食品化学复习笔记

食品化学复习笔记
食品化学复习笔记

淀粉

淀粉的特性:

淀粉在植物细胞内以颗粒状态存在,故称淀粉粒。

形状:圆形、椭圆形、多角形等。

大小:0.001-0.15毫米之间,马铃薯淀粉粒最大,谷物淀粉粒最小。

晶体结构:用偏振光显微镜观察及X-射线研究,能产生双折射及X衍射现象。

未糊化前,淀粉分子间以氢键结合,成放射状微晶束形式。

淀粉的结构:

直链淀粉:由D-吡喃葡萄糖通过α-1,4糖苷键连接起来的链状分子。

支链淀粉:由D-吡喃葡萄糖通过α-1,4和α-l,6两种糖苷键连接起来的带分枝的复杂大分子

淀粉的性质:

物理性质:白色粉末在,热水中融溶胀。纯支链淀粉能溶于冷水中,而直链淀粉不能,直链淀粉能溶于热水。

化学性质:无还原性;遇碘呈蓝色,加热则蓝色消失,冷后呈蓝色;水解(酶解,酸解)。

淀粉的糊化:

β-淀粉膨润现象α-淀粉

β-淀粉:具有胶束结构的生淀粉称为β-淀粉。

α-淀粉:指经糊化的淀粉。

膨润现象:β-淀粉在水中经加热后,部分胶束溶解而形成空隙,水分子浸入与部分淀粉分子进行结合,胶束逐渐被溶解,空隙逐渐扩大,淀粉粒因吸水,

体积膨胀数十倍,生淀粉的胶束即行消失的现象。

淀粉粒在适当温度下,在水中溶胀,分裂,胶束则全部崩溃,形成均匀的糊状溶液的过程被称为糊化。本质是微观结构从有序转变成无序。

糊化作用的三个阶段:

a可逆吸水阶段:水分进入淀粉粒的非晶质部分,体积略有膨胀,此时冷却干燥,可以复原,双折射现象不变。

b不可逆吸水阶段:随温度升高,水分进入淀粉微晶间隙,不可逆大量吸水,结晶“溶解”。

c淀粉粒解体阶段:淀粉分子全部进入溶液。

糊化温度:指双折射消失的温度,不是一个点,而是一段温度范围,即糊化开始的温度和糊化完成的温度表示淀粉糊化温度。

影响糊化的因素:

?结构:直链淀粉小于支链淀粉。

?Aw:Aw提高,糊化程度提高。

?糖:高浓度的糖水分子,使淀粉糊化受到抑制。

?盐:高浓度的盐使淀粉糊化受到抑制;(马铃薯淀粉)

?脂类:抑制糊化。

?酸度:在pH<4时,淀粉水解为糊精,粘度降低。在pH4-7时,几乎无影响。

在pH =10时,糊化速度迅速加快。

?淀粉酶:使淀粉糊化加速。新米(淀粉酶酶活高)比陈米更易煮烂。

淀粉的老化:

老化:α-淀粉溶液经缓慢冷却或淀粉凝胶经长期放置,会变为不透明甚至产生沉淀的现象。

实质是糊化的后的分子又自动排列成序,形成高度致密的结晶化的不溶解性分子粉末。

影响淀粉老化的因素

?温度:2-4℃,淀粉易老化。>60 ℃或<-20 ℃,不易发生老化。

?含水量:含水量30~60%,易老化。含水量过低(<10%)或过高,均不易老化。

?pH值:在偏酸(pH 4以下)或偏碱的条件下也不易老化。

?结构:直链淀粉易老化。聚合度n 中等的淀粉易老化。淀粉改性后,不均匀性提高,不易老化。

?共存物的影响:脂类和乳化剂可抗老化;多糖(果胶例外)、蛋白质等亲水大分子,有抗老化作用。

改性/变性淀粉:

