不同温度和压力下的声速

不同温度和压力下的声速
不同温度和压力下的声速

不同温度和压力下的声速

The classical ideal gas law may be written as pV=nRT, from which the expression for gas density ρ relating to pressure p could be deduced: ρ=pM/RT, wherein V and n correspond to volume and number of moles of a substance, respectively; T, M and R are respectively corresponding to absolute temperature, molar mass and ideal gas constant, approximately 8.3144621 J/(mol·K).

The sound speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slighty from ideal behavior. In general, the speed of sound c is given by the Newton-Laplace equation: c=(K f/ρ)1/2, in which the bulk modulus K f is simply the gas pressure p multiplied by the dimensionless adiabatic indexγ, which is about 1.4 for air.

理想气体状态方程PV=nRT, 推导得ρ=PM/RT.

0°C,1标准大气压下空气密度约为1.293g/L, 就用空气做个例子算一算.P=101325(标准大气压),M=29(空气摩尔质量),R=8.314J/(mol·k)(理想气体常数,定值),T=0+273.15K(开尔文温度),代入公式,计算出结果,这里要注意的是R值对应压力和体积的单位是Pa和M3,所以算出的ρ单位是KG/M3

声速的平方跟压力成正比,跟密度成反比;跟温度成线性关系所以声速不仅仅受压力影响气体中:u=√(γP/ρ),其中γ为比热比,P为压力,ρ为密度

流体力学常用名词中英文对照..

流体力学常用名词 流体动力学 fluid dynamics 连续介质力学 mechanics of continuous 介质 medium 流体质点 fluid P article 无粘性流体 nonviscous fluid, inviscid 连续介质假设 continuous medium hypo thesis 流体运动学 fluid kinematics 水静力学 hydrostatics 液体静力学 hydrostatics 支配方程 governing equation 伯努利方程 Bernoulli equation 伯努利定理 Bernonlli theorem 毕奥-萨伐尔定律 Biot-Savart law 欧拉方程 Euler equation 亥姆霍兹定理 Helmholtz theorem 开尔文定理 Kelvin theorem 涡片 vortex sheet 库塔-茹可夫斯基条件 Kutta-Zhoukowski condition 布拉休斯解 Blasius solution 达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number 施特鲁哈尔数 Strouhal number 随体导数 material derivative 不可压缩流体 inco mp ressible fluid 质量守恒 hydrostatic p ressure enstro phy 压差 differential pressure 流[动]flow 流线flow regime 流动参量 flow parameter 流量 flow rate, flow discharge 涡旋vortex conservation of mass 动量守恒 conservation of momentum 能量守恒 conservation of energy 动量方程 momentum equation 能量方程 energy equation 控制体积 control volume 液体静压 涡量拟能 stream line 流面 stream surface 流管 stream tube 迹线 p ath, p ath line 流场 flow field 流态

常用物理单词的中英文对照表

常用物理单词的中英文 对照表 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

常用物理单词的中英文对照表 Ⅰ、测量(measurement) 物理学 physics 测量 measure (vt.) 测量工具 measuring tool 测量范围 measuring range 最小刻度 division value 实验 experiment 实验室 laboratory 误差 error 刻度尺 meter ruler 零刻度线 zero graduation line 长度 length 单位 unit 面积 area 千米 kilometer 米 meter 平方米 square meter 立方米 cubic meter 分米 decimeter 厘米 centimeter 毫米 millimeter 微米 micron 纳米 nanometer 时间 time 小时 hour 分钟 minute 秒 second 毫秒 millisecond 体积 volume 升 Liter 毫升 Milliliter 天平 balance 砝码 weights 游码 rider 质量 mass 吨 ton 千克 kilogram 克 gram 毫克 milligram 停表 stop watch 力 force 牛顿 Newton 测力计 dynamometer 弹簧秤 spring balance Ⅱ、运动(simple motion) 相对运动 relative motion 方向 direction 位置 position 路程 path 静止 rest 参照物 reference 2

