同济大学高等数学第四版 详解 习题九

同济大学高等数学第四版 详解 习题九
同济大学高等数学第四版 详解 习题九

194

习题九

1. 求下曲线在给定点的切线和法平面方程: (1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π

4

t

=

; (2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1); (3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).

解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===-

曲线在点π

4

t

=

的切向量为 {}πππ,,,0,444T x y z a c ????????'''==-?? ? ? ?????????

当π

4

t =时, ,,222a b c x y z ===

切线方程为

2220a b c

x y z a c

-

--==-.

法平面方程为

0()0.222a b c a c x y z ??????++-=--- ? ? ???????

即 22

022

a c ax cz --

+=. (2)联立方程组

2226

x y z x y z ?++=?

++=? 它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得

d d 2220d d d d 10d d y z x y z x x

y z x x

?

+?+?=???

?++=?? 解

d d ,,d d y z x z x y

x y z x y z

--==-- 在点M 0(1,-2,1)处,00

d d 0,1d d M M y z

x x ==-

所以切向量为{1,0,-1}.

故切线方程为

121

101

x y z -+-==- 法平面方程为

1(x -1)+0(y +2)-1(z -1)=0

即x -z =0.

(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得

d d 22,21d d y z

y

m z x x

==- 于是

d d 1,d d 2y m z x y x z

==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2m y z ??-????

,故切线方程

000

00

,112x x y y z z m y z ---==-

法平面方程为

00000

1()()()02m x x y y z z y z -+

---=. 2. t (0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin 2

t

在相应点的切线垂直于平面0x y ++=,并求相应的切

线和法平面方程。

解:1cos ,sin ,2cos

2t x t y t z '''=-==, 在t 处切向量为{}

1cos ,sin ,2cos 2

t

T t t =-,

已知平面的法向量为{1,1,2n =

.

且T ∥n ,

2cos

1cos sin 11

t t t

-==解得

π2t =,相应点的坐

标为π1,1,2?- ?

.且

{1,1T =

故切线方程为

π

1

1211x y -

+-==

法平面方程为

π

1102

x y z -

++--= 即

π042x y ??

++-=+ ???

.

3. 证明:螺旋线x = acost, y = asint, z = bt 的切线与z 轴形成定

角。

证明:sin ,cos ,.x a t y a t z b '''=-== 螺旋线的切向量为

{sin ,cos ,}T a t a t b =-.

与z 轴同向的单位向量为

{0,0,1}k =

两向量的夹角余弦为

cos θ=

=

为一定值。

故螺旋线的切线与z 轴形成定角。

195

4. 指出曲面z = xy 上何处的法线垂直于平面x -2y +z =6,并求出该点的法线方程与切平面方程。 解:z x =y , z y =x . 曲面法向量为{}1

,,1n y x =-.

已知平面法向量为{}2

1,2,1n =-. 且1n ∥2n ,故有112

y x

==--

解得x =2,y =-1,此时,z =-2.

即(2,-1,-2)处曲面的法线垂直于平面,且在该点处的法线方程为

212

121

x y z -++==

--. 切平面方程为

-1(x -2)+2(y +1)-(z +2)=0

即 x -2y +z -2=0. 5. 求下列曲面在给定点的切平面和法线方程: (1)z = x 2+y 2,点M 0(1,2,5); (2)z = arctan y

x

,点M 0(1,1,

π4

); 解:(1)0

2, 4.22y

x

m m m m z z y x ====

故曲面在点M 0(1,2,5)的切平面方程为

z -5=2(x -1)+4(y -2).

即 2x +4y -z =5. 法线方程为

125

241

x y z ---==

- (

2

2

2

2

2

1

1,.22

y

x

m m m m y

x z z x y x y -==-==++ 故曲面在点M 0(1,1,

π

4

)的切平面方程为 z -π4=-12 (x -1)+1

2

(y -1). 法线方程为

π11411122

z x y -

--==--.

6. 证明:曲面xyz = a 3上任一点的切平面与坐标面围成的四面体体积一定。

证明:设 F (x ,y ,z )=xyz -a 3. 因为 F x =yz ,F y =xz ,F z =xy ,

所以曲面在任一点M 0(x 0,y 0,z 0)处的切平面方程为

y 0z 0(x -x 0)+x 0z 0(y -y 0)+x 0y 0(z -z 0)=0.

