电子显微镜技术

电子显微镜技术
电子显微镜技术

显微分析技术

摘要:透射电子显微镜、扫描电子显微镜以及扫描探针显微镜已经成为了分析纳米材料的重要手段之一。本文简要的介绍了透射电子显微镜、扫描电子显微镜以及扫描探针显微镜的发展以及应用。

引言

纳米科技是在20世纪80年代后才逐渐发展起来的前沿性、交叉性的新型科学领域,纳米材料的性能与其微观结构有着重要的关系,因此,纳米材料微观结构的表征对于认识纳米材料,推动纳米材料的应用有着深远的意义。

自16世纪出现了光学显微镜以后,把正常人眼睛仅能分辨约0.2mm 细节的能力,延伸到可以看细菌和微生物。20世纪30年代,科学家利用电子源制造出了扫描电子显微镜,其分辨率远远超出了光学显微镜。1932年M.Knoll和E.Ruska 研制出了第一台透射电子显微镜实验装置(TEM),1938年,V on.Ardence将扫描线圈加到透射电子显微镜上(TEM),制成了第一台扫描透射电子显微镜(STEM),放大倍数8000X,分辨率在500~1000 ?之间直到1952年,C.W.Qatley 和McMullan 在剑桥(Cambridge )制成了第一台现代的SEM,分辨率达到500?,很大程度的提高了人类认识微观世界的能力。但是,后来人们发现,当显微镜的放大率提高到1000-1500倍时,受光的衍射效应影响,图像将变得不再清晰。1982年国际商业机器公司苏黎世实验室的葛·宾尼(Gerd Binnig)博士和海·洛雷尔(Heimich Rohrer)博士及其同事们共同研制成功了世界第一台新型的表面分析仪器——扫描隧道显微镜(简称STM)。它的出现使人类第一次能够实时的观察单个原子在物质表面的排列状态和表面电子行为有关的物理、化学性质,为科学家提供了一种前所未有的直接观察单原子、单分子的手段,从而从根本上改变了人类对微观(纳米)世界的认识水平。STM的探针是由针尖与样品之间的隧道电流的变化决定的,因此要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节为了克服

STM的不足之处,Binnig,Quate和Gerber决定用微悬臂作为力信号的传播媒介,把微悬臂放在样品和STM的针尖之间,于1986年推出了原子力显微镜(AFM)。AFM是通过探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息,因此,AFM除导电样品外,还能够观测非导电样品的表面结构,且不需要用导电薄膜覆盖,其应用领域将更为广阔它得到的是对应于样品表面总电子密度的形貌,可以补充STM对样品观测得到的信息且分辨率亦可达原子级水平。

现代电子显微镜最大放大倍率超过300万倍,所以通过电子显微镜就能直接观察到某些重金属的原子和晶体中排列整齐的原子点阵。目前,人类的视野第一次深入到原子尺度,它不仅是显微科学技术的一次革命,在物理学、化学表面科学、材料科学、生命科学等领域也都获得了广泛的应用,它标志着一个科技新纪元即纳米科技时代的开始,人类进入了直接观察原子、操纵原子的新时代,在原子和分子水平,根据人们的意愿设计、修饰,加工,创造新的物质结构与特性成为可能。

1 透射电子显微镜的原理及应用

1.1透射电子显微镜的原理

透射电镜是利用电子与样品的相互作用获取样品信息的:从电子枪发出的高速电子束经聚光镜均匀照射到样品上,作为一种粒子,有的入射电子与样品发生碰撞,导致运动方向的改变,形成弹性散射电子;有的与样品发生非弹性碰撞。形成能量损失电子;有的被样品俘获,成吸收电子。作为一种波,电子束经过样品后还可发生干涉和衍射。总之,均匀的入射电子束与样品相互作用后将变得不均匀。这种不均匀依次经过物镜、中间镜和投影镜放大后在荧光屏上或胶片上就表现为图像对比度,它反映了样品的信息。早期人们只能通过荧光屏观察图像。通过胶片记录图像及进行学术交流。所以,透射电镜一般都配有大、小荧光屏(观察、精确对焦荧光屏),片夹式照相机用以观察和记录透射电镜图像:还有35mm 照相机接口可用来选装35mm卷片式照相机以及底部法兰可用于选装其它透射电镜附件。近20来年更是出现了各种各样的电子式透射电镜成像设备。

透射电子显微镜是以波长极短的电子波作为照明,用电磁投射聚焦成像,具有高分辨能力和放大倍数的电子光学仪器。根据衍射理论,显微镜分辨极限是d=0.61;式中,为光线的波长;d表示最小分辨率;n为透镜周围介质的折射率;为通称数值孔径。由此可见,显微镜的分辨距离与波长成正比,与数值孔径成反比。当数值孔径一定时,波长越短,显微镜的分辨本领越强。根据德布罗意公式,电子的波长取决于它们的速度,而电子的速度和它们受到的加速电压有关。当加速电压为100KV时,可以得到为的电磁波。加速电压越高,得到的电子波长越短。表一给出了电子波长与加速电压的关系。

表一电子波长和加速电压的关系

根据透射电镜的加速电压,分辨能力,放大倍率真空度等,透射电镜可分为四个等级。

表二加速电压、分辨能力、放大倍率

表三真空度

透射电镜的成像的决定因素是样品对入射电子的散射,包括弹性散射和非弹性散射。薄样品成像时,未经散射的电子构成背景,而像衬度则取决于样品的各个部位对电子的不同散射特性。采用不同的实验条件可以得到不同的衬度像。透射电镜不仅能显示赝品的显微组织形貌,而且可以利用电子衍射效应同时获得样品的晶体学信息。

1.2 透射电子显微镜的应用

1.2.1颗粒形貌的观测

颗粒的形状受颗粒制备工艺影响很大,它对颗粒群的许多性质有较大的影响,而且颗粒形貌的观测在颗粒测量中站很重要的位置。图一给出了用透射电镜拍出的不同制备工艺所生产出的氧化锌超微颗粒的形貌。从图一中可以看到虽然他们都是氧化锌,但是由于制备方法不同,形貌差别很大,A是一个六角棱柱形晶体,B是管状晶体,而C是一些空心球。由此可见,利用TEM可以方便的观测出纳米材料的形貌。

图一不同方法合成的氧化锌形貌

A Crystal Growth & Design, Vol. 7, No. 1, 2007

B Chem. Mater. 2003, 15, 3294-3299

C Crystal Growth & Design, Vol. 8, No. 8, 2008

1.2.2颗粒粒度测量

现代材料的许多性能受颗粒粒度的影响。近期研究表明当颗粒尺寸小到一定程度时,一些材料会表现出一些奇特的物理性能。透射电子显微镜特别适合小尺度的颗粒粒度的测量。从图一中可以大致估算出颗粒的粒径大小。当然如果需要精确计算粒子的平均粒径,则需XRD,激光粒度仪或者其他仪器。

1.2.3颗粒物相分析

现代透射电子显微镜具有电子衍射功能当在电子显微镜上发现兴趣的目标时候,可以对一个很小的区域做选区电子衍射,可以得到颗粒物的晶格信息。图二A对应了是对应于图一A的氧化锌选择区域衍射图,可以观察到氧化锌的晶格参数。B和C都是三氧化钨的选择区域衍射图,B和C是由不同原料合成的