水在不同温度下的饱和蒸气压

饱和蒸气压(saturated vapor pressure) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 Saturated Water Vapor Pressures at Different Temperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:ln p=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:ln p=A-B/(T+C) 式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方

不同温度和压力下的声速

-------------精选文档----------------- 不同温度和压力下的声速 The classical ideal gas law may be written as pV=nRT, from which the expression for gas density ρ relating to pressure p could be deduced: ρ=pM/RT, wherein V and n correspond to volume and number of moles of a substance, respectively; T, M and R are respectively corresponding to absolute temperature, molar mass and ideal gas constant, approximately 8.3144621 J/(mol·K). The sound speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slighty from ideal behavior. In general, the speed of sound c is given by the Newton-Laplace equation: c=(K f/ρ)1/2, in which the bulk modulus K f is simply the gas pressure p multiplied by the dimensionless adiabatic indexγ, which is about 1.4 for air. 理想气体状态方程PV=nRT, 推导得ρ=PM/RT. 0°C,1标准大气压下空气密度约为1.293g/L, 就用空气做个例子算一算.P=101325(标准大气压),M=29(空气摩尔质量),R=8.314J/(mol·k)(理想气体常数,定值),T=0+273.15K(开尔文温度),代入公式,计算出结果,这里要注意的是R值对应压力和体积的单位是Pa和M3,所以算出的ρ单位是KG/M3 声速的平方跟压力成正比,跟密度成反比;跟温度成线性关系所以声速不仅仅受压力影响气体中:u=√(γP/ρ),其中γ为比热比,P为压力,ρ为密度 可编辑

水在不同温度下的饱和蒸气压

饱和蒸气压(s a t u r a t e d v a p o r p r e s s u r e) 在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压。例如,在30℃时,水的饱和蒸气压为4132.982Pa,乙醇为10532.438Pa。而在100℃时,水的饱和蒸气压增大到101324.72Pa,乙醇为222647.74Pa。饱和蒸气压是液体的一项重要物理性质,如液体的沸点、液体混合物的相对挥发度等都与之有关。 饱和蒸气压曲线 水在不同温度下的饱和蒸气压 SaturatedWaterVaporPressuresatDifferentTemperatures

编辑本段饱和蒸汽压公式 (1)Clausius-Claperon方程:dlnp/d(1/T)=-H(v)/(R*Z(v)) 式中p为蒸汽压;H(v)为蒸发潜热;Z(v)为饱和蒸汽压缩因子与饱和液体压缩因子之差。 该方程是一个十分重要的方程,大部分蒸汽压方程是从此式积分得出的。 (2)Clapeyron方程: 若上式中H(v)/(R*Z(v))为与温度无关的常数,积分式,并令积分常数为A,则得Clapeyron 方程:lnp=A-B/T 式中B=H(v)/(R*Z(v))。 (3)Antoine方程:lnp=A-B/(T+C)