切平面在x 轴,y 轴,z 轴上的截距分别为3x 0,3y 0,3z 0.因各坐标轴相互垂直,所以切平面与坐标面围成的四面体的体积为

33000000

1119132727.

3336622

V z x y z a a x y ??=?==?=?????

它为一定值。

7.解:平面∏与曲面22z x y =+在(1,2,5)-的切平面的法

向量为

}{}{002,2,12,4,1n x y =-=--

从而平面∏的方程为:2450x y z ---= 又l 的方向向量为

110(1)11

i j k

s i j a k a ==-++--

由0n s ?=求得5a =-

l

上取一点,不妨取

01

x =求得

00(1).53y b z b =-+=+

由于000(,,)x y z 在平面∏上,代入平面方程中可求得

2b =-.

8. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为

πππ

,,343

αβγ===

的方向导数。 解

(1,1,2)(1,1,2)

(1,1,2)cos cos cos u u u u

y l x z αβγ????=++????

22(1,1,2)(1,1,2)ππ

cos cos (2)()(3)

34

xy xz y yz z xy =++---

9. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。 解:

{4,3,12},13.AB AB ==

AB 的方向余弦为

4312

cos ,cos ,cos 131313αβγ===

(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105u

yz x u

xz y u

xy z

?==??==??==? 故4312982105.13131313

u l ?=?+

?+?=?

10. 求函数22221x y z a b ??

=-+ ???在点处沿曲线22

221x y a b

+=在这点的内法线方向的方向导数。 解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为

222

2220,x y b x

y y a b a y ''+==- 所以在点处切线斜率为

196

2.b y a a '

==-

法线斜率为cos a

b ?=

.

于是tan sin ?

?==

∵2222,,z z x y x a y b

??=-=-??

2222z l

a b ??=--= ??

11.研究下列函数的极值: (1) z = x 3+y 3-3(x 2+y 2); (2) z = e 2x (x +y 2+2y );

(3) z = (6x -x 2)(4y -y 2); (4) z =

(x 2+y 2)2

2

()

e x y -+;

(5) z = xy (a -x -y ),a ≠0.

解:(1)解方程组2

2

360

360

x y z x x z y y ?=-=??=-=?? 得驻点为(0,0),(0,2),(2,0),(2,2).

z xx =6x -6, z xy =0, z yy =6y -6

在点(0,0)处,A =-6,B =0,C =-6,B 2-AC =-36<0,且A <0,所以函数有极大值z (0,0)=0.

在点(0,2)处,A =-6,B =0,C =6,B 2-AC =36>0,所以(0,2)点不是极值点.

在点(2,0)处,A =6,B =0,C =-6,B 2-AC =36>0,所以(2,0)点不是极值点.

在点(2,2)处,A =6,B =0,C =6,B 2-AC =-36<0,且A >0,所以函数有极小值z (2,2)=-8.

(2)解方程组22

2e (2241)0

2e (1)0x x x

y z x y y z y ?=+++=??=+=?? 得驻点为1,12??

- ???

.

22224e (21)

4e (1)2e x xx x xy x

yy z x y y z y z =+++=+=

在点1,12??

-

???

处,A =2e,B =0,C =2e,B 2-AC =-4e 2<0,又A >0,所以函

数有极小值e 1,122z ??

=-- ???

.

(3) 解方程组2

2

(62)(4)0

(6)(42)0

x y z x y y z x x y ?=--=??=--=?? 得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).

Z xx =-2(4y -y 2),

Z xy =4(3-x )(2-y ) Z yy =-2(6x -x 2) 在点(3,2)处,A =-8,B =0,C =-18,B 2-AC =-8×18<0,且A <0,所以函数有极大值z (3,2)=36.

在点(0,0)处,A =0,B =24,C =0,B 2-AC >0,所以(0,0)点不是极值点.

在点(0,4)处,A =0,B =-24,C =0,B 2-AC >0,所以(0,4)不是极值点.

在点(6,0)处,A =0,B =-24,C =0,B 2-AC >0,所以(6,0)不是极值点.