三氧化钨,从其选择区域衍射可以看出,虽然都是三氧化钨,但是由于合成条件不同,其形成的晶体物相组成有很大的差异。

图二

A Crystal Growth & Design, Vol. 7, No. 1, 2007

B Crystal Growth & Design, Vol. 10, No. 2, 2010

C 同B

1.2.4颗粒元素的测定

利用透射电镜附加的EDS功能可以迅速对小颗粒的元素组成进行判别。图三A是为对氧化铟的电子能量损失图,B是氧化锌的电子能量损失图。测量时,将样品防过载带碳膜的铜网载体上,从能谱中扣除碳和铜的影响,给出颗粒组成元素质量和原子百分比。

图三

A Crystal Growth & Design, Vol. 7, No. 1, 2007

B 同A

1.2.5颗粒分散性的研究

通常情况下,粉体团聚是分体的固有特性,超微颗粒的团聚更加明显,因而需要采用一些工艺对颗粒进行表面处理和加一些分散剂使超微颗粒得到充分分散,图四给出氧化铜颗粒的分散性好坏,从电镜照片中可以直接观测出。

图四Appl. Mater. Interfaces, 2010, 2 (5), pp 1361–1368

1.2.6颗粒表面改性研究

透射电镜在研究超微颗粒表面改性方面得到了很广泛的应用。图五显示了一个核壳结构的纳米颗粒。

图五

Langmuir, Vol. 24, No. 14, 2008 Macromolecules, Vol. 42, No. 13, 2009

2扫描电子显微镜的原理和应用

2.1扫描电子显微镜的原理

SEM主要由电子光学系统(包括电子枪、镜筒、样品室)、电源、真空系统及信号检测、处理系统所组成。由电子枪发射的电子经静电场引出,沿镜筒加速,在镜筒中电磁透镜和光阑作用下,电子被聚焦成电子束并射向样品。镜筒底部的扫描线圈控制电子束在样品表面扫描,形成光栅,使样品表面各点顺序激发,产生各种物理信号,其强度随样品表面构造、成分而变化。信号探头收集相应的信

号,经视频放大、处理后,同步调制阴极射线管(CRT)中电子束电流强度,即可在CRT显示屏上显现出样品表面各点图像。

电子束与样品相互作用所产生的各种物理信号中,对SEM成像有影响的主要有:

(1)二次电子:二次电子是初始束电子作用于样品,在样品表面原子中激发出来的电子。它们能量很低(小于50eV),只能从样品表面很浅的区域逸出,成像分辨率最好。其图像衬度主要取决样品表面形貌。样品表面凸起处原子相对于凹下处更容易被激发,逸出的二次电子数更多,因而凸起处成像明亮,凹下处黑暗。二次电子信号是SEM的主要成像信号。

(2)背散射电子(BSE):与样品原子核发生弹性碰撞而散射出的初始电子束电子。这部分电子能量很高,从50eV直至电子束加速电压。由干背散射电子源区范围大,其成像分辨率不高。图像衬度主要取决于样品所含原子的原子序数,可提供有关样品成分的重要信息。

图六传统扫描电镜的主体结构

扫描电子显微镜有如下七种分类方法:

(1)按照电子枪种类分:钨丝枪、六硼化镧、场发射电子枪;

(2)按照样品室的真空度分:高真空模式、低真空模式、环境模式;

(3)按照真空泵分:油扩散泵、分子泵;

(4)按照自动化程度分:自动、手动;

(5)按照操作方式分:旋钮操作、鼠标操作;

(6)按照电器控制系统分:模拟控制、数字控制;

(7)按照图像显示系统分:模拟显像、数字显像。

2.2扫描电子显微镜的发展

2.2.1 场发射扫描电镜

采用场发射电子枪代替普通钨灯丝电子枪,这项技术从1968年就已开始应用,这项技术大大提高了二次电子像分辨率;近几年来,各厂家采用多级真空系统(机械泵+分子泵+离子泵),提高了真空度,真空度可达10—7 Pa;同时,采用磁悬浮技术,噪音振动大为降低;灯丝寿命也有增加.场发射扫描电镜的特点是二次电子像分辨率高,可达到1 nm。如果采用低加速电压技术,在1V状态下背散射电子(BSE)成像良好,对于未喷涂非导电样品也可得到高倍像。所以,场发射扫描电镜将对半导体器件、精密陶瓷材料、氧化物材料等的发展起到很大的作用。

2.2.2环境扫描电镜(ESEM)

低真空扫描电镜样品室最高低真空压力为400Pa,现在有厂家使用专利技术,可使样品室的低真空压力达到2600 Pa,也就是样品室可容纳分子更多,在这种状态下,可配置水瓶向样品室输送水蒸气或输送混合气体,若跟高温或低温样品台联合使用则可模拟样品的周围环境,结合扫描电镜观察,可得到环境条件下试样的变化情况。ESEM的特点是:

(1)非导电材料不需喷镀导电膜,可直接观察,分析简便迅速,不破坏原始形貌;

(2)可保证样品在100%湿度下观察,即可进行分离油含水样品的观察,能够观察液体在样品表面的蒸发和凝结以及化学腐蚀行为;

(3)可进行样品热模拟及力学模拟的动态变化实验研究,也可以研究微注入液体与样品的相互作用等。因为这些过程中有大量气体释放,只能在环扫状态下进行观察.环境扫描电镜技术拓展了电子显微的研究领域。

2.3扫描电子显微镜的应用

2.3.1材料的组织形貌观察

材料剖面的特征、零件内部的结构及损伤的形貌,都可以借助扫描电镜来判断和分析.反射式的光学显微镜直接观察大块试样很方便,但其分辨率、放大倍数和景深都比较低.而扫描电子显微镜的样品制备简单,可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析;扫描电子显微图像因真实、清晰,并富有立体感,在观察研究纳米材料方面获得了广泛地应用。从图七可以清晰的看出,A图中粒子具有哑铃形的性貌特征,而B图中则是一些小球。

图七

A Macromolecules 2006, 39, 5531-5539

B Macromolecules, Vol. 42, No. 13, 2009

2.3.2镀层表面形貌分析和深度检测

金属材料零件在使用过程中不可避免地会遭受环境的侵蚀,容易发生腐蚀现象.为保护金属材料,常常需要进行诸如磷化、达克罗等表面防腐处理.有时为利于机械加工,在工序之间也进行镀膜处理。由于镀膜的表面形貌和深度对使用性能具有重要影响,所以常常被作为研究的技术指标。镀膜的深度很薄,由于光学显微镜放大倍数的局限性,使用金相方法检测镀膜的深度和镀层与母材的结合情况比较困难而扫描电镜却可以很容易完成。使用扫描电镜观察分析镀层表面形貌是方便、易行的最有效的方法,样品无需制备,只需直接放入样品室内即可放大观察。