式中,A,B,C为Antoine常数,可查数据表。Antoine方程是对Clausius-Clapeyron方程最简单的改进,在1.333~199.98kPa范围内误差小。 编辑本段附录 在表1中给出了采用Antoine公式计算不同物质在不同温度下蒸气压的常数A、B、C。其公式如下 lgP=A-B/(t+C)(1) 式中:P—物质的蒸气压,毫米汞柱; t—温度,℃ 公式(1)适用于大多数化合物;而对于另外一些只需常数B与C值的物质,则可采用(2)公式进行计算 lgP=-52.23B/T+C(2) 式中:P—物质的蒸气压,毫米汞柱; 表1不同物质的蒸气压 名称分子式范围(℃)ABC 银Ag1650~1950公式(2)2508.76 氯化银AgCl1255~1442公式(2)185.58.179 三氯化铝AlCl370~190公式(2)11516.24 氧化铝Al2O31840~2200公式(2)54014.22 砷As440~815公式(2)13310.800 砷As800~860公式(2)47.16.692 三氧化二砷As2O3100~310公式(2)111.3512.127 三氧化二砷As2O3315~490公式(2)52.126.513 氩Ar-207.62~-189.19公式(2)7.81457.5741 金Au2315~2500公式(2)3859.853 三氯化硼BCl3……6.18811756.89214.0 钡Ba930~1130公式(2)35015.765 铋Bi1210~1420公式(2)2008.876 溴Br2……6.83298113.0228.0 碳C3880~4430公式(2)5409.596 二氧化碳CO2……9.641771284.07268.432 二硫化碳CS2-10~+1606.851451122.50236.46 一氧化碳CO-210~-1606.24020230.274260.0 四氯化碳CCl4……6.933901242.43230.0 钙Ca500~700公式(2)1959.697 钙960~1100公式(2)37016.240 镉Cd150~320.9公式(2)1098.564 镉500~840公式(2)99.97.897 氯Cl2……6.86773821.107240 二氧化氯ClO2-59~+11公式(2)27.267.893 钴Co2374公式(2)3097.571 铯Cs200~230公式(2)73.46.949 铜Cu2100~2310公式(2)46812.344 氯化亚铜Cu2Cl2878~1369公式(2)80.705.454 铁Fe2220~2450公式(2)3097.482

不同温度和压力下的声速

不同温度和压力下的声速 The classical ideal gas law may be written as pV=nRT, from which the expression for gas density ρrelating to pressure p could be deduced: ρ=pM/RT, wherein V and n correspond to volume and number of moles of a substance, respectively; T, M and R are respectively corresponding to absolute temperature, molar mass and ideal gas constant, approximately J/(mol·K). The sound speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slighty from ideal behavior. In general, the speed of sound c is given by the Newton-Laplace equation: c=(K f/ρ)1/2, in which the bulk modulus K f is simply the gas pressure p multiplied by the dimensionless adiabatic indexγ, which is about for air. 理想气体状态方程PV=nRT, 推导得ρ=PM/RT. 0°C,1标准大气压下空气密度约为L, 就用空气做个例子算一算.P=101325(标准大气压),M=29(空气摩尔质量),R=(mol·k)(理想气体常数,定值),T=0+(开尔文温度),代入公式,计算出结果,这里要注意的是R值对应压力和体积的单位是Pa和M3,所以算出的ρ单位是KG/M3 声速的平方跟压力成正比,跟密度成反比;跟温度成线性关系所以声速不仅仅受压力影响 气体中:u=√(γP/ρ),其中γ为比热比,P为压力,ρ为 密度

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 一、水的饱和蒸汽压与温度的关系 蒸汽压是一定外界条件下,液体中的液态分子会蒸发为气态分子,同时气态分子也会撞击液面回归液态。这是单组分系统发生的两相变化,一定时间后,即可达到平衡。平衡时,气态分子含量达到最大值,这些气态分子对液体产生的压强称为蒸气压。 水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。 一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速

度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥发。 二、水的饱和蒸汽压与温度对应表 水的饱和蒸汽压与温度对应表

三、水的饱和蒸汽压与温度的换算公式 当10℃≤T≤168℃时,采用安托尼方程计算:lgP=7.07406-(1657.46/(T+227.02)) 式中:P——水在T温度时的饱和蒸汽压,kPa; T——水的温度,℃ 四、水的饱和蒸汽压曲线

温度变化对声速之影响

溫度變化對聲速之影響 作者:馬瑞鴻

摘要 利用聲波在空氣柱內形成駐波,量取發生共鳴時之位置,進而求出波長,由υ=λ.f可求出聲音之速度。然後,再將共鳴管周圍之空氣均勻加熱,使其溫度提高為大約70℃左右,結果發現溫度提高時,聲速的確增大,符合預期。並且,不同溫度與聲速間之關係大致與υt=331.45+0.6t吻合。 壹.研究動機 在高中物理課本有提到利用共鳴管求聲音的速度,但卻沒有溫度變化對聲速影響的實驗。於是,我們想做個這方面的實驗來討論溫度變化對聲速的影響。 貳.研究目的 聲速如何測量?溫度是否影響聲速?此次實驗我們想知道: 一.如何用共鳴管測量聲音在空氣中傳播的速度? 二.溫度愈高,聲速是否愈大? 三.是否如課本所言,聲速υt=331.45+0.6t(t代表溫度)? 參.研究設備及器材