在点(6,4)处,A =0,B =24,C =0,B 2-AC >0,所以(6,4)不是极值点.

(4)解方程组2

2

()2222

2e

(1)0)0x y x x y x y -+?--=?--=

x 02+y 02

=1, P 0处有z =0,而当(x ,y )≠(0,0)时,恒有z >0,

故函数z 在点P 0处取得极小值z =0.

再讨论函数z =u e -u

d e (1)d u z u u -=-,令d 0d z u

=得u =1, 当u >1时,d 0d z u <;当u <1时,d 0d z

u

>,

由此可知,在满足x 02+y 02=1的点(x 0,y 0)的邻域内,不论是x 2+y 2>1

或x 2+y 2<1,均有

2222

()

1()e

e x y z x y -+-=+≤.

故函数z 在点(x 0,y 0)取得极大值z =e -

1

(5)解方程组(2)0

(2)0x y

z y a x y z x a y x =--=??=--=??

得驻点为

12(0,0),,33a a P P ??

???

z xx =-2y , z xy =a -2x -2y , z yy =-2x .

故z

的黑塞矩

222222y

a x y H a x y x ---??=??---??

122033(),().023

3a

a a H P H P a a a ??

--

????

==????????-

-???? 易知H (P 1)不定,故P 1不是z 的极值点,

H (P 2)当a <0时正定,故此时P 2是z 的极小值点,且

3

,2733a a a z ??= ???

,

H (P 2)当a >0时负定,故此时P 2是z 的极大值点,且

3

,27

33a a a z ??= ???. 12. 设2x 2+2y 2+z 2+8xz -z +8=0,确定函数z =z (x ,y ),研究其极值。 解:由已知方程分别对x ,y 求导,解得

197

484,281281z x z z y x z x y z x ?--?-==?+-?+- 令0,0,z z x y ??==??解得0,2

x y z ==-, 将它们代入原方程,解得16

2,7

x x =-=.

从而得驻点16(2,0),,07??

- ???

.

222

2

2

222(281)(48)4828(281)428,(281)

4(281)8.(281)

z z z x x z z x x x z x z y z x x y z x z

z x z y

y z x ??????+-++--+ ? ????????=

?+-???+ ?????=??++?-+--??=?+-

在点(-2,0)处,44

1,,0,,1515

Z

A B C ==

==B 2-AC <0,因此函数有极小值z =1. 在

16,07?? ???

82828,,0,,7105105

Z A B C =-=-==-B 2

-AC <0,

函数有极大值8

7

z =-.

13. 在平面xOy 上求一点,使它到x =0, y =0及x +2y -16=0三直线距离的平方之和为最小。

解:设所求点为P (x ,y ),P 点到x =0的距离为|x |,到y =0的距离为|y |,到直线x +2y -16=0的距离为

=

距离的平方和为

2221

(216)5

z x y x y =+++-

由2

2(216)0

5

4

2(216)0

5

z x x y x z y x y y

??=++-=??????=++-=???

得唯一驻点816,55?? ???,因实际问题存在最小值,故点816,55??

?

??

即为所求。

14. 求旋转抛物面z = x 2+y 2与平面x +y -z =1之间的最短距离。 解:设P (x ,y ,z )为抛物面上任一点.则点P 到平面的距离的平

方为2

(1)3

x y z d +--=

,即求其在条件z = x 2+y 2下的最值。

设F (x ,y ,z )=

2

22(1)()3

x y z z x y λ+--+-- 解方程组22

2(1)203

2(1)203

2(1)

03x

y

z x y z F x x y z F y x y z F z x y λλλ+--?=-=??

+--?=-=???-+--=

+=??

?=+?

得1

2

x

y z ===

1

6==

15. 抛物面z = x 2+y 2被平面x +y +z =1截成一椭圆,求原点到这

椭圆的最长与最短距离。

解:设椭圆上的点为P (x ,y ,z ),则

|OP |2

=x 2+y 2+z 2.

因P 点在抛物面及平面上,所以约束条件为

z =x 2+y 2, x +y +z =1

设F (x ,y ,z )= x 2+y 2+z 2+λ1(z -x 2-y 2)+λ2(x +y +z -1)

解方程组12121222220220

201

x y

z F x x F y y F z z x y x y z λλλλλλ=-+=??=-+=??

