动等状态,因此在很多情况下它已成为分子谱中红外吸收方法的一个重要补充。拉曼光谱的应用范围很广,这里主要介绍应用较多的晶格振动的一级拉曼光谱。 图2-3-1是四氯化碳的拉曼谱,图中央瑞利线的上部已截去,两侧为拉曼线.频率差Δν也可以通过波数差Δv~来表示,二者之比为光速c,即Δν=cΔv~。

颜色基础知识

颜色基础知识 随着涂料行业的发展以及人民生活的提高,颜色问题日益引起市场的重视。颜色感觉与听觉、闻觉、味觉等都是外界刺激人的感觉器官而产生的感觉。光照射物体经反射或透射后刺激人眼,人眼产生了此物体的光亮度和颜色的感觉信息,并将此信息传至大脑中枢,在大脑中将感觉信息进行处理、形成了色知觉。 外界光刺激-色知觉-色感觉是一个复杂的过程,它涉及光学、光化学、视觉生理、视觉心理等方面问题,从这个过程可以看出,颜色和光及人眼的观察生理,心理基础有着密切的联系,目前通过大量实验为基础已建立了一套定性、定量描述颜色的理论,称为色度学。 第一节、光与颜色 一、 可见光波与颜色 光是一种一定频率的电磁辐射。电磁辐射的范围从r射线到无线电波,电磁辐射中仅有一小段能够引起眼睛的兴奋而被感觉,这就是通常所说的可见光谱的范围,可见光谱的波长从380nm到 780nm,这一段波长人眼是可以看见的,不同的波长引起不同的颜色感觉。 光谱颜色波长及范围 颜色 波长(nm) 范围(nm) 红 700 640-780 橙 620 600-640 黄 580 550-600 绿 510 480-550

兰 470 450-480 紫 420 380-450 表中波长的范围只是粗略的,实际上从一种颜色过度到另一种颜色是一种渐变的,并且颜色随波长的变化也是不均匀的。 太阳光是一种强光,人们感觉太阳光是白色的,但事实上我们让一束太阳光通过三棱镜辐射到一幅白幕上,就会展现出一条具有各种颜色(红、橙、黄、绿、青、蓝、紫)的光带,通常进入我们的眼睛的光线很少是纯粹的单色光,只有在实验室中,利用单色仪才能观察到单色光,在日常生活中,一般是各种波长的光线一起进入我们的眼睛的,是一种混合光,混和光随着各种波长光能量的比例不同而呈现不同的颜色,短波的光能量较大时呈现蓝紫 色,长波的光能量较大时呈现红色等。 二、 自然界物体的颜色 1、自然界物体的颜色千变万化,我们所以能看见物体的颜色,是由于发光体的光线照射在物体上,光的辐射能量作用于视觉器官的结果。物体的颜色一般分为表面色和光源色,表面色即不发光物体的颜色。不发光物体的颜色只有受到光线的照射时才被呈现出来,物体的颜色是由光线在物体被反射和吸收的情况决定的,它受光源条件的影响。 绿色物体在日光下看是绿色,是由于将日光中绿色范围的波长反射出来,而光谱的其他成分则被它吸收了,当这个绿色的物体放在红光下看就变成黑色了,这是由于红光中无绿色的成分被它反射。