图八

高比重钨合金断口形貌Bi系超导带材断口形貌

2.3.3微区化学成分分析

在样品的处理过程中,有时需要提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。为此,相继出现了扫描电子显微镜—电子探针多种分析功能的组合型仪器.扫描电子显微镜如配有x射线能谱(EDS)和x射线波谱成分分析等电子探针附件,可分析样品微区的化学成分等信息。材料内部的夹杂物等,由于它们的体积细小,因此,无法采用常规的化学方法进行定位鉴定。扫描电镜可以提供重要的线索和数据。

3扫描探针显微镜

扫描探针显微镜(Scanning Probe Microscope,SPM)是扫描隧道显微镜及在扫描隧道显微镜的基础上发展起来的各种新型探针显微镜(原子力显微镜AFM,激光力显微镜LFM,磁力显微镜MFM等等)的统称,是国际上近年发展起来的表面分析仪器,是综合运用光电子技术、激光技术、微弱信号检测技术、精密机械设计和加工、自动控制技术、数字信号处理技术、应用光学技术、计算机高速采集和控制及高分辨图形处理技术等现代科技成果的光、机、电一体化的高科技产品。

3.1描隧道显微镜的原理

扫描隧道显微镜(STM)是根据量子力学中的隧道效应原理,通过探测固体

表面原子中电子的隧道电流来分辨固体表面形貌的新型显微装置。由于电子的隧道效应,金属中的电子并不完全局限在表面边界之内,即电子的密度并不在表面边界突然降为零,而是在表面以外呈指数衰减;衰减长度约为1nm,它是电子逸出表面势垒的量度。如果两块金属互相靠得很近,它们的电子云就可能发生重叠;如果在两金属间加一微小电压,那就可以观察到它们之间的电流(称为隧道电流)。尽管STM的构型各不相同,但都包括有下述三个丰要部分;驱动探针相对于导电试样表面作三维运动的机械系统(镜体),用于控制和监视探针与试样之间距离的电子系统和把测得的数据转换成图像的显示系统。它有两种作方式:恒流模式、恒高模式。

3.2 STM的应用

虽然STM图像不能简单地归结为原子的空间排布,对STM图像的解释,通过量子化学的理论计算,并结合表面分析技术(如AES、XPS等)结合起来,综合分析,数据间相互印证等方法综合运用。

图九为G4-DNA 分子的单分子STP图,可以从图像中观察出DNA的周期性变化以及其螺旋结构。图十为多晶O x?Au的STM图,可以观察到O x?Au的多晶结构。STM图像反映的是样品表面的局限电子结构及空间变化,而与表面原了位置无直接关系,不能将观测到的表面高低起伏简单地归结为原子的排列结构。图九J. Phys. Chem. B, Vol. 112, No. 31, 2008

图十ACS Nano, 2010, 4 (4), pp 2104–2108

STM对工作环境要求较宽松,在大气、真空、溶液、高温、低温等条件下均可,对各种不同状态的表面化学研究十分便利。例如,研究原位表面的化学反应,表面吸附、表面催化、电化学腐蚀等。

3.3 原子力显微镜的原理

AFM是在STM基础上发展起来的,是通过测量样品表面分子(原子)与AFM 微悬臂探针之间的相互作用力,来观测样品表面的形貌。AFM与STM的主要区别是以1个一端固定而另一端装在弹性微悬臂上的尖锐针尖代替隧道探针,以探测微悬臂受力产生的微小形变代替探测微小的隧道电流。其工作原理如图十一所示。将一个对极微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触。由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种作用力恒定,带有针尖的微悬臂将对应于原子间的作用力的等位面,在垂直于样品表面方向上起伏运动。利用光学检测法或隧道电流检测法,可测得对应于扫描各点的位置变化,将信号放大与转换从而得到样品表面原子级的三维立体形貌图像。

图十一AFM工作原题图

AFM 图像是通过在样品扫描时测量微悬臂受力弯曲和程度得到的,检测微悬臂弯曲的方式有3种,即隧道电流法、电容检测法和光学检测法。目前探测悬臂微形变的常用方法是光学检测法。光学检测法可分成2种基本类型:干涉法和光束发射法。

3.4 AFM的应用

3.4.1 AFM对生物细胞的表面形态观察

AFM可以用来对细胞进行形态学观察,并进行图像的分析。通过观察细胞表面形态和三维结构,可以获得细胞的表面积、厚度、宽度和体积等的量化参数等。例如,利用AFM可以对感染病毒后的细胞表面形态的改变、造骨细胞在加入底物(钴铬、钛、钛钒等)后细胞形态和细胞弹性的变化、GTP对胰腺外分泌细胞囊泡高度的影响进行研究。利用AFM还可以对自由基损伤的红细胞膜表面精细结构的研究,直接观察到自由基损伤,对红细胞膜分子形态学的影响。图十二是用原子力显微镜观察用W2-pVEC处理双层蛋白质分子的变化过程。

图十二Biochemistry, Vol. 45, No. 11,

2006

3.4.2 原子力显微镜对生物分子之间力谱曲线的观测

对生物分子表面的各种相互作用力进行测量,是AFM的一个十分重要的功能。这对于了解生物分子的结构和物理特性是非常有意义的。因为这种作用力决定两种分子的相互吸引或者排斥,接近或者离开,化学键的形成或者断裂,生物分子立体构像的维持或者改变等等。在分子间作用力的支配下,还同时支配着生物体内的各种生理现象、生化现象、药物药理现象,以及离子通道的开放或关闭,受体与配体的结合或去结合,酶功能的激活或抑制等等。因此,生物分子间作用力的研究,在某种意义上说,就是对生命体功能活动中最根本原理的研究。这也为人们理解生命原理,提供了一个新的研究手段和工具。图十三是对蛋白质的原子力显微镜图

图十三J. AM. CHEM. SOC. 2009, 131, 7526–7527

结论

透射电子显微镜、扫描电子显微镜以及扫描探针显微镜已经成为人们观测微观纳米粒子的重要手段。每一种电子显微镜都有其不可替代和不可避免之处要根

据不同的研究体系选择适当的电子显微镜。

蔡司EVO18电镜专业技术说明

钨灯丝扫描电镜技术文件 仪器型号:EVO 18 Attachment-1/24

目录附件一、品牌介绍 附件二、设备用途 附件三、技术指标 附件四、供货范围 附件五、计划进度及培训 附件六、环境要求 附件七、质保及其它服务

附件一:聚焦·CARL ZEISS 世界可见光及电子光学的领导企业----德国蔡司公司始创于1846年。其电子光学前身为LEO(里奥),更早叫Cambridge(剑桥)和Zeiss。积扫描电镜领域40多年及透射电镜领域60年的经验,ZEISS电子束技术在世界上创造了数个第一: ?第一台静电式透射电镜(1949) ?第一台商业化扫描电镜(1965) ?第一台数字化扫描电镜(1985) ?第一台场发射扫描电镜(1990) ?第一台带有成像滤波器的透射电镜(1992) ?第一台具有Koehler照明的200kV 场发射透射电镜(2003) ?第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜(2003) CARL ZEISS其前瞻性至臻完美的设计融合欧洲至上制造工艺造就了该品牌在光电子领域无可撼动的王者地位。自成立至今,一直延续不断创新的传统,公司拥有广泛的专有技术,,随着离子束技术和基于电子束的分析技术的加入、可为您提供钨灯丝扫描电镜、场发射扫描电镜、双束显微镜(FIB and SEM)、透射电子显微镜等全系列解决方案。。其产品的高性能、高质量、高可靠性和稳定性已得到全世界广大用户的信赖与认可。作为全球电镜标准缔造者的CARL ZEISS将一路领跑高端电镜市场为您开创探求纳米科技的崭新纪元。 Carl Zeiss SMT下属的纳米技术系统部在北京,上海,广州,鞍山设有营销公司和维修服务站,致力于蔡司电镜的技术咨询,销售和售后服务工作。