=++=??=+??++=?

1,232

x y z -==

=

由题意知,距离

|OP |有最大值和最小值,且

()

2

2

222

2953

2

3x y z OP =

++=+=.

所以原点到椭

圆的最长距离是

,最短距离是

16. 在第I 卦限内作椭球面

222

2221x y z a b c

++= 的切平面,使切平面与三坐标面所围成的四面体体积最小,求切

点坐标。

解:令222

222(,,)1x y z F x y z a b c

=++-

∵222222,,,x y z x y z F F F a b c ===

∴椭球面上任一点0000(,,)P x y z 的切平面方程为

198

000

000222222()()()0.x y z x x y y z z a b c

-+-+-= 即 000222 1.x x y y z z

a b c ++=

切平面在三个坐标轴上的截距分别为222

000

,,a b c x y z ,因此切平

面与三个坐标面所围的四面体的体积为

222222

000000

166a b c a b c V x y z x y z =???=

即求222

6a b c V xyz

=

在约束条件

222

222

1x y z a b c ++=下的最小值,也即求xyz 的最大值问题。 设

222222(,,)1x y z x y z xyz a b c λ??

Φ=+++- ???,

解方程组22

2222

22220,20,20,1.

x

y z x yz a

x xz b x xy c x y z a b c λλλ?

Φ=+=??

?Φ=+=???Φ=+=???++=?

得,,333x y z ===. 故切点为,,333 ???

,此时最小体积为 2223

.6333

a b c V abc a b c ==???

*17. 设空间有n 个点,坐标为(,,)(1,2,,)i i i x y z i n =,试在

xOy 面上找一点,使此点与这n 个点的距离的平方和最小。 解:设所求点为P (x ,y ,0),则此点与n 个点的距离的平方和为

2222221112222222212122

2

2

22

2

22

2

1

21

21

2()()()()()()2()2()

()()()

n n n n n n n n S x x y y z x x y y z x x y y z nx x x x x ny y y y y x x x y y y z z z =-+-++-+-+++-+-+=-++++-++

++++

++++

+++++

解方程组121222()0

22()0x n y

n S nx x x x S ny y y y =-+++=??=-+++=??

得驻点121

2n n x x x x n y y y y n +++?=???+++?=??

又在点1111,n

n i i i i x y n n ==?? ???

∑∑处

S xx =2n =A , S xy =0=B , S yy =2n =C B 2-AC =-4n 2<0, 且A >0取得最小值.

故在点1111,n

n i i i i x y n n ==?? ???

∑∑处,S 取得最小值.

即所求点为1111,,0n n i i i i x y n n ==??

???

∑∑.

*18.

已知过去几年产量和利润的数据如下:

产量x (3

10件)

40 47 55 70 90 100

利润y (3

10元)

32 34 43 54 72 85

厂的利润。

解:在直角坐标系下描点,从图可以看出,这些点大致接近一条直线,因此可设f (x )=ax +b ,求[]

6

2

1

()i i i u y ax b ==-+∑的

最小值,即求解方程组

666

2

111

66

1

1,6.i i i i i i i i i i i a x b x y x a x b y =====?+=????+=??∑∑∑∑∑ 把(x i ,y i )代入方程组,得

2983440224003

4026320a b a b +=??

+=?

解得 a =0.884, b =-5.894

即 y =0.884x -5.894,

当x =120时,y =100.186(3

10元).

同济大学高等数学1期末试题(含答案)