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

拉曼光谱仪操作手册

拉曼光谱仪操作手册 一.激光器的开关机步骤 1. 开机: ⑴. 用万用表检查配电柜中的三相电,是否在正常值(380V)±5%的范围之内, 合上空开。 ⑵.启动水冷器,并将水温设置到22℃。打开冷却水球阀。 ⑶.检查遥控头上是否还有故障灯亮启。检查遥控头上的各个按键是否在正常位 置,旋钮是否在最小处。在确定无误后,将遥控头上的钥匙顺时针扭动九十度。经过延时后,激光器电流将跳升至启始电流(10Amps左右)。 ⑷.激光器启动10分钟后,将电流缓慢加至工作电流(工作电流根据实际情况 而定)。半小时后,激光器功率输出可以稳定。 ⑸.改变输出波长时,首先应分别调整激光头后端上的竖直、水平旋钮,使现用 波长激光的输出功率最大。然后拧动竖直旋钮(从短波长向长波长变化时顺时针拧动,反之逆时针)。找到所需谱线后,再分别微调竖直、水平旋钮,使输出功率最佳。 ⑹.若要将棱镜更换成全反镜时,首先应适当加大激光器的电流并拧动竖直旋钮 将谱线调到488nm,然后分别微调竖直、水平旋钮,使激光输出达到最佳。 逆时针拧动棱镜镜架,并退下棱镜。将全反镜镶入腔孔(在将全反镜镶入腔孔时,注意避免镜面碰到腔孔的边缘,以免造成全反镜的损坏),随之顺时针拧动全反镜架使之卡入到位。此时应有激光出现。微调竖直、水平旋钮使激光输出达到最佳。 2.关机: ⑴.将激光器的电流由工作电流降至启始电流。将钥匙逆时针扭动九十度。 ⑵.拉下激光器电源空开。 ⑶.激光器关机10分钟或确认激光器已被充分冷却后,关断水冷器电源并关闭 冷却水球阀。 3.注意事项及突发情况的应急处理: ⑴.激光器在开启,电流跳升至启始电流10分钟后,方可缓慢加大电流至工作 电流。 ⑵.激光器关机尤其在关断冷却水后,一般不要重新开机。若遇特殊情况必须开 机时,在确认前次断水时激光器是在得到充分冷后才断水的,可以开机。开机步骤与正常开机相同。 ⑶.激光器若长时间不用,也应定期将激光器开启,并适当加大电流运行一段时 间,以免激光器长时间放置,激光管欺压增高造成损坏。 ⑷.激光器在正常运行中遇到突然断电或冷却水管道发生爆裂等情况,造成冷却 水突然断水时,应立即关断激光器冷却水进水球阀,短时间内不要重新启动(避免短时间内供水恢复后,冷水再次进入激光器,造成激光管损坏)。然后按正常关机步骤关闭激光器。24小时后方可重新开机。 二.校准拉曼光谱仪 1. 把夹缝1,夹缝2,夹缝3和夹缝4分别设置成100,100,全开和全开的状 态。

色度学基础知识

---------------------------------------------------------------------------------------------------------------------------------------- 色度学基础知识 一、 概述 色度学是研究人的颜色视觉规律、颜色测量的理论与技术的科学, 是以物理光学、 视觉生理、视觉心理、心理物理等学科领域为基础的综合性科学。 在现代工业和科学技术发展中, 存在着大量有关色度学的问题, 颜色与人民生活 的衣食住行密切相关。颜色的测量和控制在一些工农业生产中极为重要, 在许多部门颜 色是评定产品质量的重要指标, 如染料、涂料、纺织印染、 塑料建材、医学试剂、食品 饮料、灯光信号、造纸印刷、电影电视、军事伪装等等, 这一切都是由于颜色科学的建 立, 才使色度工作者能以统一的标准, 对颜色作定量的描述和控制。 在纺织印染、染料和涂料等行业天天与颜色打交道, 过去全凭目测评定, 评定结 果无法记述, 储存。 并受观察者的身体状况、情绪、年龄等影响很大。 随着电子技术 和计算机技术的迅速发展, 测色仪器的测色准确性、重演性和自动化程度大大提高。现 在又有在线检测对提高产品质量, 减少不合格品率更为有用。 为此测色技术在各行各业 日益得到广泛应用。 色彩的感觉是一个错综复杂的过程, 单从物理观点来考虑, 色彩的产生有三个 主要因素: 光源,被照射的物体和观察者。 二.、 光和颜色 1、 光源 光由光源体发出, 太阳光是我们最主要的光源。光辐射是一种电磁辐射波, 包括 无线电波、紫外光、红外光、可见光、X 射线和γ射线等。 我们人类所能见到的光只是电磁波中极小的一部分,其波长范围是380--700nm (纳 米)称为可见光谱。 在可见光谱范围内, 不同波长的辐射引起人的不同颜色感觉: 700nm 为红色, 580nm 为黄色, 510nm 为绿色, 470nm 为蓝色。单一波长的光表现为一种颜色, 称为 单色光。 物体在不同光源照射下会呈现不同的颜色, 为此国际照明委员会(CIE )规定了如 下