共鳴管儀(底座及支柱及夾、共鳴管、貯水槽、橡皮管、米尺),標準音叉(頻率512Hz),擊錘,溫度計,熱暖爐數個,熱水(約70℃)。 肆.研究原理 聲波為一縱波,在沿共鳴管內進行時會在管的末端反射,入射波與反射波干涉的結果,可產生疏密的駐波。簡單的共鳴管有一開口端一閉口端,聲源置於開口端。假如管的長度適當就會產生駐波,在封閉端反射波與入射波相位差180°,所以封閉端為波節。在開口端處空氣的粒子十分自由,通常此處為波腹,因此對頻率為f(波長已知為λ)的聲源產生共鳴的管子,最短長度為λ/4,如圖所示,只要管長為λ/4的奇數倍都可以和聲源產生共鳴。 設共鳴時

管為,λ為波長,n 為共振位置,則 l l n=(2n-1) 4 λ 即l 1=4 λ ,l 2=λ4 3,l 3=4 5λ 真正的反節點(波腹)常位於開口的附近,為離開管口的0.6倍管口徑處。設此距離為d ,則 l 1= 4 λ – d ,l 2=λ43 – d ,l 3=4 5λ– d 所以 l 2–l 1= l 3–l 2=2 λ ,l 3–l 1=λ 聲音在空氣中(或任何氣體)的傳播速度與介質的物理性質有關,即 υ= ρ r P 式中P 為壓力,ρ為密度,r 為定壓比熱與定容比熱之比(空氣之r=1.403)。由於溫度增加會使空氣密度減小,所以聲速與溫度有關。 υt =υ0(1+αt)1/2?υ0(1+αt/2) 式中υt 為t ℃時之聲速υ0為0℃時之聲速(空氣之υ0=331.45 m/s ),α為氣體的膨脹係數(空氣之α=0.3665 x 10-2)所以上式變成 υt=331.45 + 0.6t 伍.研究過程 (一)空氣中的聲速 1.置貯水槽於高處,並將共鳴管注滿水。 2.將溫度計繫於共鳴管口附近,測量室溫並記錄之。 3.以擊錘輕敲音叉,垂直置於管口上方距管口約為0.6倍管口徑半徑 處。 4.徐徐降低貯水槽,使水面下降而增加氣柱的長度,至其與音叉共

水的饱和蒸汽压与温度对应表

水的饱和蒸汽压与温度对应表 蒸气压蒸气压指的是在液体(或者固体)的表面存在着该物质的蒸气,这些蒸气对液体表面产生的压强就是该液体的蒸气压。比如,水的表面就有水蒸气压,当水的蒸气压达到水面上的气体总压的时候,水就沸腾。我们通常看到水烧开,就是在100摄氏度时水的蒸气压等于一个大气压。蒸气压随温度变化而变化,温度越高,蒸气压越大,当然还和液体种类有关。一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸气所产生的压强叫饱和蒸气压,它随温度升高而增加。如:放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭的容器里,并抽走上方的空气。当水不断蒸发时,水面上方气相的压力,即水的蒸气所具有的压力就不断增加。但是,当温度一定时,气相压力最终将稳定在一个固定的数值上,这时的气相压力称为水在该温度下的饱和蒸气压力。当气相压力的数值达到饱和蒸气压力的数值时,液相的水分子仍然不断地气化,气相的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸气的冷凝速度,液体量才没有减少,气体量也没有增加,液体和气体达到平衡状态。所以,液态纯物质蒸气所具有的压力为其饱和蒸气压力时,气液两相即达到了相平衡。饱和蒸气压是物质的一个重要性质,它的大小取决于物质的本性和温度。饱和蒸气压越大,表示该物质越容易挥

