空间角的几何求法

空间角的几何求法
空间角的几何求法

空间角的几何求法

一、 异面直线所成角(线线角)范围:

(0,

]2

π

θ∈

先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。 【典例分析】

例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值;

【变式】在长方体中,,,则异面直线与所成角的余弦值为。

二、直线与平面所成角(线面角)范围:[0,]2

π

θ∈

【典例分析】

例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,

A 1A =4,C 1C =1,A

B =B

C =B 1B =2.

(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.

【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;

(2)求直线BD 与平面PCD 所成的角的大小;

1111ABCD A B C D -1AB BC ==13AA =1AD 1DB

例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。

(1)求证:BM∥平面PAD ;

(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。

【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,

且AC BC a ==,π02VDC θθ?

?=<< ??

?∠.

(1)求证:平面VAB ⊥平面VCD ;

(2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π

6

三、平面与平面所成角(面面角)范围:[0,]θπ∈

(1)定义法:当点A 在二面角α-λ-β的棱λ上时,可过A 分别在α、β内作棱λ的

垂线,AB 、AC ,由定义可知∠BAC 即为二面角α-λ-β的平面角。

(2)三垂线法:当点A 在二面角α-λ-β的一个面α内时,可作AO ⊥β于O ,

再作OB ⊥λ于B ,连结AB ,由三垂线定理可得AB ⊥λ, 故∠ABO 即为二面角α-λ-β的平面角。

(3)垂面法:当点A 在二面角α-λ-β内时,可作AB ⊥α于B ,AC ⊥β于C ,

设1过AB 、AC 的平面与λ交于点O ,连结OB 、OC ,可证平面, ABOC 是λ的垂面,则λ⊥OB ,λ⊥OC ,∠BOC 即为二面角α-λ-β的平面角。 (4)射影面积法:原

射影S cos S =

α

【典例分析】

l

a

b

c

A

D

C

B

A E

1. 如图,

AB ⊥

平面BCD ,

BD CD

⊥,若

2AB BC BD ==,求二面角B AC D --的正弦值

例2.把等腰直角三角形ABC 以斜边AB 为轴旋转,使C 点移动的距离等于AC 时停止,并记为点P . (1)求证:面ABP⊥面ABC ;(2)求二面角C -BP -A 的余弦值.

例3.在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC .

(1)求证:1BE EB =;(2)若111AA A B =,求平面1A EC 与平面111A B C 所成二面角(锐角)的度数.

【变式】 1. E 是正方形ABCD 的AB 边中点,将△ADE 与△BCE 沿DE 、CE 向上折起,使得A 、B 重合为点P ,那么 二面角D —PE —C 的大小为.

2.在正四面体ABCD 中,求相邻两个平面所成的二面角的余弦值

3.已知:二面角l αβ--且,A A α∈到平面β的距离为23,A 到l 的距离为4, 求二面角l αβ--的大小

l

B

O

A

β

α

例3.已知斜三棱柱111ABC A B C -,90BCA ∠=o

,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,

又知11BA AC ⊥。

(1)求证:1AC ⊥平面1A BC ; (2)求1CC 到平面1A AB 的距离; (3)求二面角1A A B C --的大小。

【变式】如图,正三棱柱ABC —A 1B 1C 1中,D 是BC 的中点,AA 1=AB =1. (1)求证:A 1C //平面AB 1D ;

(2)求二面角B —AB 1—D 的大小; (3)求点C 到平面AB 1D 的距离.

【巩固练习】

1.已知四棱锥S ?ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ?AB ?C 的平面角为θ3,则

A .

θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1

2. 已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.

S SA SB 78

SA SAB △515

3.如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点. (1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.

4.如图,四棱锥P -ABCD 中,⊥ABC=⊥BAD=90°,BC=2AD ,⊥PAB 与⊥PAD 都是等边三角形. (1)证明:CD⊥平面PBD ;

(2)求二面角C-PB-D 的平面角的余弦值.

5. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.

6.如图,在三棱柱ABC ?111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,

11A C ,1BB 的中点,

AB=BC =5,AC =1AA =2.

(1)求证:AC ⊥平面BEF ;(2)求二面角B ?CD ?C 1的余弦值;

7.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11A ABB ,且12AA AB ==. (1) 求证:AB BC ⊥;(2)若22AC =1A A C B --

的大小.

8.如图,在四棱锥中,平面平面;,,,(1)证明:平面;(2)求直线与平面所成的角的正切值.