信号与系统知识点

第1章 信号与系统分析导论 北京交通大学 1、 信号的描述及分类 周期信号: ()000002sin ,sin ,2t T m k N π ωωπ=ΩΩ=当为不可约的有理数时,为周期信号 能量信号:直流信号和周期信号都是功率信号。 一个信号不可能既是能量信号又是功率信号,但有少数信号既不是能量信号 也不是功率信号。 2、 系统的描述及分类 线性: 叠加性、均匀性 时不变:输出和输入产生相同的延时 因果性:输出不超前输入 稳定性:有界输入有界输出 3、 信号与系统分析概述 ※ 第2章 信号的时域分析 信号的分析就是信号的表达。 1、 基本连续信号的定义、性质、相互关系及应用 ()t δ的性质:筛选特性:000()()()()x t t t x t t t δδ-=- 取样特性:00()()d ()x t t t t x t δ∞ -∞-=? 展缩特性:1 ()() (0)t t δαδαα=≠ ()'t δ的性质:筛选特性:00000()'()()'()'()()x t t t x t t t x t t t δδδ-=--- 取样特性:00()'()d '()x t t t t x t δ∞ -∞-=-? 展缩特性:1'()'() (0)t t δαδααα= ≠ 2、连续信号的基本运算 翻转、平移、展缩、相加、相乘、微分、积分、卷积

3、基本离散信号 4、离散信号的基本运算 翻转、位移、抽取和内插、相加、相乘、差分、求和、卷积 5、确定信号的时域分解 直流分量+交流分量、奇分量+偶分量、实部分量+虚部分量、()[],t k δδ的线性组合。 第3章 系统的时域分析 1、系统的时域描述 连续LTI 系统:线性常系数微分方程 ()()y t x t 与之间的约束关系 离散LTI 系统:线性常系数差分方程 [][]y k x k 与之间的约束关系 2、 系统响应的经典求解(一般了解) 衬托后面方法的优越 纯数学方法 全解=通解+特解 3、 系统响应的卷积方法求解 ()zi y t :零输入响应,形式取决于微分方程的特征根。 ()zs y t :零状态响应,形式取决于微分方程的特征根及外部输入()x t 。 ()h t :冲激平衡法(微分方程右边阶次低于左边阶次,则()h t 中不含有()t δ及其导数项) (一般了解) []h k :等效初始条件法(一般了解) 4、 ※卷积计算及其性质 ※图形法 ※解析法 等宽/不等宽矩形信号卷积 卷积的基本公式及其性质(交换律、结合律、分配律) ※第4章 信号的频域分析 1、连续周期信号表达为虚指数信号()0jn t e t ω-∞<<∞的线性组合 0=()jn t n n x t C e ω∞-∞= ∑% 完备性、唯一性 ()n x t C ?%(周期信号的频谱)000001 ()T t jn t n t C x t e dt T ω+-=?%