扫描电子显微镜技术应用与研究

扫描电子显微镜技术应用与研究 摘要:本文从金属晶体理论和扫描电子显微镜的原理出发,阐述了的定义和性质。通过对金属模块和焊条的二次电子成像,论证了分辨率高,能反映物体更多的层次结构等优点。最后,讨论了二次电子在电子制造业中的应用。 关键词:扫描电子显微镜金属晶体二次电子成像电子束 Abstract:This article is based on the theory of metal crystal, configuration and working theory of the scanning electron microscope. It is expounded the definition and nature of secondary electron image. Through the secondary electron image of metal and the welding rod, it is proved the secondary electron resolution to be likely high, could reflect merits and so on object more hierarchical. Finally we discussed the secondary electron in the electronic manufacturing applications. Key words: scanning electron microscope, metal crystal, secondary electron image electron beam 前言 随着现代科学技术的飞跃发展,各种新型材料的不断涌现.材料的检测技术也正在朝着科学、先进、简便、精确、自动化的方向发展.材料组织结构和性能的检测已成为一门多学科、跨学科的综合性技术.材料性能的检测既有传统的见手段又有高度现代化的研究手段.面对新技术和新材料的快速发展,过去传统的常规性能检测遇到了极大的挑战.一方面由于采用现代化的电子技术、光学技术、声学技术等新技术以及随之发展的各种高科技的设备,触进了材料检测技术的不断进步.另外一方面,为了适应新材料和新技术的发展不断不断修改检测标准,使常规检验和深入研究紧密的结合起来. 而在材料组织的形貌观察中,主要是依靠显微技术,利用二次电子成像来分析材料的组织结构,已成为当今检测的主要趋势.扫描电子显微镜和透射电子显微镜则把观察的尺度推广到亚微米和微米以下的层次.现代的显微镜的分辨率可达到0.2nm甚至更高.在借助显微技术和其他一些分析系统可以把材料组合子形貌比较准确的分析出来.

电子显微镜的景深和显微镜的分辨率

电子显微镜的景深和显微镜的分辨率 显微镜由于电子的波动性,当它通过小孔光阑时会发生衍射现象。衍射结果表现为每个物点形成的像是一个圆斑(周围的副光环可忽略不计)。定义这个衍射圆斑的半径为衍射像差。在像方或物方可分别表示为: (Ar&ff),=0.611/a(1一22a) (1rdff)o=0.61A/ao(1一22b) 式中各符号的意义同前。可以看出加大光阑孔径角as,可以减小衍射差。但实际工作中还应注意这样会带来的不利影响。 景深和焦探(11) 景深就是在保持像清晰的前提下,可允许物面在轴上的移动距离,或者说可允许物上不同部位处的凹凸差。根据图1-10,理想情况下物点P成像在Q点.如果物面在P点前后P’P"之间移动,则在Q看到的物有一定横向宽度。如果透镜有各种像差。该系统实际存在一个对物的可分辨极限(分辨率8)。显微镜价格只要P’P,,间平面上的物点宽度小于或等于s,则在Q处的成像效果与P点处几何物点造成的像斑是相同的,即其清晰度相同。因此可允许的物在轴上最大距离PP"称景深Do,它由下式定出: D0二 (1一23) 式中d一电子光学系统对物的分辨率; ao一电子束的物方有效孔径角. 对于100kV的电镜,偏光显微镜如果分辨率为lnm,物镜孔径角为5X10-1rad,则景深Do=200nm.这表示样品厚度或表面凹凸起伏不超过200nm时,能得到均匀清晰的图像.由此可见景深也常常成为对样品厚度的限制因素之一。

把景深这一特性转换到像方便可得到焦深Df。它就是为了得到清晰度相同的像,可允许的图像显示或记录平面的轴向位移量。参照(1一23)可得: Df=B;/a(1一24) 式中S;一像方的分辨率;a;一电子束的像方有效孔径角。 显微镜像方分辨率S;受观察荧光屏的分辨率所限制。通常荧光屏的分辨率为505m。如电镜最高放大倍数M=10`X,电子束孔径角ao=5X10-’rad,则最长焦深(D1),o,==100M。即使在最低放大倍数M=10’X,相应的ao=1X10-’rad时,最低焦深(Df).二50cm。可见电镜的焦深值很大.这就说明了在透射电镜中为什么我们只对荧光屏调焦,而把像记录在其下方的电子感光板或其上方的35mm胶片上时,总能得到清晰的像。 本文由广州深华实验室仪器设备整合发布