9.如图,四棱锥中,地面,,,,

M 为线段上一点,,为的中点.

(1)证明平面;(2)求直线与平面所成角的正弦值.

10. 如图,在四棱锥P ABCD -中,底面ABCD 是0

60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形, 且平面PAD 垂直于底面ABCD .

(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;

(3)求二面角A BC P --的大小.

BCDE A -ABC ⊥BCDE 90CDE BED ∠=∠=?2AB CD ==1DE BE

==2AC =AC ⊥BCDE AE ABC P ABC -PA ⊥ABCD AD BC P 3AB AD AC ===4PA BC ==AD 2AM MD =N PC MN P PAB AN PMN B

A 1

C A

B 1

C 1

11. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点.

(1)求PA 与底面ABCD 所成角的大小; (2)求证:PA ⊥平面CDM ;

(3)求二面角D MC B --的余弦值.

12. 如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠o

,BE =EF =FC =1,BC =2,AC =3.

(1)求证:EF ⊥平面ACFD ;(2)求二面角B -AD -F 的平面角的余弦值.

13.如图,在三棱锥中,,, 为的中点.(1)证明:平面;

(2)若点在棱上,且二面角为, 求与平面所成角的正弦值.

14.如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点. (1)证明:平面平面;

(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.

P ABC -22AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC M PA C --30?PC PAM ABCD ?CD

M ?CD C D AMD ⊥BMC M ABC -MAB MCD P

O

M

15. 在四棱锥P-ABCD 中,底面ABCD 是矩形,侧棱PA

垂直于底面,

E

F

分别是AB

、PC

的中点.

(1)求证://EF 平面PAD ;

(2)当平面PCD 与平面ABCD 成多大二面角时,直线⊥EF 平面PCD ?

16.如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上. (1)求异面直线1D E 与1A D 所成的角;

(2)若二面角1D EC D --的大小为45?,求点B 到平面1D EC 的距离.

17. 如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。 (1)试确定PB

P A 1的值,使得PC ⊥AB ;

(2)若3

21=PB

P A ,求二面角P —AB —C 的大小;

(3)在(2)条件下,求C 1到平面PAC 的距离。

立体几何空间角

D C 1 A 1 B 1 C 1 D B C A D 立体几何专题----空间角 知识点归纳 1、异面直线所成的角 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作直线 a′∥a , b ′∥b 则把 a ′ 与 b ′所成的锐角(或直角)叫做异面直线所成的角(或夹角). a b 注1:异面直线所成的角的范围( 0O , 90O ] 注2:如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直 , 记为a ⊥ b 注3:在求作异面直线所成的角时,O点常选在其中的一条直线上(如线段的端点,线段的中点等) 2 、直线与平面所成的角 平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角 (1)一条直线垂直于平面,它们所成的角是直角 (2)一条直线和平面平行,或在平面内,它们所成的角是0 ?的角 (3)直线和平面所成角的范围是[0?,90?] 3、二面角: 如右图在二面角的棱l取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则 叫做二面角的平面角. 注:①二面角的平面角的大小与O点位置_____ _。 ②二面角的平面角的范围是_______ 。 ③平面角为______的二面角叫做直二面角。 试题探究: 1、如图:表示正方体 1 1 1 1 D C B A ABCD-, 求异面直线 1 1 CC BA和所成的角。 2、空间四边形ABCD中,2 AD BC ==,,E F分别是, AB CD的中点,3 EF=, 求异面直线, AD BC所成的角。 3、在单位正方体 1111 ABCD A B C D -中,试求直线 1 BD与平面ABCD所成的角. 4、在单位正方体 1111 ABCD A B C D -中,求直线 11 A C与截面 11 ABC D所成的角. 5、将一副三角板如图拼接,∠BAC=∠BCD=90°,AB=AC,∠BDC=60°,且平面ABC⊥平面BCD, (1)求证:平面ABD⊥平面ACD;(2)求二面角A-BD-C的正切值;(3)求异面直线AD与BC所成角的余弦值. a′O b′ a P α O A O A B D C A 1 B 1 C 1 D A F E D B A B D B 1 A 1 C 1 D 1