第二节油脂在加工和贮藏中的氧化反应

?酸败:油脂在食品加工和贮藏期间,因空气中的氧气、光照、微生物、酶等的作用,产生令人不愉快的气味,苦涩味和一些有毒性的化合物的现象。

光敏氧化:是不饱和双键与单线态氧直接发生的氧化反应。

酶促氧化:

?脂肪氧合酶(Lox):专一性地作用于具有1,4-顺、顺-戊二烯结构的脂肪酸的中心亚甲基处。

?酮型酸败(β-氧化作用):由脱氢酶、脱羧酶、水合酶等引起的饱和脂肪酸的氧化反应。

?氢过氧化物分解产生的小分子醛、酮、醇、酸等具有令人不愉快的气味即哈喇味,导致油脂酸败。

影响油脂氧化速率的因素:脂肪酸及甘油酯的组成;氧;温度:不饱和脂肪酸> 饱和脂肪酸;表面积;助氧化剂;水分;光和射线:促使氢过氧化物分解引发游离基;抗氧化剂:延缓和减慢油脂氧化速率。

抗氧化剂的抗氧化机理:自由基清除剂;1O2淬灭剂;金属螯合剂;氧清除剂;ROOH 分解剂;酶抑制剂;酶抗氧化剂;紫外线吸收剂

?。

影响蛋白变性的因素:

物理因素:a 加热

蛋白热变性的一般规律:大多数蛋白质在45~50℃时开始变性,但也有些蛋白的Td可以达到相当高的温度,如大豆球蛋白93℃、燕麦球蛋白108℃等。当加热温度在临界温度以上时,每提高10℃,变性速度提高600倍。

一般温度越低,蛋白质的稳定性越高。但也有例外,如肌红蛋白在30℃时稳定性最好,随着温度降低其稳定性也降低。

b 冷冻

蛋白质可以发生冻结变性。其原因一方面是由于蛋白质周围的水与其结合状态发生变化,这种变化破坏了一些维持蛋白原构象的力,同时由于水保护层的破坏,蛋白质的一些基团就可以发生直接的接触和相互作用,导致蛋白质发生聚集或原来的亚基发生重排。另一方面,由于大量水形成冰后,剩余的水中无机盐浓度大大提高,这种局部的高浓度盐也会使

蛋白质发生变性。

c 流体静压

压力也可使蛋白变性,但一般在25℃下要求100~1200MPa的比较高的压力压力诱导蛋白质变性的原因主要是蛋白质的柔性和可压缩性。

压力导致的蛋白变性通常伴随着30~100mL/mol的体积减少同时是高度可逆的。由于高流体压力可以使微生物细胞膜及细胞内的蛋白发生变性,从而导致微生物死亡,因此现在高流体静压加工正在成为食品加工可以用于灭菌和蛋白质的凝胶。

d 剪切力

一些食品在加工过程,如挤压、打擦、捏合、高速均质等,会产生高的剪切力。这样的剪切力加上高温能使蛋白质发生不可逆的变性。通常剪切速度越大,蛋白质的变性程度越大。

e 电磁辐射

电磁辐射是一种能量,可以通过改变分子内链段间及亚基间的结合状态而使蛋白分子变性;如果仅仅影响蛋白分子的构象,只发生变性而不会导致营养价值的改变;如果能量高至可以通过氧化、共价键断裂、离子化、形成自由基等形式使氨基酸残基发生变化,便会导致营养价值的降低。