电子显微镜技术在生物医学领域的应用

2012年1月内蒙古科技与经济Januar y2012 第2期总第252期Inner M o ngo lia Science T echnolo gy&Economy N o.2T o tal N o.252电子显微镜技术在生物医学领域的应用X 孙计桃 (内蒙古医学院基础医学院电镜中心,内蒙古呼和浩特 010059) 摘 要:电子显微镜在临床研究和疾病诊断中作出了巨大的贡献,并不断开辟着生物医学研究的新领域,主要从细胞、亚细胞的形态结构上阐明疾病的发生、发展及转归规律,丰富了传统病理学的知识。 通过对亚细胞结构和病原体的观察,可以诊断一些肿瘤疾病、心血管疾病、肝病、肾病、血液疾病、细菌、病毒、寄生虫疾病等。随着电镜技术的不断改进以及与多种研究手段相结合,电子显微镜将在生物医学领域应用会更加广泛。 关键词:电子显微镜;临床研究;疾病诊断;应用 中图分类号:T N16∶R318 文献标识码:A 文章编号:1007—6921(2012)02—0127—02 电子显微镜包括扫描电子显微镜和透射电子显微镜两种类型,利用透射电子显微镜可以观察样品内部超微结构,利用扫描电子显微镜可以观察样品表面形貌,立体感强,在生物医学领域应用较多的是透射电子显微镜。透射电子显微镜的发明为人类在医学科学研究领域做出了巨大的贡献,早在20世纪40年代电子显微镜就在医学上开始发挥其作用,在病毒学、细胞生物学、组织学、病理学、分子生物学及分子病理学都有应用[1-2]。笔者参考相关文献对电子显微镜技术在肿瘤诊断、病毒和病毒性疾病、系统性疾病等研究领域的应用做一概述,说明其是现代临床研究和疾病诊断中不可缺少的重要工具之一。1 电子显微镜技术在医学领域应用特点 随着科学技术的发展,电子显微镜放大倍数已从第一台电镜的十几倍提高到现在的百万倍,因此在生物医学领域利用高性能的电子显微镜观察细胞中各种细胞器正常的和病理的超微结构,诸如内质网、线粒体、高尔基体、溶酶体、细胞骨架系统等,对探明病因和治疗疾病有很大帮助。通过研究细胞结构和功能的关系,也可以研究细胞的通讯与运输、分裂与分化、增殖与调控等生命活动的规律,电子显微镜也可结合各种制样技术观察病毒、细菌、支原体、生物大分子等的超微结构,是现代生物医学研究不可替代的工具。 2 电子显微镜技术在肿瘤诊断中的应用 电子显微镜技术的应用是建立在光学显微镜的基础之上的,光学显微镜的分辨率为0.2L m,透射电子显微镜的分辨率为0.2nm,也就是说透射电子显微镜在光学显微镜的基础上放大了1000倍。因此,透射电子显微镜突破了光学显微镜分辨率低的限制,成为了诊断疑难肿瘤的一种新的工具。有研究报道,无色素性肿瘤、嗜酸细胞瘤、肌原性肿瘤、软组织腺泡状肉瘤及神经内分泌肿瘤这些在光镜很难明确诊断的肿瘤,利用电镜可以明确诊断[3-5]。 电镜主要是通过对超微结构的精细观察,寻找组织细胞的分化标记,确诊和鉴别相应的肿瘤类型。细胞凋亡与肿瘤有着密切的关系,电镜对细胞凋亡的研究起着重要的作用,因此利用电镜观察细胞的超微结构病理变化和细胞凋亡情况,将为肿瘤的诊断和治疗提供科学依据。 3 电子显微镜技术在肿瘤鉴别诊断中的应用透射电子显微镜观察的是组织细胞、生物大分子、病毒、细菌等结构,能够观察到不同病的病理结构,也可以鉴别一些肿瘤疾病,有研究报道电子显微镜技术通过超微结构观察可以区分癌、黑色素瘤和肉瘤以及腺癌和间皮瘤;可区别胸腺瘤、胸腺类癌、恶性淋巴瘤和生殖细胞瘤;可区别神经母细胞瘤、胚胎性横纹肌瘤、Ew ing氏肉瘤、恶性淋巴瘤和小细胞癌;可区别纤维肉瘤、恶性纤维组织细胞瘤、平滑肌肉瘤和恶性神经鞘瘤以及区别梭形细胞癌和癌肉瘤(杨光华,1992)[6-10] 。 4 电镜在肾活检病理诊断中应用 肾穿活检对了解疾病发生、发展及选择治疗方法是十分重要的,可以提高诊断的准确性。目前采用的方法有免疫组化和电子显微镜检查,电子显微镜检查可以弥补光学显微镜分辨率不高的缺陷,可观察到光镜所看不到的成分的超微结构病理变化,特别是上皮细胞、系膜、肌膜细胞和间质的改变,确定有无电子致密物沉着及其沉着部位。Sieg el等曾报道,经对213例肾病活检资料分析,发现有11%的病例需要用电镜作出正确诊断,有36%病例肾的超微结构改变对光镜诊断提供确诊或亚分类,如遗传性肾炎,此病肾小球的组织学特征无特殊改变,唯电镜检查才能作出准确诊断[11]。 5 电镜在代谢性疾病诊断中的应用 随着科学技术的进步,电镜的应用越来越广泛,已有研究报道,电镜在肝脏代谢性疾病、软组织系统疾病诊断中的作用值得肯定。Mierau等(1997)认为 ? 127 ? X收稿日期:2011-12-25

透射电子显微镜的结构及成像

透射电子显微镜的结构及成像 913000730018鲁皓辰一、实验目的 1)了解透射电子显微镜的基本结构; 2)熟悉透射电子显微镜的成像原理; 3)了解基本操作步骤。 二、实验内容 1)了解透射电子显微镜的结构; 2)了解电子显微镜面板上各个按钮的位置与作用; 3)无试样时检测像散,如存在则进行消像散处理; 4)加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5)进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验仪器设备与材料 JEM-2100F型TEM透射电子显微镜 四、实验原理 图1JEM-2100F型透射电子显微镜 一)透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 1)照明系统 照明系统主要由电子枪和聚光镜组成,电子枪发射电子形成照明光源,聚光

镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。2)成像系统 成像系统由物镜、中间镜和投影镜组成。 3)观察记录系统 观察记录系统主要由荧光屏和照相机构组成。 二)主要附件 1)样品倾斜装置(样品台) 样品台是位于物镜的上下极靴之间承载样品的重要部件,见图2,并使样品在极靴孔内平移、倾斜、旋转,以便找到合适的区域或位向,进行有效观察和分析。 2)电子束的平移和倾斜装置 电镜中是靠电磁偏转器来实现电子束的平移和倾斜的。图3为电磁偏转器的工作原理图,电磁偏转器由上下两个偏置线圈组成,通过调节线圈电流的大小和 方向可改变电子束偏转的程度和方向。 图3电磁偏转器的工作原理图

扫描电子显微镜在精密及超精密加工中的应用

现代理化分析读书报告 ------扫描电子显微镜在精密及超精密加工中的应用 一、前言 通过现代理化分析这门课,我学到了很多理论知识,受益匪浅。这些理论知识和我所在研究方向—精密及超密超精密加工有着紧密的联系,可以直接指导我今后的学习与研究,也就是能够做到很好的学以致用,以下我就结合现代理化分析中的扫描电镜在精密及超精密加工中的应用来总结一下学习感想。文章分为三个部分,首先是介绍扫描电子显微镜,其次是介绍精密与超精密加工,最后是介绍前者在后者中的具体应用。 二、扫描电子显微镜 1.扫描电子显微镜的工作原理 扫描电子显微镜(scanning electron microscope)又简称SEM, 是依靠电子与物质的相互作用成像,得到物体表面放大后的图像。扫描电镜工作时会用极狭窄的电子束去扫描样品,当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像,这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。 2.扫描电子显微镜的组成部分 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。每个部分都有其相应的作用。 1) 真空系统 真空系统主要包括真空泵和真空柱两部分。其中真空柱是一个密封的柱形容器,而真空泵用来在真空柱内产生真空。真空泵有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。成像系统和电子束系统均内置在真空柱中。真空柱底端即为密封室,用于放置样品。之所以要用真空,主要基于以下两点原因:电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用SEM时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。 2)电子束系统 电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成像。电子枪用于产生电子,主要有两大类,共三种。一类是利用场致发射效应产生电子,称为场致发射电子枪。这种电子枪极其昂贵,在十万美元以上,且需要极高真空。另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。