立体几何中用传统法求空间角

-立体几何中的传统法求空间角 知识点: 一.异面直线所成角:平移法 二.线面角 1.定义法:此法中最难的是找到平面的垂线.1.)求证面垂线,2).图形中是否有 面面垂直的结构,找到交线,作交线的垂线即可。 2.用等体积法求出点到面的距离sinA=d/PA 三.求二面角的方法 1、直接用定义找,暂不做任何辅助线; 2、三垂线法找二面角的平面角. 例一:如图,在正方体错误!未找到引用源。中,错误!未找到 引用源。、错误!未找到引用源。分别是错误!未找到引用 源。、错误!未找到引用源。的中点,则异面直线错误!未 找到引用源。与错误!未找到引用源。所成的角的大小是 ______90______. 考向二线面角 例二、如图,在四棱锥P-ABCD中,底面ABCD是矩 形,AD⊥PD,BC=1, ,PD=CD=2. (I)求异面直线PA与BC所成角的正切值;(II)证明平面PDC⊥平面ABCD; (III)求直线PB与平面ABCD所成角的正弦值。 N A 1

练 习 : 如图 , 在 三棱锥 P ABC -中, PA ⊥底面 ,, 60,A B C P A A B A B C B C A ?? =∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BC (Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的正弦值; (Ⅰ)∵PA ⊥底面ABC ,∴PA ⊥BC . 又90BCA ? ∠=,∴AC ⊥BC . ∴BC ⊥平面PAC . (Ⅱ)∵D 为PB 的中点,DE//BC ,

∴1 2 DE BC = , 又由(Ⅰ)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角, ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA=A B , ∴△ABP 为等腰直角三角形,∴ AD AB = , ∴在Rt △ABC 中,60ABC ? ∠=,∴1 2 BC AB = . ∴在Rt △ADE 中,sin 24 DE BC DAE AD AD ∠= ==, 考向三: 二面角问题 在图中做出下面例题中二面角 例三:.定义法(2011广东理18) 如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值. 法一:(1)证明:取AD 中点G ,连接PG ,BG ,BD 。 因PA=PD ,有PG AD ⊥,在ABD ?中,1,60AB AD DAB ==∠=?,有ABD ?为 等边三角形,因此,BG AD BG PG G ⊥?=,所以AD ⊥平面 PBG ,.AD PB AD GB ?⊥⊥ 又PB//EF ,得AD EF ⊥,而DE//GB 得AD ⊥DE ,又FE DE E ?=,所以AD ⊥ 平面DEF 。

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

立体几何中角度与距离求法

立体几何中角度距离的求法 一 空间向量及其运算 1 .空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则 称a 与b __________,记作a ⊥b . ②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是 ________________________. 推论,如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB → =a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM → +yOA →+zOB → ,其中x +y +z =______. (3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

立体几何之空间角(经典)

中小学1对1课外辅导专家 武汉龙文教育学科辅导讲义 授课对象 冯芷茜 授课教师 徐江鸣 授课时间 2013-9-19 授课题目 立体几何中的空间角 课 型 复习课 使用教具 讲义、纸、笔 教学目标 熟悉高考中立体几何题型的一般解法 教学重点和难点 重点:运用空间直角坐标系的方法解决立体几何问题 难点:二面角,线面角的空间想象能力 参考教材 人教版高中教材 高考考纲 历年高考真题 教学流程及授课详案 【知识讲解】 空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形) (1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所成的角。异面直线所成角的范围:o o 900≤<α; 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的还可以 通过补形,如:将三棱柱补成四棱柱;将正方体再加上三个同样的正方体,补成一个底面是正方形的长方体。 (2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90; ③斜线与平面所成的角:范围o o 900<<α;即也就是斜线与它在平面内的射影所成的角。 (3)二面角:关键是找出二面角的平面角。方法有:①定义法;②三垂线定理法;③垂面法; 注意:还可以用射影法:S S ' cos =θ;其中θ为二面角βα--l 的大小,S 为α内的一个封 闭几何图形的面积;'S 为α内的一个封闭几何图形在β内射影图形的面积。一般用于解选择、填空题。 时 间 分 配 及 备 注

【题海拾贝】 例1在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点. EF平面P AD; (1)求证:// (2)当平面PCD与平面ABCD成多大二面角时, EF平面PCD? 直线 例2已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC = AD = CD = DE = 2a,AB = a, F为CD的中点. (Ⅰ)求证:AF⊥平面CDE; (Ⅱ)求异面直线AC,BE所成角余弦值; (Ⅲ)求面ACD和面BCE所成二面角的大小.