1. 若82lim =?? ? ??--∞→x x a x a x ,则_______.2ln 3- 2. =+++→)1ln()cos 1(1 cos sin 3lim 20x x x x x x ____.2 3 3.设函数)(x y y =由方程4ln 2y x xy =+所确定,则曲线)(x y y =在)1,1(处的切线方程为________.y x = 4. =-++∞→))1(sin 2sin (sin 1lim n n n n n n πππ Λ______.π2 5. x e y y -=-'的通解是____.x x e e y --=21C 二、选择题(每题4分) 1.设函数)(x f 在),(b a 内连续且可导,并有)()(b f a f =,则(D ) A .一定存在),(b a ∈ξ,使 0)(='ξf . B. 一定不存在),(b a ∈ξ,使 0)(='ξf . C. 存在唯一),(b a ∈ξ,使 0)(='ξf . D.A 、B 、C 均不对. 2.设函数)(x f y =二阶可导,且 ,)(),()(,0)(,0)(x x f dy x f x x f y x f x f ?'=-?+=?<''<', 当,0>?x 时,有(A ) A. ,0<>?dy y C. ,0?>y dy 3. =+?-dx e x x x ||2 2)|(|(C) A. ,0B. ,2C. ,222+e D. 26e 4. )3)(1()(--=x x x x f 与x 轴所围图形的面积是(B ) A. dx x f ?3 0)( B. dx x f dx x f ??-3110)()( C. dx x f ?-30)( D. dx x f dx x f ??+-3110)()( 5.函数Cx x y +=361 ,(其中C 为任意常数)是微分方程x y =''的(C ) A . 通解B.特解C.是解但非通解也非特解D.不是解

(完整版)同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理), 并会应用这些性质。 【教学重点与难点】 本章重点是求函数极限的方法(极限运算法则、两个重要极限、无穷小的比较、初等函数的连续性)。难点是数列、函数极限的证明方法。 【教学内容】 第一节映射与函数 一、映射 1.映射概念

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

高等数学(同济大学版)第四章练习(含答案)

第四章 不定积分 一、学习要求 1、理解原函数与不定积分的概念及性质。 2、掌握不定积分的第一类换元法、第二类换元法及分部积分法。 二、练习 1.在下列等式中,正确的结果是( C ). A. '()()f x dx f x =? B.()()df x f x =? C. ()()d f x dx f x dx =? D.[()]()d f x dx f x =? 2.若ln x 是函数()f x 的一个原函数,则()f x 的另一个原函数是( A ); A. ln ax B.1ln ax a C.ln x a + D.21(ln )2 x 3.设()f x 的一个原函数是2x e -,则()f x =( B ); A. 2x e - B. 22x e -- C. 24x e -- D. 24x e - 4.'' ()xf x dx =? ( C ). A.'()xf x C + B. '()()f x f x C -+ C. '()()xf x f x C -+ D. '()()xf x f x C ++. 5 .将 化为有理函数的积分,应作变换x =( D ). A. 3t B. 4 t C. 7 t D. 12 t 6.dx = 1/7 ()73d x -, 2cos 2dx x = 1/2 ()tan 2d x ,2 19dx x =+1/3 ()arctan3d x ; 7. 已知(31)x f x e '-=,则()f x =1 3 3x e c ++. 8.设()f x 是可导函数,则'()d f x x ?为()f x C +. 9.过点(1,2)且切线斜率为34x 的曲线方程为41y x =+ 10.已知()cos xf x dx x C =+?,则()f x =sin x x - 11.求下列不定积分 解: (1) 22 32tan 1tan tan tan 1sin 3 x dx xd x x c x ==+-?? (2) 22arctan 11 x x x x x x x dx e dx de e c e e e e -===++++??? 5 34 2 (3)t a n s e c t a n s e c s e c x x d x x x d x ? =??? 22 2(s e c 1)s e c s e c x x d x =-?? ()642sec 2sec sec sec x x x d x =-+?753121 sec sec sec 753 x x x c = -++

(完整版)同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在 0x 连续 )()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x - →-= 右极限:)(lim )(0 0x f x f x x +→+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2 ) a z y n n n n ==→∞ →∞ lim lim a x n n =∞ →lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