f 界面性质

改变蛋白质水溶液的界面性质,也可以加速或直接使蛋白质分子发生变性。

一些蛋白质不具有明显的疏水区和亲水区,或者它们的结构是被二

硫键稳定这的,这类蛋白质由于不

易吸附到界面而较耐界面变性。

化学因素a pH值

pH是导致蛋白变性的重要因素,这是因为在极端pH值时,蛋白质分子内的离子基团产生强静电排斥作用,促使蛋白质分子的构象发生变化。

b 无机离子

无机离子特别是高价态的无机离子通过改变蛋白分子的表面性质、改变蛋白分子自身的结构状态而使蛋白变性。阳离子和阴离子均有这种性质,但不同的离子要求不同的浓度。

c 有机溶剂

许多有机溶剂可以导致蛋白质分子发生变性。亲水有机溶剂通过改变蛋白分子表面性质使蛋白分子变性,疏水有机溶剂由于进入蛋白分子内部而改变蛋白分子构象,从而导致变性。

d 有机化合物的水溶液

一些有机化合物在水溶液中可以导致蛋白质分子发生变性。不同种类的有机物使蛋白变性的原因不尽相同。1、断裂蛋白分子间或分子内的氢键(尿素和胍盐);

2、在蛋白质的疏水区和亲水环境之间起着媒介作用(十二烷基磺酸钠(SDS))

3、与蛋白质分子强烈的结合,在接近中性pH值时使蛋白质带有大量的净负电荷,从而增加蛋白质内部的斥力,使伸展趋势增大,这也是SDS类表面活性剂能在较低浓度下使蛋白质完全变性的原因。

4、通过还原作用导致蛋白分子中的二硫键破坏(半胱氨酸、抗坏血酸、巯基乙醇、二硫苏糖醇等)

SDS类表面活性剂诱导的蛋白变性是不可逆的。

第五节蛋白质在食品中的功能性质

功能性质:在食品加工、保藏、制备和消费期间影响蛋白质在食品体系中的性能的那些

蛋白质的物理和化学性质。

水化性质、表面性质、结构性质、感观性质

蛋白质的水合性质:蛋白质分子中带电基团、主链肽基团、Asn、Gln的酰胺基、Ser、The和非极性残基团与水分子相互结合的性质。

如分散性湿润性、溶解性、黏度、胶凝作用、乳化和起泡性等,都取决于水-蛋白质的相互作用。

结合过程:A.非水合蛋白质;B.带电基团的最初水合;C.在接近极性和带电部位形成水簇;D.在极性表面完成水合;E.非极性小区域的水合完成单分子层覆盖;F.在与蛋白质缔合的水和体相水之间架桥;G.完成流体动力学水合

膨润性:蛋白质吸水充分膨胀而不溶解,这种水化性质通常叫膨润性。可溶性蛋白:蛋白质在继续水化中被水分散而逐渐变为胶体溶液,具有这种水化特点的蛋白质叫可溶性蛋白质。

蛋白质结合水的能力:当干蛋白质粉与相对湿度为90%-95%的水蒸汽达到平衡时每克蛋白质所结合的水的克数。

氨基酸残基的水合能力:带电的氨基酸残基数目越大,水合能力越大。

蛋白质水合性质的测定方法:相对湿度法(或平衡水分含量法);溶胀法;过量水法;水饱和法

影响蛋白质水合性质的环境因素:

?浓度浓度↑蛋白质总吸水量↑

?pH pH= pI 水合作用最低,高于或低于pI,水合作用增强(净电荷和推斥力增加),pH 9-10时水合能力较大

?温度温度↑蛋白质结合水的能力↓

(变性蛋白质结合水的能力一般比天然蛋白质高约10%)

?盐在低盐浓度(<0.2mol/L)时,离子同蛋白质荷电基团相互作用而降低相邻分子的相反电荷间的静电吸引,从而有助于蛋白质水化和提高其溶解度,这叫盐溶效应。当盐浓度更高时,由于离子的水化作用争夺了水,导致蛋白质“脱水”,从而降低其溶解度,这叫做盐析效应。

持水能力:是指蛋白质吸水并将水保留在蛋白质组织(如蛋白质凝胶、牛肉和鱼肌肉)中的能力。

蛋白质的持水能力与结合水能力呈正相关

溶解度影响因素:

离子强度:离子强度(<0.5)——电荷屏蔽效应

高比例疏水区域~溶解度下降高比例亲水区域~溶解度提高

高离子强度(>1.0)——离子效应

SO42-、F-~盐析,溶解度降低ClO4-、SCN-~盐溶,提高溶解度,导致沉淀阴离子提高蛋白质溶解度的能力按下列顺序:SO2-4<F-<CI-<Br-<I-<CIO4-<

SCN-;

阳离子降低蛋白质溶解度的能力按下列顺序:NH4+<K+<Na+<Li+<Mg2+<Ca2+。

?温度: 0~40℃温度↑,溶解度↑>40℃温度↑,溶解度一些高疏水性蛋白质,像β-酪蛋白和一些谷类蛋白质的溶解度却和温度呈负相关。

?有机溶剂

导致蛋白质溶解度下降或沉淀:降低水介质的介电常数;提高静电作用力;静

电斥力导致分子结构的展开;促进氢键的形成和反电荷间的静电吸引;

蛋白质切变稀释的原因:

?分子朝着流动方向逐渐取向,使磨擦阻力减少。

?蛋白质的水合范围沿着流动方向形变。

?氢键和其他弱键的断裂导致蛋白质聚集体或网络结构的解离。

影响蛋白质流体粘度特性因素:白质分子固有的特性; 白质-溶剂间的相互作用; 白质-蛋白质间的相互作用

蛋白质分子或颗粒的表现直径:表现直径↑黏度↑

蛋白质的胶凝作用:

?蛋白质的缔合:一般是指蛋白质在亚单位或分子水平上发生的变化。

?聚合或聚集反应:一般是指大的复合物的形成。

聚合或聚集反应:

沉淀作用:是指由于蛋白质的溶解性完全或部分

丧失而引起的聚集反应。

絮凝:是指蛋白质未发生变性时的无规则聚集反应,这常常是因为链间的静电排斥降低而发生的一种现象。

凝结作用:发生变性的无规聚集反应和蛋白质-蛋白质的相互作用大于蛋白质-溶剂的相互作用引起的聚集反应,定义为凝结作用。

凝胶化作用:是指变性的蛋白质分子聚集并形成有序的蛋白质网络结构过程。

凝胶化作用机制:溶胶状态----似凝胶状态-----有序的网络结构状态

凝胶化的相互作用:氢键、静电相互作用——可逆凝胶(明胶)

疏水相互作用——不可逆凝胶(蛋清蛋白)

二硫键——不可逆凝胶(乳清蛋白)

金属离子的交联相互作用

两类凝胶:凝结块(不透明)凝胶:大量非极性氨基酸残基疏水性聚集,不溶性聚集体。不可逆凝胶:聚集和网状结构的形成速度高于变性速度

透明凝胶:少量非极性氨基酸残基;变性时形成可溶性复合物缔合速度低于变性速度;在加热后冷却时才能凝结成凝胶;形成有序的透明的凝胶网状结构

影响蛋白质凝胶化作用的因素:氨基酸残基的类型、pH、蛋白质的浓度、金属离子蛋白质的织构化:

蛋白质的织构化是在开发利用植物蛋白和新蛋白质中要特别强调的一种功能性质。

蛋白质织构化的方法:热凝结和形成薄膜、纤维的形成、热塑性挤压

面团的形成:麦谷蛋白(过度黏结):分子质量大,二硫键(链内、链间),决定面团的弹性、黏合性和抗张强度

麦醇溶蛋白(过度延展):链内二硫键,促进面团的流动性、伸展性和膨胀性。

面筋蛋白质中含有的化学键:

ò氢键:谷氨酰胺、脯氨酸和丝氨酸、苏氨酸:水吸收能力强,有黏性。

ò非极性氨基酸:使蛋白相互聚集、有黏弹性和与脂肪有效结合。

ò二硫键:使面团坚韧。

蛋白质的界面性质:是指蛋白质能自发地迁移至汽-水界面或油-水界面的性质。

具有界面性质的蛋白质必要条件:能否快速地吸附至界面;能否快速地展开并在界上面

再定向;能否形成经受热和机械运动的膜

影响蛋白质界面性质的因素

蛋白质的乳化性质:蛋白质是天然的两亲物质;测定乳化性质的方法:液滴大小分布、乳化活力、乳化能力、乳化稳定性

影响蛋白质乳化作用的因素

?蛋白质的溶解度:正相关

?pH值pH=PI 溶解度小时,降低其乳化作用

pH=PI 溶解度大,增加其他乳化作用

?与蛋白质表面疏水性存在正相关。

?适当热诱导蛋白质变性,可增强其乳化作用。

蛋白质的起泡性质:是指蛋白质在汽---液界面形成坚韧的薄膜使大量气泡并入和稳定的能力。

起泡性质的评价:蛋白质的起泡力;测定泡沫稳定性

影响泡沫形成和稳定性的因素:

有良好起泡力的蛋白质不具有稳定泡沫的能力,而能产生稳定泡沫的蛋白质往往不具有良好的起泡力。

蛋白质的浓度2%一8%,随着浓度增加起泡性增加。

超过10%,气泡变小,泡沫变硬。

温度适当加热处理可提高起泡性能。

过度的热处理则会损害起泡能力。

?pH值pH处于或接近pI时,提高了蛋白质的起泡能力和泡沫稳定性。

在pI时蛋白质的溶解度很低,形成泡沫数量较少(泡沫膨胀率较低),但泡沫的稳定性较高。

?盐盐析时则显示较好的起泡性质。

盐溶时则显示较差的起泡性质。

?糖损害蛋白质的起泡能力,却改进了泡沫的稳定性。

?脂稳定性下降

?搅打过度激烈搅打也会导致泡沫稳定性降低

蛋白质与风味物质的结合

结合方式:

?干蛋白粉:物理吸附范德华力和毛细管作用吸附

化学吸附静电吸附、氢键结合和共价结合。

?液态或高水分食品中蛋白质

非极性配位体与蛋白质表面的疏水性小区相互作用;通过氢键相互作用;静电相互作用;共价键

影响蛋白质与风味结合的因素:

?蛋白质的构象

?水:促进极性挥发物的结合。

?pH :碱性pH比在酸性pH更能促进与风味物的结合。

?热:热变性蛋白质显示较高结合风味物的能力。

?化学改性:化学改性会改变蛋白质的风味物结合性质。

蛋白质的改性:

?采用物理、化学、酶学和基因方法改进蛋白质的功能性质。

化学改性酶法改性

第六节蛋白质在食品加工和贮藏中的物理、化学和营养变化

加热处理对蛋白质的影响:

?蛋白质的一些功能性质发生变化

?破坏食品组织中酶有利食品的品质

?促进蛋白质消化

?破坏抗营养因子

?引起氨基酸脱硫胱酰胺异构化

?有氧存在时加热处理,色氨酸部分受到破坏

?T>200℃,碱性条件下,色氨酸发生异构化

?剧烈热处理引起蛋白质生成环状衍生物

低温处理下的变化

?食品的低温贮藏可延缓或阻止微生物的生长并抑制酶的活性及化学变化。

冷却(冷藏)冷冻(冻藏)

碱处理下的变化

?与热处理同时进行时,对蛋白质的营养价值影响很大。会生成新的氨基酸,如精氨酸碱热条件下,会生成鸟氨酸和尿素。

氧化处理下的变化

?导致蛋白质营养价值的降低,甚至还产生有害物质。对氧化最敏感的是含

硫氨基酸和芳香族氨基酸。

脱水处理下的变化:①传统的脱水方法。②真空干燥。③冷冻干燥。④喷雾干燥。⑤鼓膜干燥。

辐照处理下的变化:含硫氨酸残基和芳香族氨基酸残基容易分解,同时引起多肽链断裂。

机械处理下的变化:对食品中的蛋白质有较大的影响(乳化性能、起泡性、质构性)