发。 当气液或气固两相平衡时,气相中A物质的气压,就为液相或固相中A物质的饱和蒸气压,简称蒸气压。下面为影响因素: 1.对于放在真空容器中的液体,由于蒸发,液体分子不断进入气相,使气相压力变大,当两相平衡时气相压强就为该液体饱和蒸汽压,其也等于液相的外压;温度升高,液体分子能量更高,更易脱离液体的束缚进入气相,使饱和蒸气压变大。 2.但是一般液体都暴露在空气中,液相外压=蒸气压力+空气压力=101.325KPa),并假设空气不溶于这种液体,一般情况由于外压的增加,蒸气压变大(不过影响比较小) 3.一般讨论的蒸气压都为大量液体的蒸气压,但是当液体变为很小的液滴是,且液滴尺寸越小,由于表面张力而产生附加压力越大,而使蒸气压变高(这也是形成过热液体,过饱和溶液等亚稳态体系的原因)。所以蒸气压与温度,压力,物质特性,在表面化学中液面的曲率也有影响. 不同物质的蒸气压不同,下面总结给出水在不同温度下的饱和蒸气压:

压力对应音速表

1 231 51 299 151 355 201 376 251 394 301 411 351 426 2 236 52 299 152 356 202 376 252 395 302 411 352 426 3 239 53 300 153 356 203 377 253 395 303 411 353 427 4 242 54 301 154 357 204 377 254 39 5 304 412 354 427 5 245 55 302 155 357 205 377 255 39 6 305 412 355 427 6 24 7 56 302 156 357 206 37 8 256 396 306 412 356 428 7 249 57 303 157 358 207 378 257 396 307 413 357 428 8 251 58 304 158 358 208 379 258 397 308 413 358 428 9 253 59 304 159 359 209 379 259 397 309 413 359 428 10 255 60 305 160 359 210 379 260 397 310 414 360 429 11 256 61 306 161 360 211 380 261 398 311 414 361 429 12 258 62 307 162 360 212 380 262 398 312 414 362 429 13 260 63 307 163 360 213 381 263 398 313 415 363 430 14 261 64 308 164 361 214 381 264 399 314 415 364 430 15 263 65 309 165 361 215 381 265 399 315 415 365 430 16 264 66 309 166 362 216 382 266 399 316 416 366 430 17 265 67 310 167 362 217 382 267 400 317 416 367 431 18 267 68 311 168 363 218 382 268 400 318 416 368 431 19 268 69 311 169 363 219 383 269 400 319 416 369 431 20 269 70 312 170 363 220 383 270 401 320 417 370 432 21 270 71 313 171 364 221 384 271 401 321 417 371 432 22 272 72 313 172 364 222 384 272 401 322 417 372 432 23 273 73 314 173 365 223 384 273 402 323 418 373 432 24 274 74 315 174 365 224 385 274 402 324 418 374 433 25 275 75 315 175 366 225 385 275 402 325 418 375 433 26 276 76 316 176 366 226 385 276 403 326 419 376 433 27 277 77 317 177 366 227 386 277 403 327 419 377 434 28 278 78 317 178 367 228 386 278 403 328 419 378 434 29 279 79 318 179 367 229 386 279 404 329 420 379 434 30 280 80 318 180 368 230 387 280 404 330 420 380 434 31 281 81 319 181 368 231 387 281 404 331 420 381 435 32 282 82 320 182 368 232 388 282 405 332 420 382 435 33 283 83 320 183 369 233 388 283 405 333 421 383 435 34 284 84 321 184 369 234 388 284 405 334 421 384 436 35 285 85 321 185 370 235 389 285 406 335 421 385 436 36 286 86 322 186 370 236 389 286 406 336 422 386 436 37 287 87 323 187 370 237 389 287 406 337 422 387 436 38 288 88 323 188 371 238 390 288 407 338 422 388 437 39 289 89 324 189 371 239 390 289 407 339 423 389 437 40 290 90 324 190 372 240 390 290 407 340 423 390 437 41 290 91 325 191 372 241 391 291 408 341 423 391 438 42 291 92 326 192 372 242 391 292 408 342 423 392 438 43 292 93 326 193 373 243 391 293 408 343 424 393 438 44 293 94 327 194 373 244 392 294 409 344 424 394 438 45 294 95 327 195 374 245 392 295 409 345 424 395 439 46 295 96 328 196 374 246 393 296 409 346 425 396 439 47 295 97 328 197 374 247 393 297 410 347 425 397 439 48 296 98 329 198 375 248 393 298 410 348 425 398 439 49 297 99 329 199 375 249 394 299 410 349 425 399 440 50 298 100 330 200 376 250 394 300 411 350 426 400 440