同济大学高等数学2

同济大学高等数学(下)期中考试试卷2 一.简答题(每小题8分) 1.求曲线?????+=+=-=t z t y t t x 3cos 12sin 3cos 在点??? ??1,3,2 π处的切线方程. 2.方程1ln =+-xz e y z xy 在点)1,1,0(的某邻域内可否确定导数连续的隐函数),(y x z z =或),(x z y y =或),(z y x x =?为什么? 3.不需要具体求解,指出解决下列问题的两条不同的解题思路: 设椭球面1222222 =++c z b y a x 与平面0=+++D Cz By Ax 没有交点,求椭球面与平面 之间的最小距离. 4.设函数),(y x f z =具有二阶连续的偏导数,3x y =是f 的一条等高线,若 1)1,1(-=y f ,求)1,1(x f . 二.(8分)设函数f 具有二阶连续的偏导数,),(y x xy f u +=求y x u ???2 . 三.(8分)设变量z y x ,,满足方程),(y x f z =及0),,(=z y x g ,其中f 与g 均具有连续的偏导数,求dx dy . 四.(8分)求曲线 ???=--=01, 02y x xyz 在点)110(,,处的切线与法平面的方程. 五.(8分)计算积分) ??D y dxdy e 2,其中D 是顶点分别为)0,0(.)1,1(.)1,0(的 三角形区域. 六.(8分)求函数22y x z +=在圆9)2()2(22≤- +-y x 上的最大值和最小值. 七.(14分)设一座山的方程为2221000y x z --=,),(y x M 是山脚0=z 即等量线 1000222=+y x 上的点. (1)问:z 在点),(y x M 处沿什么方向的增长率最大,并求出此增长率; (2)攀岩活动要山脚处找一最陡的位置作为攀岩的起点,即在该等量线上找一点M 使得上述增长率最大,请写出该点的坐标. 八.(14分) 设曲面∑是双曲线2422=-y z (0>z 的一支)绕z 轴旋转而成,曲面上一点M 处的切平面∏与平面0=++z y x 平行. (1)写出曲面∑的方程并求出点M 的坐标; (2)若Ω是∑.∏和柱面122=+y x 围成的立体,求Ω的体积.

(完整word版)同济大学版高等数学期末考试试卷

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

同济大学2015-2016学年高等数学(B)上期末考试试卷

本资料仅供参考复习练手之用,无论是重修只求及格,还是为了拿优保研,复习课本上的基础知识点和例题、课后习题才是重中之重,作为一个重修过高数的学长,望大家不要舍本求末,记住这样一句话,只有当你付出了,你才可能有收获。 同济大学2015-2016学年第一学期高等数学B(上)期终试卷 一. 填空选择题(3'824'?=) 1. 极限1 2 02lim( )23h h h e h -→-=+. 2. 积分(12sin ) cos '(12sin )2 f x x f x dx C --?-=+? . 3. 函数2 20 ()sin(1)x F x t dt = +? 的导函数4'()2sin(1)F x x x =+. 4. 曲线3 22 (1)1(12)3 y x x =++-≤≤的弧长14 3 s = . 5. 极限0 lim ()x x f x -→=+∞的定义是 【D 】 () 0,0A εδ?>?>, 当00x x δ<-<时, 有()f x A ε-<; () 0,0B εδ?>?>, 当x δ>时, 有()f x ε>; () 0,0C M X ?>?>, 当x X >时, 有()f x M >; () 0,0D M δ?>?>, 当00x x x δ-≤<时, 有()f x M >. 6. 若123(),(),()y x y x y x 是二阶微分方程"()'()()y a x y b x y c x =++的三个线性无关的解, 则该方程的通解为 【D 】 112233()()()( )A C y x C y x C y x ++, 其中123,,C C C 是任意常数; 11223 ()()()()B C y x C y x y x ++, 其中12,C C 是任意常数; 11223 ()()[()()]C C y x C y x y x ++, 其中12,C C 是任意常数; 112233()()()( )D C y x C y x C y x ++ , 其中任意常数1231C C C ++=.

高等数学(同济第六版)上册期末复习重点

高等数学(同济第六版)上册期末复习重点 第一章:1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 4、空间平面 5、空间旋转面(柱面)

第一章函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。 定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间

同济大学版高等数学期末考试试卷

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题 分,共 ?分) .下列各组函数中,是相同的函数的是( ) (?)()()2ln 2ln f x x g x x == 和 ( )()||f x x = 和 ( )g x = ( )()f x x = 和 ( )2 g x = ( )()|| x f x x = 和 ()g x = .函数( )() 20ln 10 x f x x a x ≠=+?? =? 在0x =处连续,则a = ( ) (?) ( ) 1 4 ( ) ( ) .曲线ln y x x =的平行于直线10x y -+=的切线方程为( ) (?)1y x =- ( )(1)y x =-+ ( )()()ln 11y x x =-- ( ) y x = .设函数()||f x x =,则函数在点0x =处( ) (?)连续且可导 ( )连续且可微 ( )连续不可导 ( )不连续不可微 .点0x =是函数4 y x =的( ) (?)驻点但非极值点 ( )拐点 ( )驻点且是拐点 ( )驻点且是极值点