色度知识点

色度 chromaticity 颜色是由亮度和色度共同表示的,而色度则是不包括亮度在内的颜色的性质,它反映的是颜色的色调和饱和度。 chrominance;chroma) 色度是水质的外观指标,水的的颜色分为表色和真色。真色是指去除悬浮物后水的颜色,没有去除的水具有的颜色称表色。对于清洁的或浊度很低的水,真色和表色相近,对于着色深的工业废水和污水,真色和表色差别较大。而水的色度一般指真色,水的颜色常用以下方法测定:1.铂钴标准比色法(常用于天然水和饮用水,单位度) 2.稀释倍数法(常用于工业废水,单位倍)。 纯水无色透明,天然水中含有泥土、有机质、无机矿物质、浮游生物等,往往呈现一定的颜色。工业废水含有染料、生物色素、有色悬浮物等,是环境水体着色的主要来源。有颜色的水减弱水的透光性,影响水生生物生长和观赏的价值,而且还含有有危害性的化学物质。1毫克铂在一升水中所具有的颜色为一度。 现在色度已广泛应用于各行各业,尤其是衣服的颜色,就常用色度来表示。 色度的测定方法 1 主题内容与适用范围 本标准规定了两种测定颜色的方法。本标准测定经15min澄清后样品的颜色。pH值对颜色有较大影响,在测定颜色时应同时测定pH值。 1.1 铂钴比色法参照采用国际标准ISO 7887—1985《水质颜色的检验和测定》。铂钴比色法适用于清洁水、轻度污染并略带黄色调的水,比较清洁的地面水、地下水和饮用水等。 1.2 稀释倍数法适用于污染较严重的地面水和工业废水。 两种方法应独立使用,一般没有可比性。 样品和标准溶液的颜色色调不一致时,本标准不适用。 2 定义 本标准定义取自国际照明委员会第17号出版物(CIE publication No.17),采用下述几条。 2.1 水的颜色 改变透射可见光光谱组成的光学性质。 2.2 水的表观颜色 由溶解物质及不溶解性悬浮物产生的颜色,用未经过滤或离心分离的原始样品测定。 2.3 水的真实颜色 仅由溶解物质产生的颜色。用经0.45μm滤膜过滤器过滤的样品测定。 2.4 色度的标准单位,度:在每升溶液中含有2mg六水合氯化钴(Ⅳ)和1mg铂[以六氯铂(Ⅳ)酸的形式]时产生的颜色为1度。 3 铂钴比色法 3.1 原理 用氯铂酸钾和氯化钴配制颜色标准溶液,与被测样品进行日视比较,以测定样品的颜色强度,即色度。 样品的色度以与之相当的色度标准溶液(3.2.3)的度值表示。 注:此标准单位导出的标准度有时称为“Hazen际”或“Pt-Co标”[GB 3143《液体化学产品颜色测定法(Hazcn单位——铂-钴色号)》]、或毫克铂/升。 3.2 试剂 除另有说明外,测定中仅使用光学纯水(3.2.1)及分析纯试剂。 3.2.1 光学纯水:将0.2μm。滤膜(细菌学研究中所采用的)在100mL蒸馏水或去离子水中浸泡1h,用它过滤250mL蒸馏水或去离子水,弃去最初的250mL,以后用这种水配制全部际准溶液并作为稀释水。

信号与系统知识要点

《信号与系统》知识要点 第一章 信号与系统 1、周期信号的判断 (1)连续信号 思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果 11 22 T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。 (2)离散信号 思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ① 02πω为整数时,周期0 2N π ω=; ② 1 2 2N N π ω= 为有理数(不可约)时,周期1N N =; ③ 2π ω为无理数时,为非周期序列 注意:和信号周期的判断同连续信号的情况。 2、能量信号与功率信号的判断 (1)定义 连续信号 离散信号 信号能量: 2 |()| k E f k ∞ =-∞ = ∑ 信号功率: def 2 22 1lim ()d T T T P f t t T →∞- =? /2 2/2 1lim |()|N N k N P f k N →∞=-=∑ (2)判断方法 能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律 ①一般周期信号为功率信号; ②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号; ③还有一些非周期信号,也是非能量信号。 ?∞∞ -=t t f E d )(2 def

3 ① ② 4、信号的基本运算 1) 两信号的相加和相乘 2) 信号的时间变化 a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at → 3) 信号的微分和积分 注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。正跳变对应着正冲激;负跳变对应着负冲激。 5、阶跃函数和冲激函数 (1)单位阶跃信号 00 ()10t u t t ? 0t =是()u t 的跳变点。 (2)单位冲激信号 定义: 性质: ()1 ()00 t dt t t δδ∞-∞?=?? ?=≠?? t