空间角与距离求法(高二)

1 空间角与点面距离求法 求空间角和点到平面的距离是教学的重点,也是学生学习的难点,更是高考的必考点.新课标强调要求利用向量的运算来解决这两个问题,而新教材的处理是通过探究引导学生推理得出相关公式.在复习时,作为教师有必要帮助学生对相关的知识进行梳理、归纳和小结. 1.空间角的求法 在立体几何中,求空间角是学习的重点,也是学习的难点,更是高考的必考点.我们在复习时,必须对相关的知识进行梳理、归纳和小结,才会灵活运用公式熟练地求出空间角. 一、相关概念和公式 (1) b a ,是空间两个非零向量,过空间任意一点O ,作,,b a ==则AOB ∠叫做 向量a 与向量b 的夹角,记作>≤≤=< . (3) 设),,(111z y x a = , ),,(222z y x b = 则212121||z y x a ++= ,222222||z y x b ++= , 212121z z y y x x b a ++=? . 二、两条异面直线所成的角 (1) 定义:已知两条异面直线a 和b ,经过空间任一点O 作直线,//,//b b a a ''我们把a '与b ' 所成的锐角(或直角)叫做异面直线a 和b 所成的角(或夹角). (2) 范围: 异面直线a 和b 所成的角为θ: 900≤<θ, 则cos 0≥θ . (3) 求法: ▲① 平移法: 把两条异面直线a 和b 平移经过某一点(往往选取图中的特殊点),构造三角形(有时会用到补形法,如三棱柱补成平行六面体等),解三角形(通常用到余弦定理).特别提醒:若由边角关系求得为钝角.. 时,注意取其补角为异面直线所成的角. ▲② 向量法: 若a 和b 分别是异面直线a 和b 的方向向量,则 | ||||||||||||,cos |cos b a b a b a b a b a ??=??=><=θ . 说明: ① 其中=θ或- 180 ; ② 在计算b a ?时可用向量分解或坐标进行运算. 三、直线与平面所成的角 (1) 定义: 一个平面的斜线和它在这个平面内的射影的夹角,叫 做斜线和平面所成的角(或斜线和平面的夹角) 如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

空间角及空间距离的计算知识点

空间角及空间距离的计算 1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在在两异面直线中的一条上取一点, 过该点作另一条直线平行线, 2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA 是平面α的一条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面α上射影,PAO ∠为线面角。 3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角l αβ--,二面角的大小 指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: ①明确构成二面角两个半平面和棱; ②明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一 找”、“二证”、“三计算”) 4.异面直线间的距离:指夹在两异面直线之间的公垂线段的长度。如图PQ 是两异面直线间的 距离 (异面直线的公垂线是唯一的,指与两异面直线垂直且相交的直线) 5. 点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O 为P 在平面α上的射影, 线段OP 的长度为点P 到平面α的距离 长方体的“一角” 模型 在三棱锥P ABC -中,,,PA PB PB PC PC PA ⊥⊥⊥,且,,PA a PB b PC c ===. ①以P 为公共点的三个面两两垂直; ③P 在底面ABC 的射影是△ABC 的垂心 ----,,l OA OB l OA l OB l AOB αβαβαβ??⊥⊥∠如图:在二面角中,O 棱上一点,,, 的平面角。 且则为二面角 a b ''??如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异 面直线与所成的角,异面直线所成角取值范围是(0,90] 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。 如图在三棱锥V ABC -中有: S ABC A SBC B SAC C SAB V V V V ----=== C A

立体几何空间角习题

立体几何空间角习题 【基础】空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 一、选择填空题 1.(1)已知正三棱柱ABC —A 1B 1C 1中,A 1B ⊥CB 1,则 A 1 B 与A C 1所成的角为( ) (A )450 (B )600 (C )900 (D )1200 (2)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A . 1 3 B C D . 23 (3)Rt ABC ?的斜边在平面α内,顶点A 在α外,BAC ∠在平面α内的射影是BA C '∠,则 BA C '∠的范围是________________。 (4)从平面α外一点P 向平面α引垂线和斜线,A 为垂足,B 为斜足,射线BC α?,这时 PBC ∠为钝角,设,PBC x ABC y ∠=∠=,则( ) A.x y > B.x y = C.x y < D.,x y 的大小关系不确定 (5)相交成60°的两条直线与一个平面α所成的角都是45°,那么这两条直线在平面α内的 射影所成的角是( ) A .30° B .45° C .60° D .90° (6)一条与平面相交的线段,其长度为10cm ,两端点到平面的距离分别是2cm ,3cm ,这条线 段与平面α所成的角是 ;若一条线段与平面不相交,两端点到平面的距离分别是2cm ,3cm ,则线段所在直线与平面α所成的角是 。 (7)PA 、PB 、PC 是从P 点引出的三条射线,每两条夹角都是60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A B A 1 1