.曲线1 || y x = 的渐近线情况是( ) (?)只有水平渐近线 ( )只有垂直渐近线 ( )既有水平渐近线又有垂直渐近线 ( )既无水平渐近线又无垂直渐近线 . 211 f dx x x ??' ???? 的结果是( ) (?)1f C x ?? -+ ??? ( )1f C x ?? --+ ??? ( )1f C x ?? + ??? ( )1f C x ?? -+ ??? . x x dx e e -+?的结果是( ) (?)arctan x e C + ( )arctan x e C -+ ( )x x e e C --+ ( ) ln()x x e e C -++ .下列定积分为零的是( ) (?)424arctan 1x dx x π π-+? ( )44 arcsin x x dx ππ-? ( )112x x e e dx --+? ( )()1 2 1 sin x x x dx -+? ?.设()f x 为连续函数,则 ()1 2f x dx '?等于( ) (?)()()20f f - ( )()()11102f f -????( )()()1 202f f -????( )()()10f f - 二.填空题(每题 分,共 ?分) .设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = .已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '= .21 x y x =-的垂直渐近线有条 . ()21ln dx x x = +?

2-5高等数学同济大学第六版本

2-7 1. 已知y =x 3-x , 计算在x =2处当?x 分别等于1, 0.1, 0.01时的?y 及dy . 解 ?y |x =2, ?x =1=[(2+1)3-(2+1)]-(23-2)=18, dy |x =2, ?x =1=(3x 2-1)?x |x =2, ?x =1=11; ?y |x =2, ?x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161, dy |x =2, ?x =0.1=(3x 2-1)?x |x =2, ?x =0.1=1.1; ?y |x =2, ?x =0.01=[(2+0.01)3-(2+0.01)]-(23-2)=0.110601, dy |x =2, ?x =0.01=(3x 2-1)?x |x =2, ?x =0.01=0.11. 2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、?y 及?y -d y 并说明其正负. 解 (a )?y >0, dy >0, ?y -dy >0. (b )?y >0, dy >0, ?y -dy <0. (c )?y <0, dy <0, ?y -dy <0. (d )?y <0, dy <0, ?y -dy >0. 3. 求下列函数的微分: (1)x x y 21+=; (2) y =x sin 2x ; (3)12+=x x y ; (4) y =ln 2(1-x ); (5) y =x 2e 2x ;

(6) y=e-x cos(3-x); (6) dy=y'dx=[e-x cos(3-x)]dx=[-e-x cos(3-x)+e-x sin(3-x)]dx =e-x[sin(3-x)-cos(3-x)]dx . (8) dy=d tan2(1+2x2)=2tan(1+2x2)d tan(1+2x2) =2tan(1+2x2)?sec2(1+2x2)d(1+2x2) =2tan(1+2x2)?sec2(1+2x2)?4xdx =8x?tan(1+2x2)?sec2(1+2x2)dx. 4.将适当的函数填入下列括号内,使等式成立:

同济大学高等数学期末考试题

《高数》试卷7(上) 一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ). A []1,2- B [)1,2- C (]1,2- D ()1,2- 2、极限x x e ∞→lim 的值是( ). A 、 ∞+ B 、 0 C 、∞- D 、 不存在 3、=--→211) 1sin(lim x x x ( ). A 、1 B 、 0 C 、 21- D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ). A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设 ?+=C x dx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、?=+dx x x ln 2( ). A 、C x x ++-22ln 212 B 、 C x ++2 )ln 2(21 C 、 C x ++ln 2ln D 、 C x x ++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、?104dx x π B 、?1 0ydy π C 、?-1 0)1(dy y π D 、?-104)1(dx x π