11-2 JY T 010-1996分析型扫描电子显微镜方法通则

MV_RR_CNJ_0010分析型扫描电子显微镜方法通则 1.分析型扫描电子显微镜方法通则的说明 编号JY/T 010—1996 名称(中文)分析型扫描电子显微镜方法通则 (英文)General rules for analytical scanning electron microscopy 归口单位国家教育委员会 起草单位国家教育委员会 主要起草人林承毅 万德锐 批准日期 1997年1月22日 实施日期 1997年4月1日 替代规程号无 适用范围本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。 定义 主要技术要求 1. 2. 方法原理 3. 仪器 4. 样品 5. 分析步骤 6. 分析结果表述 是否分级无 检定周期(年) 附录数目无 出版单位科学技术文献出版社 检定用标准物质 相关技术文件 备注 2.分析型扫描电子显微镜方法通则的摘要 本通则适用于各种类型的扫描电子显微镜和X射线能谱仪。 2 定义 2.1二次电子 secondary electron 在入射电子的作用下,从固体样品中出射的,能量小于50eV的电子,通常以SE表示。 2.2背散射电子 backscattered electron 被固体样品中的原子反射回来的入射电子,包括弹性背散射电子和非弹性背散射电子,通常以BSE表示。它又称为反射电子(Reflected Electron),以RE表示。其中弹性背散射电子完全改变了入射电子的运动方向,但基本上没有改变入射电子的能量;而非弹性背散射电子不仅改变了入射电子的运动方向,在不同程度上还损失了部分能量。 2.3 放大倍数 magnification 扫描电镜的放大倍数是指其图像的线性放大倍数,以M表示。如果样品上长度为L s直线

电子显微镜技术

显微分析技术 摘要:透射电子显微镜、扫描电子显微镜以及扫描探针显微镜已经成为了分析纳米材料的重要手段之一。本文简要的介绍了透射电子显微镜、扫描电子显微镜以及扫描探针显微镜的发展以及应用。 引言 纳米科技是在20世纪80年代后才逐渐发展起来的前沿性、交叉性的新型科学领域,纳米材料的性能与其微观结构有着重要的关系,因此,纳米材料微观结构的表征对于认识纳米材料,推动纳米材料的应用有着深远的意义。 自16世纪出现了光学显微镜以后,把正常人眼睛仅能分辨约0.2mm 细节的能力,延伸到可以看细菌和微生物。20世纪30年代,科学家利用电子源制造出了扫描电子显微镜,其分辨率远远超出了光学显微镜。1932年M.Knoll和E.Ruska 研制出了第一台透射电子显微镜实验装置(TEM),1938年,V on.Ardence将扫描线圈加到透射电子显微镜上(TEM),制成了第一台扫描透射电子显微镜(STEM),放大倍数8000X,分辨率在500~1000 ?之间直到1952年,C.W.Qatley 和McMullan 在剑桥(Cambridge )制成了第一台现代的SEM,分辨率达到500?,很大程度的提高了人类认识微观世界的能力。但是,后来人们发现,当显微镜的放大率提高到1000-1500倍时,受光的衍射效应影响,图像将变得不再清晰。1982年国际商业机器公司苏黎世实验室的葛·宾尼(Gerd Binnig)博士和海·洛雷尔(Heimich Rohrer)博士及其同事们共同研制成功了世界第一台新型的表面分析仪器——扫描隧道显微镜(简称STM)。它的出现使人类第一次能够实时的观察单个原子在物质表面的排列状态和表面电子行为有关的物理、化学性质,为科学家提供了一种前所未有的直接观察单原子、单分子的手段,从而从根本上改变了人类对微观(纳米)世界的认识水平。STM的探针是由针尖与样品之间的隧道电流的变化决定的,因此要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节为了克服

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。

2020年智慧树知道网课《生物电镜原理与技术》课后章节测试满分答案

第一章测试1 【单选题】(10分)人眼的平均分辨率为 A. 0.2μm B. 0.4mm C. 0.3mm D. 0.4μm E. 0.2mm 2 【单选题】(10分)电子枪产生的电子是 A. 弹性散射电子 B. 透射电子 C. 二次电子 D. 入射电子 E.

特征x射线 3 【单选题】(10分) 下面哪种电镜可以在观察结构的同时,对组织细胞内的元素成分进行分析 A. 扫描电镜 B. 扫描隧道显微镜 C. 透射电镜 D. 分析电镜 E. 冷冻电镜 4 【单选题】(10分) 世界上第一台电子显微镜是哪年出现的 A. 1924年 B. 1930年 C. 1935年

D. 1945年 E. 1932年 5 【单选题】(10分) 在样品的表面产生,产额与样品表面的凹凸程度有关的是 A. 入射电子 B. 特征x射线 C. 透射电子 D. 二次电子 E. 弹性散射电子 6 【单选题】(10分) 科学家们利用哪种电镜在金属镍表面上用35个惰性气体原子组成了IBM三个字母 A. 透射电镜 B.

扫描隧道显微镜 C. 分析电镜 D. 扫描电镜 E. 原子力显微镜 7 【单选题】(10分) 哪种电镜能够将活的生物分子进行冷冻,使分子机制可以图像化描述 A. 分析电镜 B. 透射电镜 C. 扫描电镜 D. 扫描隧道显微镜 E. 冷冻电镜 8 【多选题】(10分) 透射电镜可用于

A. 观察各种细胞器的超微结构 B. 用于观察细菌、病毒的超微结构 C. 观察组织细胞的超微结构病变 D. 用于核酸和蛋白质超微结构的研究 E. 观察组织细胞的正常超微结构 9 【判断题】(10分) 电磁透镜包括静电透镜和磁透镜 A. 对 B. 错 10 【判断题】(10分) 分辨率是指人眼或光学仪器观察和分辨物体最小细节的能力 A. 对 B.

扫描电子显微镜技术原理及应用

扫描电子显微镜技术原理及应用 学院:材料学院 班级:111111 学号:111111 姓名:1111

扫描电子显微镜技术原理及应用 摘要:本文阐述了扫描电子显微镜的成像原理,介绍了其功能和特点,以及在材料分析之中的应用。 关键词:扫描电子显微镜;应用;材料分析 引言:扫描电子显微镜是很先进的一种电子光学仪器,它采用细聚焦高压电子束在材料样品表面扫描时激发产生的某些物理信号来调制成像,类似于电视摄影的显像方式,放大倍数远远超过普通光学显微镜,可达到几十万倍甚至更高。 一.扫描电子显微镜的成像原理 扫描电镜成像过程与电视成像过程有很多相似之处,扫描是指在图象上从左到右、从上到下依次对图象象元扫掠的工作过程。它与电视一样是由控制电子束偏转的电子系统来完成的,只是在结构和部件上稍有差异而已。在电子扫描中,把电子束从左到右方向的扫描运动叫做行扫描或称作水平扫描,把电子束从上到下方向的扫描运动叫做帧扫描或称作垂直扫描。 SEM的工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。 由电子枪发射的高能电子束,经会聚透镜、物镜缩小和聚焦,在样品表面形成一个具有一定能量、强度、斑点直径的电子束。在扫描线圈的磁场作用下,入射电子束在样品表面上按照一定的空间和时间顺序做光栅式逐点扫描。由于入射电子与样品之间的相互作用,将从样品中激发出二次电子。由于二次电子收集极的作用,可将各个方向发射的二级电子汇集起来,再将加速极加速射到闪烁体上,转变成光信号,经过光导管到达光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大并将其输送至显像管的栅极,调制显像管的亮度。因而,在荧光屏上呈现一幅亮暗程度不同的、反映样品表面形貌的二次电子象。 二.扫描电子显微镜的应用 扫描电子显微镜的样品制备简单, 可以实现试样从低倍到高倍的定位分析,还能够根据观察需要进行空间转动,,以利于使用者对感兴趣的断裂部位进行连续、系统的观察分析,扫描电子显微断口图像因真实、清晰,,并富有立体感, 在金属断口和显微组织三维形态的观察研究方面获得了广泛地应用。 由于扫描电镜可用多种物理信号对材料样品进行综合分析, 并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点, 因此, 在科研、工业产品开发、质量管理及生产在