立体几何专题复习空间角的求法(三)

立体几何专题复习-----空间角的求法(三) (一)异面直线所成的角: 定义:已知两条异面直线a,b,经过空间任一点0作直线a //a,b //b, a ,b■所成的角的大小与点0的选择无关,把a,b?所成的锐角(或直角)叫异面直线a,b所成的角(或夹角)?为了简便,点0通常取在异面直线的一条上? (1)平移法:即根据定义,以“运动”的观点,用“平移转化”的方法,使之成为相交直线所成的角。 (2)异面直线所成的角的范围:(0,—]. 2 (3)异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直?两条异面直线a,b垂直,记作a_b. (4)求异面直线所成的角的方法: 法1:通过平移,在一条直线上找一点,过该点做另一直线的平行线; 法2;找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求+ (二)直线和平面所成的角 1.线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 2.记作:二;3 、范围:0,】1; 当一条直线垂直于平面时,所成的角二 2 即直线与平面垂直; 2 当一条直线平行于平面或在平面内,所成角为二二0。 3.求线面角的一般步骤: (1)经过斜线上一点作面的垂线;(2)找出斜线在平面内的射影,从而找出线 I 面角;(3)解直角三角形。cos^=L,sin日 l l (三)二面角 1.二面角的平面角: (1)过二面角的棱上的一点O分别在两个半平面内作棱的两条垂线 OA,OB,则AOB叫做二面角〉-丨- 一:的平面角. (2)一个平面垂直于二面角〉-丨- 1的棱丨,且与两半平面交线分别为0A,0B,0 为垂足,则.A0B也是〉-丨- 1的平面角* 说明:(1)二面角的平面角范围是[0:,180打; (2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平

高考数学专题复习立体几何专题空间角

立体几何专题:空间角 第一节:异面直线所成的角 一、基础知识 1.定义: 直线a 、b 是异面直线,经过空间一交o ,分别a ?//a ,b ?//b ,相交直线a ?b ?所成的锐角(或直 角)叫做 。 2.范围: ?? ? ??∈2,0πθ 3.方法: 平移法、问量法、三线角公式 (1)平移法:在图中选一个恰当的点(通常是线段端点或中点)作a 、b 的平行线,构造一个三角形,并解三角形求角。 (2)向量法: 可适当选取异面直线上的方向向量,利用公式b a = ><=,cos cos θ 求出来 方法1:利用向量计算。选取一组基向量,分别算出 b a ? 代入上式 方法2:利用向量坐标计算,建系,确定直线上某两点坐标进而求出方向向量 ),,(111z y x a = ),,(222z y x b =2 2 22222 1 2 12 12 12121cos z y x z y x z z y y x x ++++++= ∴θ (3)三线角公式 用于求线面角和线线角 斜线和平面内的直线与斜线的射影所成角的余弦之积等于斜线和平面内的直线所成角的余弦 即:θθθcos cos cos 2 1= 二、例题讲练 例1、(2007年全国高考)如图,正四棱柱 1111ABCD A B C D -中, 12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为 例2、在长方体ABCD-A 1B 1C 1D 1中,已知AB=a ,BC=)(b a b >,AA 1= c ,求异面直线D 1B 和AC 所成 的角的余弦值。 方法一:过B 点作 AC 的平行线(补形平移法) A B 1 B 1 A 1D 1 C C D

第2讲 立体几何中的空间角问题

第2讲 立体几何中的空间角问题 高考定位 以空间几何体为载体考查空间角(以线面角为主)是高考命题的重点,常与空间线面关系的证明相结合,热点为空间角的求解,常以解答题的形式进行考查,高考注重以传统方法解决空间角问题,但也可利用空间向量来求解. 真 题 感 悟 (2017·浙江卷)如图,已知四棱锥P -ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点. (1)证明:CE ∥平面P AB ; (2)求直线CE 与平面PBC 所成角的正弦值. 法一 (1)证明 如图, 设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点, 所以EF ∥AD 且EF =1 2AD , 又因为BC ∥AD ,BC =1 2AD , 所以EF ∥BC 且EF =BC , 即四边形BCEF 为平行四边形,所以CE ∥BF . 又因为CE ?平面P AB ,BF ?平面P AB , 因此CE ∥平面P AB . (2)解 分别取BC ,AD 的中点为M ,N , 连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点,