不同压力温度条件下水的密度

水的密度 表2.4.1 水的密度3) 压力温度℃ 0 10 20 30 40 50 60 70 80 90 0.001 999.80 00 --------- 0.005 999.80 00 999.700 998.3 028 ------- 0.01 999.80 00 999.800 998.3 029 995. 7184 992 .26 04 ----- 0.05 999.80 00 999.800 998.3 029 995. 7184 962 .26 04 988 .04 47 983.1 875 977.7 083 971.6 284 - 0.1 999.80 00 999.800 998.3 029 995. 7184 992 .26 04 988 .04 47 983.1 875 977.7 083 971.6 284 965.1 578 0.15 999.90 00 999.800 998.3 029 995. 8176 992 .35 88 988 .04 47 983.1 875 977.7 083 971.7 229 965.1 578

仅供个人用于学习、研究;不得用于商业用途。 For personal use only in study and research; not for commercial use. Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales. толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях. 以下无正文

水中声速和温度关系的实验研究-模板

水中声速和温度关系的实验研究 超声波是一种研究液体分子物理特性及其化学特性的简易方法,早在20世纪70年代人们就重视用超声波进行液体分子物理及其相关性质的研究[1-5],90年代又有不少研究报道[6-9]。但是声速随温度变化复杂,需要我们做进一步的探索。本文利用时差法来测量了超声波在液体中的传播特性。下面具体介绍利用超声波测定声波在水中的传播速度随温度变化的测量原理和测量方法。 2实验原理 时差法测量声速 时差法测量声速是利用已知声波传播的距离,测量发射脉冲和接收脉冲之间的时间差。 计算出声速在液体中的传播速度,即超声波 (1) 时差法 其中▽L的是位移之差,▽T是传播所用的时间。 在储液槽中注入液体,直至将换能器完全浸没,但不能超过液面线。注意:注入液体时,不能将液体淋在数字显示表头上。将专用信号源上的“声速传播介质”置于“液体”位置,换能器的连接端应在接线盒上的“液体”专用插座上。 测量液体声速时,由于在液体中声波的衰减较小,因而存在较大的回波叠加,并且在相同频率的情况下,其波长要大得多,用驻波法和相位法测量时可能会有较大的误差,所以建议采用时差法测量。 陶瓷换能器工作原理 频率在20Hz~20kHz的机械波振动在弹性介质中的传播就形成超声波超过 20KH超声波,超声波的传播速度就是声波的传播速度,而超声波长短,易于定 向发射等优点[11],声速实验声速所采用的声波频率一般都在20~60kHz之间。此 频率范围内,采用压电陶瓷换能器作为声波的发射器,接收效果最佳。压电陶 瓷换能器根据它的工作方式,分为纵向(振动)换能器。声速教