电视技术考试重点

电视技术考试重点(自己整理) 1946年6月成功发明了彩色电视机 我国第一台黑白电视机诞生于1958年3月电视图像是一种光信号 由光学理论可知,光是以电磁波形式存在的物质。 波长在380--780nm 范围内的电磁波能够引起人眼的视觉反映,称为可见光 广播电视只利用可见光谱,其波长范围为380-780nm 每一种色带都有一个大致的波长范围,可见光谱对色感呈单一的对应关系。 这种一定波长的光谱呈现的颜色称为光谱色。色感对光谱的对应关系不是唯一的人眼是不能分辨单色黄光和由红、绿两光混合所得复合黄光的差别 的,这种由不同光谱混合出相同色光的现象称为同色异谱。电视台都以色温为9300K 制作节目但在欧美因为平时的色温和我国有差异,以一年四季 平均色温约 6000K为制作节目的参考值 人眼的分辨力线数m=3438< H/(L 0 ) =458线 上式说明,当458线时,即可达到两个视敏细胞之间夹角0 =1.5'的要求, 在电视技术中就是根据此值来决定扫描行数的,即水平清晰度因屏幕的宽高比是4:3,同理可推出为610线。 人眼对扫描线区分大于458线,高清平板电视采用1080线国际上规定红基色的波长为700nm 三基色原理是彩色信息传送和彩色电视广播实现的基础空间混色法是同时制彩色电视的基础时间混色法是顺序制彩色电视的基础。 亮度公式Y = 0.30R + 0.59G + 0.11B 行扫描正程时间大于行扫描逆程时间) 只在显像管的行偏转线圈中通入行扫

描电流,将在屏幕中间出现一条水平亮线,如图所示。 若只有场扫描过程,则荧光屏上就只出现一条垂直亮线我国电视标准规定,每秒传送25 帧,每帧图像为625 行,每场扫描312.5行,每秒扫描50场。场频为50Hz,不会有闪烁现象;一帧由两场复合而成,每帧画面仍为625 行,图像清晰度没有降低,而频带却压缩一半。 我国的电视标准中,场频选为50Hz 我国采用每帧扫描行数为625 场频确定为fv=50Hz,由于采用隔行扫描,所以帧频fz=25Hz,也就是一帧扫描时间为Tz=40ms。 当扫描行数选定为Z=625后, 行扫描时间TH=Tz/Z=40ms/625=64卩s, 行频fH=fz x Z=25Hz X 625=15625Hz 黑白全电视信号由图像信号、消隐信号和同步信号叠加而成 31.5MHz 的第一伴音中频信号伴音信号调制在第二伴音中频 6.5MHz 具有远距离传输能力的高频电磁波称为射频,英文缩写:RF 射频载波均采用米波波段(VHF甚高频)和分米波波段(UHF特高频)。 我国电视频道带宽是8MHz在甚高频(VHF)段共有12个频道,频率为48.5?92MHz是DS —DS5 (又称L频段) 频率为167—223MHz是DS6-DS12 (又称H频段) 在特高频(UHF)段共有56个频道 我国模拟电视的行频是15625Hz,选的倍数是283.5,这样彩色副载波的频

色度学知识大全

颜色 苹果是红的,柠檬是黄的,天是蓝的,这就是我们大家以日常用语对颜色的判断。我们用色调这一术语在色彩世界里把颜色区分为红、黄、蓝等类别。还有,虽然黄和红是两种截然不同的色调,但是把黄和红混合在一起就产生了橙色(有时称之为黄-红):混合黄和绿产生黄-绿;混合蓝和绿则产生蓝-绿,等等。把这些色调衔接排列,就形成如图1所示的色环。 当比较各种颜色的亮度(颜色的明亮程度如何)时,颜色就有明亮和深暗之分。例如,将柠檬的黄色和葡萄柚的黄色来说,毫无疑问,柠檬的黄色就比较明亮。把柠檬的黄色和欧洲甜樱桃的红色相比,显然,也是柠檬黄比较明亮。可见,颜色亮度的测量与色