电子显微分析技术及应用

电子显微分析技术及应用 材料测试技术是材料科学与工程研究以及应用的重要手段和方法,目的就是要了解、获知材料的成分、组织结构、性能以及它们之间的关系,即材料的基本性质和基本规律。同时为发展新型材料提供新途径、新方法或新流程。在现代制造业中,测试技术具有非常重要的地位和作用。材料的组织形貌观察,主要是依靠显微镜技术,光学显微镜是在微米尺度上观察材料的组织及方法,电子显微分析技术则可以实现纳米级的观察。透射电子显微镜、扫描电子显微镜和电子探针仪等已成为从生物材料、高分子材料到金属材料的广阔范围内进行表面分析的不可缺少的工具。下面将主要介绍其原理及应用。 1.透射电子显微镜(TEM) a)透射电子显微镜 b)透射光学显微镜 图1:透射显微镜构造原理和光路 透射电子显微镜(TEM)是一种现代综合性大型分析仪器,在现代科学、技术的研究、开发工作中被广泛地使用。 所谓电子显微镜是以电子束为照明光源的显微镜。由于电子束在外部磁场或电场的作用下可以发生弯曲,形成类似于可见光通过玻璃时的折射现象,所以我们就可以利用这一物理效应制造出电子束的“透镜”,从而开发出电子显微镜。而作为透射电子显微镜(TEM)其特点在于我们是利用透过样品的电子束来成像,这一点有别于扫描电子显微镜。由于电子波的波长大大小于可见光的波长(100kV的电子波的波长为0.0037nm,而紫光的波长为400nm),根据

光学理论,我们可以预期电子显微镜的分辨本领应大大优于光学显微镜。 图l是现代TEM构造原理和光路。可以看出TEM的镜筒(Column)主要有三部分所构成:(1)照明系统,即电子枪;(2)成像系统,主要包括聚光镜、物镜、中间镜和投影镜;(3)观察系统。 通过TEM中的荧光屏,我们可以直接几乎瞬时观察到样品的图像或衍射花样。我们可以一边观察,一边改变样品的位置及方向,从而找到我们感兴趣的区域和方向。在得到所需图像后,可以利用相机照相的方法把图像记录下来。现在新一代TEM也有的装备了数字记录系统,可以将图像直接记录到计算机中去,这样可以大大提高工作效率。 2.扫描电子显微镜(SEM) 下图为扫描电子显微镜的原理结构示意图。由三极电子枪发出的电子束经栅极静电聚焦后成为直径为50mm的电光源。在2-30KV的加速电压下,经过2-3个电磁透镜所组成的电子光学系统,电子束会聚成孔径角较小,束斑为5-10m m的电子束,并在试样表面聚焦。末级透镜上边装有扫描线圈,在它的作用下,电子束在试样表面扫描。高能电子束与样品物质相互作用产生二次电子,背反射电子,X射线等信号。这些信号分别被不同的接收器接收,经放大后用来调制荧光屏的亮度。由于经过扫描线圈上的电流与显象管相应偏转线圈上的电流同步,因此,试样表面任意点发射的信号与显象管荧光屏上相应的亮点一一对应。也就是说,电子束打到试样上一点时,在荧光屏上就有一亮点与之对应,其亮度与激发后的电子能量成正比。换言之,扫描电镜是采用逐点成像的图像分解法进行的。光点成像的顺序是从左上方开始到右下方,直到最後一行右下方的像元扫描完毕就算完成一帧图像。这种扫描方式叫做光栅扫描。 图2:扫描电子显微镜的原理和结构示意图

电镜技术在临床病理诊断中的应用

万方数据

万方数据

电镜技术在临床病理诊断中的应用 作者:张欠欠, 马莉, 王逢会, 米志宽 作者单位:延安大学医学院,716000 刊名: 中国医疗前沿 英文刊名:NATIONAL MEDICAL FRONTIERS OF CHINA 年,卷(期):2011,06(4) 参考文献(5条) 1.Hass M A re-evaluation of routine electron microscopy in the examination of native renal biop sies 1997 2.Fischer EG;Moore MJ;Lager DJ Fabry disease:a morphologic study of 11 cases 2006(10) 3.Holm R;Farrants GW;Nesland JM Ultrastructural and electron immunohistochemical features of medullary thyroid carcinoma[外文期刊] 1989 4.王玉兰;郑晓刚;周晓军电镜在甲状腺髓样癌诊断中的应用价值 2003(03) 5.虞功清;张泉;邹伟民电镜在白血病诊断上的应用与研究 2004(09) 本文读者也读过(7条) 1.马卫军.刘胜.韩莉.赵淑敏透射电镜的使用与维护[期刊论文]-承德医学院学报2004,21(1) 2.颜永碧.陆月良.王英电镜技术在病理学诊断中的应用[期刊论文]-第二军医大学学报2003,24(6) 3.孟春梅.洪健应用免疫金标记电镜技术定位寄主细胞中的植物病毒[会议论文]-2007 4.崔元日.王玉国免疫组化技术结合透射电镜技术在肺低分化癌鉴别诊断中的应用[期刊论文]-中国伤残医学2008,16(5) 5.钟秀容.周琳瑛.陈文列.吴翊钦.林曦三种电镜技术在细胞紧密连接研究中的应用[期刊论文]-福建医科大学学报2002,36(1) 6.钟秀容.陈莲云.陈文列制备电镜超薄切片的技巧[期刊论文]-福建医科大学学报1999,33(2) 7.陶忠芬.江海东.李飞.路菊.可金星浅谈电镜技术实验教学的体会[期刊论文]-局解手术学杂志2009,18(5) 本文链接:https://www.360docs.net/doc/902408933.html,/Periodical_zgylqy201104037.aspx

扫描电镜技术及其在材料科学中的应用

扫描电镜在材料分析中的应用 摘要:随着科学技术的发展进步,人们不断需要从更高的微观层次观察、认识周围的物质世界。细胞、微生物等微米尺度的物体直接用肉眼观察不到,显微镜的发明解决了这个问题。目前,纳米科技成为研究热点,集成电路工艺加工的特征尺度进入深亚微米,所有这些更加微小的物体光学显微镜也观察不到,必须使用电子显微镜。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描电子显微镜工作原理、结构特点及其发展,阐述了扫描电子显微镜在材料科学领域中的应用。 关键词:电子显微镜;扫描电镜;材料;应用 引言: 自从1965年第一台商品扫描电镜问世以来,经过40多年的不断改进,扫描电镜的分辨率从第一台的25nm提高到现在的0.01nm,而且大多数扫描电镜都能通X射线波谱仪、X射线能谱仪等组合,成为一种对表面微观世界能过经行全面分析的多功能电子显微仪器。扫描电镜已成为各种科学领域和工业部门广泛应用的有力工具。从地学、生物学、医学、冶金、机械加工、材料、半导体制造、陶瓷品的检验等均大量应用扫描电镜作为研究手段。 在材料领域中,扫描电镜技术发挥着极其重要的作用,被广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究。利用扫描电镜可以直接研究晶体缺陷及其生产过程,可以观察金属材料内部原子的集结方式和它们的真实边界,也可以观察在不同条件下边界移动的方式,还可以检查晶体在表面机械加工中引起的损伤和辐射损伤等。 1.扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字