学实验中大多数 采用纵向换能器。图3为纵向换能器的结构,用示波器观察波谷和波峰,或观察两个波间的相位差,原理是正确的,但读数位置不易确定。较精确测量声速是用声波时差法。时差法在工程中得到了广泛的应用,它是将经脉冲调制的电信号加到发射换能器上,声波在介质中传播,经过时间后,到达距离处的接收陶瓷换能器图2 水中声速与温度关系的实验研究 3 实验方法 时差法测量声速操作方法 (1)实验时只要按图3连接中换能器的S2该接在信号源的S2上,再把信号源上的Y1,Y2顺次与示波器上的Y1,Y2接通即可。 (2)将测试方法设置到脉冲波方式,将换能器的S1,S2调节到一定距离,在调解接收增益,使得显示的时间差值读数稳定,此时仪器内置的计数器工作在最佳状态,记录此时的距离值和时间值。移动S2,如果计时器读数有跳变,则微调接收增益(距离大时,顺时针调节;距离小时,逆时针调节),使得计数器连续稳定的变化。 (3)将测试方法设置到脉冲波方 式。 (4)在仪器使用前,开启电源预热15min。接通市电后,自动工作在连续波方式,选择蒸馏水为介质。“传播介质”按钮选择液体。 (5)将S1和S2之间的距离调到一定距离(≥50mm),再调节接收增益,使示波器上显示的接收波信号幅度在400mV左右(峰—峰值),以使计时器工作在最佳状态。然后记录此时的距离值和显示的时间值Li、(时间由声速测试仪信号源时间显示窗口直接读出)。保持距离不变随着温度的逐渐降低,记录下当时的时间值。 (6)当使用液体为介质测试声速时,先在测试槽中注入液体,直到把换能器完全浸没,但不能超过液面线。然后将信号源面板上的介质选择键切换至“液体”,并将连线接至插入接线盒的“液体”接线孔中,即可进行测试,步骤与上相同。 时差法线路连接图 声速 4 记录数据和数据处理 记录数据

水的饱和蒸汽压与温度对应表[1]

水的饱和蒸汽压与温度对应表 饱和蒸汽压力所对应的温度 压力/Mpa l/kg温度/℃汽化潜热 kJ/kg 汽化潜热 kca 0.1 99.634 2257.6 539.32 0.12 104.81 2243.9 536.05 0.14 109.318 2231.8 533.16 0.16 113.326 2220.9 530.55 0.18 116.941 2210.9 528.17 0.2 120.24 2201.7 525.97 0.25 127.444 2181.4 521.12 0.3 133.556 2163.7 516.89 0.35 138.891 2147.9 513.12 0.4 143.642 2133.6 509.7 0.5 151.867 2108.2 503.63 0.6 158.863 2086 498.33 0.7 164.983 2066 493.55 0.8 170.444 2047.7 489.18 0.9 175.389 2030.7 485.12 1 179.916 2014.8 481.32 1.1 184.1 1999.9 477.76 1.2 187.995 1985.7 474.37 1.3 191.644 197 2.1 471.12 1.4 195.078 1959.1 468.01 1.5 198.327 1946.6 465.03 1.6 201.41 1934.6 46 2.16 1.7 204.346 1923 459.39 1.8 207.151 1911.7 456.69 1.9 209.838 1900.7 454.06 2 212.417 1890 451.51 2.2 217.289 1869.4 446.58 2.4 221.829 1849.8 441.9 温度℃压力Kg/cm2 温度℃压力Kg/cm2 温度℃压力Kg/cm2 100 1.0332 118↓ 1.8995 136↓ 3.286 101 1.0707 119 1.9612 137 3.382 102 1.1092 120 2.0245 138 3.481 103 1.1489 121 2.0895 139 3.582 104 1.1898 122 2.1561 140 3.685 105 1.2318 123 2.2245 141 3.790 106 1.2751 124 2.2947 142 3.898 107 1.3196 125 2.3666 143 4.009 108 1.3654 126 2.4404 144 4.122 109 1.4125 127 2.5160 145 4.237