调无关。现在,让我们来看一看图2。图2是图1沿A(绿)B(紫红)直线切开的剖面图。可以看出,亮度沿垂直方向变化,越往上去,色彩越明亮,越往下去,则越深暗。 再来说说黄色。柠檬的黄色和梨的黄色相比较又如何?你可能会说柠檬的黄色更明亮一些,但除此以外还有一个大的差别就是柠檬的黄色显得鲜艳,而梨的颜色则显得阴晦。这种差别称之为色饱和度或鲜艳度。从图2可以看出,紫红和绿两色的饱和度分别由中心向两侧随水平距离的增加而变化。离中心越近,色彩越阴晦;离中心越远,则越鲜艳。图3标出了一些常用的描述色彩亮度和色饱和度的形容词。至于这些形容词表达了什么,请再看一下图2。

能把色调、亮度、色饱和度的关系以直观的方式来表达得清清楚楚。

色彩和光的知识 测量仪器

如果我们测量苹果的颜色,我们得到下列结果:

过去已有好几个人想出多种方法,常常是通过复杂的公式用数量来表示颜色,其目的是使每个人能够更容易地和更准确地做色彩信息交流。这些方法试图提出一种用数字来表示颜色的方法,就好象我们表示长度和重量一样。例如在1905年,美国画家A.H.孟塞尔发明一种表示颜色的方法,这种方法利用大量按照颜色的色调(孟塞尔色调)、亮度(孟塞尔值)和色饱和度(孟塞尔饱和度)分类的色纸片,用来和样品色作目视比较。后来,经过许多进一步实验,该系统经过更新,创立了孟塞尔新表色系统,也就是现在在用的孟塞尔系统。在该系统中,任何给定的颜色按照它的色调(H),亮度值(V)和饱和度(C),表示为一个字母/数字组合(HV/C),并利用孟塞尔色卡作目视测定。其他用数字表示颜色的系统是由国际照明委员会(CIE)研究出来的。其中最为著名的两种系统为Yxy系统和L*a*b*系统。前者是于1931年根据CIE规定的三刺激值XYZ发明出来的,后者是由1976年发明的,以给出更为均匀的相对于视差的色差。这两种色空间*已在全世界用于色彩交流。 *色空间:这是一种用某种符号(例如数字)来表示某物体或某种光源颜色的方法。

色度学的基本知识

色度学的基本知识 色度学是研究人的颜色视觉规律,颜色测量理论与技术的科学,是物理光学,视觉生理,视觉心理等科学为基础的综合性科学。彩色电视技术中的色度学是研究自然界景物的颜色,如何在彩色电视系统中分解,传输,并在彩色电视机屏幕上正确的复显出来。名词解释: 同色异谱:也就是说一定的光谱分布表现为一定的颜色,但同一种颜色可以有不同的光谱分布合成。彩色电视机的颜色复显技术正是利用同色异谱概念,在颜色复显过程中,不是重复原来景物的光谱分布,而是利用几种规格化的光源进行配制。以求在色感上得到等效效果。如在彩电的复显中用的是R,G,B三基色光谱(因为R,G,B三基色可以混合出自然界中绝大多数颜色)的合成来复显原来景物的颜色。 绝对黑体:是指在辐射作用下既不反射也不透射,而能把落在它上面的辐射全部吸收的物体。当绝对黑体被加热时,就会发射一定的光谱,这些光谱表现为特定的颜色。 色温:当绝对黑体发射出与某一光源相同特性的光时,绝对黑体所必须保持的温度,便叫某光源的“色温”。 1931CIE-XYZ计色系统 现代色度学采用CIE(国际照明委员会)所规定的一套色测量原理,数据和计算方法,称为CIE标准色度学系统。 白色可分为好多种,有偏红的白色(暖白色),偏蓝的白色(冷白色)等。在彩色电视系统中,为了分解,重现彩色图象,通常也要选择一种白色作为分解,重现颜色的基准白。为了清楚的描述不同的白色,通常把1931CIE-XYZ图中把白色用色度坐标(x,y)来表示,也可以用相关色温和最小分辨的颜色差来表示。图中斜竖线称为布朗克轨迹等色温线,与其垂直的斜线称为最小可分辨的颜色差(Minimum Perceptible Colour Difference,简称MPCD),MPCD为零的斜竖线称为黑体(Black body)轨迹,又称布朗克轨迹。布朗克轨迹上各点呈现的白色代表了绝对黑体在不同绝对温度下呈现的白色

相关文档
最新文档