在平行四边形BCEF 中,MQ ∥CE . 由△P AD 为等腰直角三角形得PN ⊥AD . 由DC ⊥AD ,N 是AD 的中点得BN ⊥AD . 因为PN ∩BN =N ,所以AD ⊥平面PBN . 由BC ∥AD 得BC ⊥平面PBN , 因为BC ?平面PBC ,所以平面PBC ⊥平面PBN . 过点Q 作PB 的垂线,垂足为H ,则QH ⊥平面PBC .连接MH ,则MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1. 在△PCD 中,由PC =2,CD =1,PD =2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =1 4, 在Rt △MQH 中,QH =1 4,MQ =2, 所以sin ∠QMH =2 8, 所以,直线CE 与平面PBC 所成角的正弦值是2 8. 法二 过P 作PH ⊥CD ,交CD 的延长线于点H .不妨设AD =2,∵BC ∥AD ,CD ⊥AD ,则易求DH =1 2,过P 作底面的垂线,垂足为O ,连接OB ,OH ,易得OH ∥BC ,且OP ,OB ,OH 两两垂直.故可以O 为原点,以OH ,OB ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示. (1)证明 由PC =AD =2DC =2CB ,E 为PD 的中点,则可得: D ? ????-1,12,0,C ? ????-1,32,0,P ? ????0,0,32,A ? ????1,12,0,B ? ? ???0,32,0,E ? ?? ??-12,14,34,

立体几何专题空间几何角和距离的计算

立体几何专题:空间角和距离的计算 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值。 B 1 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角,(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ;(2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小; D 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2,(1)求直线D 1F 和AB 和所成的角;(2)求D 1F 与平面AED 所成的角。 1 2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB , AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角 的大小。 B 1

三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点,(1)证明AB 1∥平面DBC 1;(2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小。 B 1 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5,(1)求面SCD 与面SBA 所成的二面角的大小;(2)求SC 与面ABCD 所成的角。 B C 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小。 1 四 空间距离计算 (点到点、异面直线间距离)1.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,P 是BC 的中点,DP 交AC 于M ,B 1P 交BC 1于N ,(1)求证:MN 上异面直线AC 和BC 1的公垂线;(2)求异面直线AC 和BC 1间的距离; C 1 A

立体几何二面角5种常见解法

立体几何二面角大小的求法 二面角的类型和求法可用框图展现如下: 一、定义法: 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。 A P H

二、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。 例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. p A B L H A B C D A 1 B 1 C 1 D 1 E O

例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小 例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小. 图4 B1 A α β A1 B L E F

立体几何之空间夹角

第26练“空间角”攻略 [题型分析·高考展望]空间角包括异面直线所成得角,线面角以及二面角,在高考中频繁出现,也就是高考立体几何题目中得难点所在.掌握好本节内容,首先要理解这些角得概念,其次要弄清这些角得范围,最后再求解这些角.在未来得高考中,空间角将就是高考考查得重点,借助向量求空间角,将就是解决这类题目得主要方法. 体验高考 1.(2015·浙江)如图,已知△ABC,D就是AB得中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′—CD—B得平面角为α,则() A.∠A′DB≤α B.∠A′DB≥α C.∠A′CB≤α D.∠A′CB≥α 2.(2016·课标全国乙)平面α过正方体ABCD—A1B1C1D1得顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角得正弦值为() A、B、\f(2) 2 C、 3 3D、 3.(2016·课标全国丙)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC得中点. (1)证明MN∥平面PAB; (2)求直线AN与平面PMN所成角得正弦值. 高考必会题型 题型一异面直线所成得角 例1在棱长为a得正方体ABCD-A1B1C1D1中,求异面直线BA1与AC所成得角. 变式训练1(2015·浙江)如图,三棱锥A—BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别就是AD,BC得中点,则异面直线AN,CM所成得角得余弦值就是________. 题型二直线与平面所成得角 例2 如图,已知四棱锥P-ABCD得底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH就是四棱锥得高,E为AD得中点.(1)证明:PE⊥BC; (2)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角得正弦值. 变式训练2 如图,平面ABDE⊥平面ABC,△ABC就是等腰直角三角形,AB=BC=4,四边形ABDE就是直角梯形,BD∥AE,BD⊥BA,BD=错误!AE=2,点O、M分别为CE、AB得中点. (1)求证:OD∥平面ABC;(2)求直线CD与平面ODM所成角得正弦值;