饱和蒸气压_水_压力温度密度表

水蒸气是一种离液态较近的气体,在空气处理中应用广泛,易获得污染小。以实践经验总结出的数据图表作为计算依据 饱和水蒸气压力温度密度表 温度 (t) 压力 (P) 密度(ρ) 温度 (t) 压力(P) 密度(ρ) ℃ MPa kg/m3 ℃ MPa kg/m3 100 0.1013 0.5977 128 0.2543 1.415 101 0.1050 0.6180 129 0.2621 1.455 102 0.1088 0.6388 130 0.2701 1.497 103 0.1127 0.6601 131 0.2783 1.539 104 0.1167 0.6821 132 0.2867 1.583 105 0.1208 0.7046 133 0.2953 1.627 106 0.1250 0.7277 134 0.3041 1.672 107 0.1294 0.7515 135 0.3130 1.719 108 0.1339 0.7758 136 0.3222 1.766 109 0.1385 0.8008 137 0.3317 1.815 110 0.1433 0.8265 138 0.3414 1.864 111 0.1481 0.8528 139 0.3513 1.915 112 0.1532 0.8798 140 0.3614 1.967 113 0.1583 0.9075 141 0.3718 2.019 114 0.1636 0.9359 142

115 0.1691 0.9650 143 0.3931 2.129 116 0.1746 0.9948 144 0.4042 2.185 117 0.1804 1.025 145 0.4155 2.242 118 0.1863 1.057 146 0.4271 2.301 119 0.1923 1.089 147 0.4389 2.361 120 0.1985 1.122 148 0.4510 2.422 121 0.2049 1.155 149 0.4633 2.484 122 0.2114 1.190 150 0.4760 2.548 123 0.2182 1.225 151 0.4888 2.613 124 0.2250 1.261 152 0.5021 2.679 125 0.2321 1.298 153 0.5155 2.747 126 0.2393 1.336 154 0.5292 2.816 127 0.2467 1.375 155 0.5433 2.886 温度 (t) 压力 (P) 密度(ρ) 温度 (t) 压力(P) 密度(ρ) ℃ MPa kg/m3 ℃ MPa kg/m3 156 0.5577 2.958 184 1.0983 5.629 157 0.5723 3.032 185 1.1233 5.752 158 0.5872 3.106 186 1.1487 5.877 159 0.6025 3.182 187

航天技术专业名词中英文对照表

航天技术专业名词中英文对照表 安全性safety 拜科努尔发射场Байконуркосмодром 备用着陆场alternate landing site 舱外活动extravehicular activity 测地卫星geodetic satellite 测控通信网communication network for tracking, telemetering and control system 测量飞机instrumentation aircraft 超重医学hypergravity medicine 乘员舱大气环境crew cabin atmosphere environment 冲压式发动机ramjet engine 重复使用运载火箭reusable launch vehicle 垂直起降火箭vertical lift off and vertical landing rocket 磁环境试验magnetism environment test 单级入轨火箭single stage to orbit rocket 单组元火箭发动机mono propellant rocket engine 导航卫星navigation satellite 导航卫星系统navigation satellite system “导航星”全球定位系统Navstar global positioning system,GPS 登月舱lunar module

等效性原理的卫星试验satellite test of the equivalence principle,STEP 低轨道low earth orbit 低轨道运载火箭low earth orbit launch vehicle 地面模拟飞行试验ground simulated flight test 地球辐射带radiation belts of earth 地球观测系统Earth Observing System,EOS 地球同步轨道geosynchronous orbit 地球信息系统Earth Observation System Data and Information System,EOSDIS 地球资源卫星earth resources satellite 地外文明extraterrestrial civilization 电磁相容性试验electromagnetic compatibility test 电弧加热设备arc heater 电火箭发动机electric rocket engine 动力学环境试验dynamics environment test 对地观测技术earth observation technique 多级入轨火箭multi-stage to-orbit rocket 俄罗斯航天测控网Russian spacecraft tracking, telemetering and control network 俄罗斯全球导航卫星系统Russian global navigation satellite system,GLONASS

相关文档
最新文档