9、?=+1 01dx e e x x ( ). A 、21ln e + B 、2 2ln e + C 、31ln e + D 、221ln e + 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ). A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 27 2=* 二、填空题(每小题4分) 1、设函数x xe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m . 3、=?-1 13cos xdx x ; 4、微分方程 044=+'+''y y y 的通解是 . 5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ; 三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0 ; 2、求x x y sin ln cot 2 12+= 的导数; 3、求函数 1133+-=x x y 的微分; 4、求不定积分?++1 1x dx ; 5、求定积分 ?e e dx x 1 ln ; 6、解方程 2 1x y x dx dy -= ; 四、应用题(每小题10分) 1、 求抛物线2x y = 与 2 2x y -=所围成的平面图形的面积. 2、 利用导数作出函数323x x y -= 的图象.

同济大学版高等数学期末考试试卷

《高数》试卷1 (上) (A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1 x -1 ( D ) y = x 4?设函数f x =|x|,则函数在点x=0处( ) 5 .点x = 0是函数y = x 4的( ) 1 6. 曲线y 的渐近线情况是( ). |x| (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. f — _2dx 的结果是( ). l x /X f 1 L f 1 L CL f 1 L (A ) f 一丄 C (B ) —f -丄 C (C ) f 1 C (D ) 一 f - C I X 丿 I X 丿 l x 丿 J x 丿 dx & 匚出的结果是( ). e e (A ) arctane x C (B ) arctane" C (C ) e x C ( D ) ln(e x e^) C 9.下列定积分为零的是( ). 1.下列各组函数中 ,是相同的函数的是 ( ). (A ) f (x ) = lnx 2 和 g (x ) = 2ln X (B ) f ( x ) =| x|和 g (x )=J? (C ) f (X )=X 和 g (x ) = (T X ) (D ) f (X )= |x| 和 X g (x )“ Jsinx+4 -2 x 式0 2.函数 f (X )= * In (1 +x ) 在X = 0处连续,则 a =( ) a x = 0 (A ) 0 ( B 1 - (C ) 1 (D ) 2 4 3?曲线y = xln x 的平行于直线x - y T = 0的切线方程为( ) (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 「?选择题(将答案代号填入括号内,每题 3分,共30分)

(完整word版)同济大学第六版高等数学课后答案详解全集

同济六版高等数学课后答案全集 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A\B 及A\(A\B)的表达式. 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B)C =AC ?BC . . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f(A ?B)=f(A)?f(B); (2)f(A ?B)?f(A)?f(B). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 5. 设映射f : X →Y , A ?X . 证明: (1)f -1(f(A))?A ; (2)当f 是单射时, 有f -1(f(A))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8)x x y 1 arctan 3+-=;. (9) y =ln(x +1); (10) x e y 1 =. 7. 下列各题中, 函数f(x)和g(x)是否相同?为什么? (1)f(x)=lg x2, g(x)=2lg x ; (2) f(x)=x , g(x)=2x ; (3)334)(x x x f -=,31)(-=x x x g . (4)f(x)=1, g(x)=sec2x -tan2x . 8. 设 ???? ?≥<=3|| 03|| |sin |)(ππ?x x x x , 求)6(π?, )4(π?, ) 4(π?-, ?(-2), 并作出函数y =?(x)

同济版 高等数学 课后习题解析

书后部分习题解答 P21页 3.(3)n n n b b b a a a ++++++++∞→ 2211lim (1,1<x ,)(211n n n x a x x += + 证:由题意,0>n x ,a x a x x a x x n n n n n =??≥+= +221)(211(数列有下界) 又02)(212 1≤-=-+=-+n n n n n n n x x a x x a x x x (因a x n ≥+1) (数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞ →lim ,对)(211n n n x a x x += +两边取极限, 得)(21b a b b +=,解得a b =(负的舍去) ,故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211) 1()1()]1(1[lim -++--++→x n x n x n x 21 221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2 ) 1(21+= =+n n C n (若以后学了洛必达法则(00型未定型),则211) 1()1(lim -++-+→x n x n x n x 2 ) 1(2)1(lim )1(2)1())1(lim 111+= +=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页 8.已知当0→x 时,1cos ~1)1(3 12--+x ax ,求常数a .

相关文档
最新文档