电子显微镜在纳米材料中的应用

透射电子显微镜与选区电子衍射对纳米材料的联合分析 摘要 透射电子显微镜( TEM) 能在纳米尺度上实现对待测样品形貌、尺寸的分析; 结合选区电子衍射( SAED) ,可以更进一步实现对待测样品的晶体结构、晶相组成的鉴定,从而提高样品分析的准确度和可靠性。本文综述了TEM 与SAED 联合分析的优点及其在微电子器件、高温结构材料、生物矿物等领域的研究进展,并对其未来的发展方向进行了展望。 关键词:透射电子显微镜(TEM),选区电子衍射(SAED),纳米材料 1 前言 纳米材料是指由尺寸小于100 nm 的超细颗粒构成的具有小尺寸效应的零维、一维、二维和三维材料的总称。由于纳米材料的超微尺寸,使得其包含的原子数大大下降,晶体周期性的边界条件被破坏,宏观固定的准连续能带转变为离散的能级,纳米材料表面层附近的原子密度减小,电子的平均自由程很短,而局域性和相干性增强,从而使其声、光、电、磁,热力学等性能呈现出“新奇”现象。 在结构表征方面,电子显微学包括透射电子显微学和扫描电子显微学,是纳米材料最重要的、有时甚至是唯一的结构表征手段。在性能测量方面,很多传统方法可用于测量材料的性能,但通常需要一定量的样品,很少能测量单个纳米结构( 如单根纳米管或纳米线) 的性能[1]。 1931 年6 月4 日Knoll 和Ruska 首次报道研制成功第一台透射电子显微镜( TEM) , 几年后德国、英国和加拿大等国开始研制透射电镜。20 世纪70 年代具有高分辨率的透射电镜和分析电镜出现后, 它的分辨水平日臻细微, 功能更趋多样, 已成为现代实验室中一种不可或缺的研究晶体结构和化学组成的综合仪器[2]。TEM 是波长极短的电子束经过电磁透镜进行聚焦后穿透样品成像。当

电子显微镜的发展历程

“科学之眼“越来越亮 ——电子显微镜的发展历程 摘要:Ruska和Knowll在1932年(有说是1931年和1933年的)研制成功第一台电 子显微镜。经过半个多世纪的发展,已广泛应用到自然科学的许多学科中,并且极大推动了这些学科的发展。在七十年代电子显微镜终于实现了人们直接观察原子的长期愿望,电子显微镜成了“科学之眼”。一门新兴的电子显微学因此而诞生。而Ruska也因此而获得1986年诺贝尔物理奖。在生命科学,由于电子显微镜技术的迅速发展和应用,改 变了细胞学、组织学、病毒学、分类学和分子生物学等的面貌,促使生物学从细胞水平进入到分子水平;它也成为生物学、医学、农林等学科研究工作中极为重要的手段。近年来,我国拥有越来越多的电子显微镜,应用也越广泛,不少高等院校都相继开设相关的课程。“科学之眼”不仅在外国,在我国也会越来越亮,开花结果,前途光明。 关键词:电子显微镜扫描电子显微镜透射电子显微镜扫描透射显微镜 正文:电子显微镜问世已有半个多世纪了,但其应用于医学、生物学,尤其是细胞 学的研究方面才只有二十余年的历史。我国学者在六十年代初期开始这方面的工作。下 面我们来看一下电子显微镜的总体发展历程。 一.电子显微镜的总体发展历程 人类对于生物微观世界的认识过程,有着一段漫长的历史。荷兰人列文虎克(Leeuwenhoek)在300年前创制成功世界上第一架显微镜,发现了当时人们还不知道的微生物世界。这是显微镜第一次显示其巨大作用。 早在一百年以前,朴率克(Plucker)就曾在盖斯雷管的阴极近管壁上发现过一种黄 绿色的光辉,但他当时对这一现象并无认识,未予重视。自从1924年德布罗意提出了 电子与光一样,具有波动性的假说和1926年Busch发现了旋转对称、不均匀的磁场可 作为一个用于聚焦电子束的透镜,就为后来的电子显微镜的问世奠定了理论基础,这就打开了电子光学的大门。经六年后,到1932年克诺露(Knoll)及鲁斯卡(Ruska)等人首 次发表了关于电子显微镜的实验和理论研究,并试制成功第一台电磁式电子显微镜。为了获得较大的放大能力,人们又研究制造了短焦距的电磁透镜,它除了会聚透镜外,再利用两个透镜作连续两次的造像。到1934年鲁斯卡和马顿(Marton)分别制成了新型复式电子显微镜。近代的电磁式电子显微镜在具体结构上已经有了很大改进。 Ruska和Knowll在1932年(有说是1931年和1933年的)研制成功第一台电子显微镜。经过半个多世纪的发展,已广泛应用到自然科学的许多学科中,并且极大推动了这些学科的发展。在七十年代电子显微镜终于实现了人们直接观察原子的长期愿望,电子显微镜成了“科学之眼”。一门新兴

扫描电子显微镜及其在材料科学中的应用

扫描电子显微镜及其在材料科学中的应用班级:12级材料物理姓名:王小辉学号:2 摘要:介绍了目前常被用于固体结构观测及其表征的主要仪器扫描电子显微镜(SEM)的简单概况和基本原理以及其在材料科学中的应用。 关键词:扫描电子显微镜原理材料科学应用 引言 无论是X射线衍射确定晶体的三维结构还是低能电子衍射确定晶体表面的二维结构,都是以原子的周期性排列为前提的。但是近年来学术界对于不具有周期性的局域性原子位置的结构表现出越来越浓厚的兴趣,而且这种局域性结构的线度又往往很小,常在微米以下甚至纳米级。显然,传统的衍射手段对此无能为力,而且光学显微镜由于分辨本领的限制也无法分辨尺度在100纳米数量级的局域性结构细节。至目前为止已发展出各种基于电子的发射和传播的显微方法。本文主要介绍了扫描电子显微镜和扫描隧穿显微镜的工作原理以及对固体材料形貌和结构观察方面的应用。 1.SEM简介 扫描电子显微镜(Scanning Electron Microscope,SEM)是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它是当今十分有用的科学研究仪器。扫描电镜如下图1。 图1扫描电子显微镜

2.原理 扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得试样表面性貌的观察。SEM是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术.扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小的电子束.在试样表面进行扫描,激发出各种信息,通过对这些信息的接收、放大和显示成像,以便对试样表面进行分析.入射电子与试样相互作用产生如图1所示的信息种类。 图2 电子束探针照射试样产生的各种信息 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图.如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储.各信息如下表1。 收集信号类型功能 二次电子形貌观察 背散射电子成分分析 特征X射线成分分析 俄歇电子成分分析 表1 扫描电镜中主要信号及其功能

相关文档
最新文档