立体几何-空间角题型

立体几何-空间角求法题型 空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。空间角是线线成角、线面成角、面面成角的总称。其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。 空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。下面针对几何法举例说明。 一、异面直线所成的角: 【例】如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =, 12AA =。E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。求直线1EC 与1FD 所成的角的余弦值。 解:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。 在Rt △BE 1F 中, 2222115126E F E F BF = += += 。 在Rt △D 1DE 1中, 222221111112 2 2 13214 D E DE DD AE AD DD =+=++=++= 在Rt △D 1DF 中,22 11222222124224 FD FD DD CF CD DD =+=++=++= 在△E 1FD 1中,由余弦定理得:

222111111111cos 2D E FD E F E D F D E FD +-∠==?? ∴直线1EC 与1FD 所成的角的余弦值为 14 。 可见,“转化”是求异面直线所成角的关键。平移线段法,或化为向量的夹角。 一般地,异面直线l 1、l 2的夹角的余弦为: cos AC BD AC BD β?=?u u u r u u u r u u u r u u u r 。 二、线面角 【例】已知直三棱柱111,,ABC A B C AB AC F -=为1BB 上一点, 12,BF BC a FB a ===。 (1)若D 为BC 的中点,E 为AD 上不同于A D 、的任意一点,证明:1EF FC ⊥; (2)若113A B a =,求1FC 与平面11AA B B 所成角的正弦值。 提示:(1)转证线面垂直;证明FC1与面ADF 垂直(2)sin θ=。 三、二面角的求法: 几何法:二面角转化为其平面角,要掌握以下三种基本做法: ①直接利用定义,图(1)。 ②利用三垂线定理及其逆定理,图(2)最常用。 ③作棱的垂面,图(3)。 A B F C E 1 A 1 B 1 C D

空间角的几何求法

空间角的几何求法 一、 异面直线所成角(线线角)范围: (0, ]2 π θ∈ 先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得。 【典例分析】 例1. 已知多面体ABCDE 中,AB ⊥平面ACD ,DE ⊥平面ACD ,AC = AD = CD = DE = 2,AB = 1,F 为CD 的中点. (1)求证:AF ⊥平面CDE ; (2)求异面直线AC ,BE 所成角余弦值; 【变式】在长方体中,,,则异面直线与所成角的余弦值为。 二、直线与平面所成角(线面角)范围:[0,]2 π θ∈ 【典例分析】 例1.如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°, A 1A =4,C 1C =1,A B =B C =B 1B =2. (1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值. 【变式】如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ; (2)求直线BD 与平面PCD 所成的角的大小; 1111ABCD A B C D -1AB BC ==13AA =1AD 1DB

例2. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2, M 为PC 的中点。 (1)求证:BM∥平面PAD ; (2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ; (3)求直线PC 与平面PBD 所成角的正弦。 【变式】如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点, 且AC BC a ==,π02VDC θθ? ?=<< ?? ?∠. (1)求证:平面VAB ⊥平面VCD ; (2)试确定角θ的值,使得直线BC 与平面VAB 所成的角为π 6 . 三、平面与平面所成角(面面角)范围:[0,]θπ∈ (1)定义法:当点A 在二面角α-λ-β的棱λ上时,可过A 分别在α、β内作棱λ的 垂线,AB 、AC ,由定义可知∠BAC 即为二面角α-λ-β的平面角。 (2)三垂线法:当点A 在二面角α-λ-β的一个面α内时,可作AO ⊥β于O , 再作OB ⊥λ于B ,连结AB ,由三垂线定理可得AB ⊥λ, 故∠ABO 即为二面角α-λ-β的平面角。 (3)垂面法:当点A 在二面角α-λ-β内时,可作AB ⊥α于B ,AC ⊥β于C , 设1过AB 、AC 的平面与λ交于点O ,连结OB 、OC ,可证平面, ABOC 是λ的垂面,则λ⊥OB ,λ⊥OC ,∠BOC 即为二面角α-λ-β的平面角。 (4)射影面积法:原 射影S cos S = α 【典例分析】 l a b c V A C B

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6. (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111AB C A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

相关文档
最新文档