7.1.1 酶的定义

酶是生物活细胞产生的一类具有催化功能的蛋白质。(1982年,在生物体内发现了一种具有催化功能的核酸分子即核酸酶RIBOENZYME)。

7.1.2 酶的性质

酶是由生物活细胞产生的有催化功能的蛋白质,只要不处于变性状态,无论在细胞内或细胞外都可发挥催化化学反应的作用。

1、酶与辅酶(辅基的关系):有些酶是结合蛋白质,一般把结合蛋白质的蛋白部分称为酶蛋白,非蛋白质部分称为辅酶。(如:过氧化物酶由酶蛋白和铁卟啉构成)

2、酶的特殊性:酶是一种催化剂,但它和一般的化学催化剂有很大不同,第一,酶的作用具有高度的专一性(键专一性、基团专一性、绝对专一性、立体化学专一性);第二,酶催化的反应都是在较温和的条件下,在接近生物体的体温和接近中性的条件下就能进行;第三,酶的催化效率也比一般催化剂高得多,如一种过氧化氢酶1min内能催化5000000个过氧化氢分子分解为水及O2,而在同样条件下,铁离子的催化效率仅为酶的百万分之一。

7.1.4 酶活力

酶制剂中酶的含量都用酶活力(催化某一特定反应的能力)来表示:

酶活力就是酶催化一定反应的能力,也可说是酶催化反应的速度。酶催化反应的速度可通过测定单位时间内底物能变成产物的数量而得,酶单位都是以酶活力为根据而定义的。国际生化协会酶委员规定,1min内将1μmol的底物转化为产物的酶量定为1个单位,称为标准单位。并规定了酶作用的条件,因标准单位在实际应用时不够方便,故生产上往往根据不同的酶制定各自的酶活力单位,例如蛋白酶以1min内能水解酪蛋白产生1μg酪氨酸的酶量为1个蛋白酶单位;液化型淀粉酶以1h内能液化1g淀粉的酶量为1个单位等等。在测定酶活力时,对反应温度、PH值、底物浓度、作用时间都有统一规定,以便同类产品互相比较。

酶单位并不直接反映出酶的绝对数量,它只不过是一种相对比较的依据。

7.2 影响酶促反应的因素

7.2.1 温度

一般而言,温度越高化学反应越快,但酶是蛋白质,若温度过高会发生变性而失去活性,因而酶促反应一般是随着温度升高反应加快,直至某一温度活性达到最大,超过这一最适温度,由于酶的变性,反应速度会迅速降低。大多数酶,在30-40℃范围内显示最高活性。

热对酶活性的影响对食品很重要,如,绿茶是通过把新鲜茶叶热蒸处理而得,经过热处理,使酚酶、脂氧化酶、抗坏血酸氧化酶等失活,以阻止儿茶酚的氧化来保持绿色。红茶的情况相反,是利用这些酶进行发酵来制备的。

7.2.2 pH值

酶是蛋白质,在极端的酸性或碱性条件下会变性而完全失去活性,大多数酶的最适PH值为4.5-8.0范围内。

7.2.3 水分活度

水能影响食品中酶反应的速度,通常可用降低食品中水分含量的方法来阻止酶等作用引起的变质。

7.2.4 酶浓度

对大多数酶促反应来说,在适宜的温度、PH值和底物浓度一定的条件下,反应速度至少在初始阶段与酶的浓度成正比。如果反应继续进行,则速度将降低,这主要是因为底物浓度下降及终产物对酶的抑制之故。

7.2.5 底物浓度

酶催化反应可用下式表示:

E + S= ES E + P 式中E、S、ES、P分别代表酶、底物、酶—底物络合物和产物,可推出下列公式(米氏方程):

V = Vmax[S]/(Km+[S])式中:V —测定的反应初速度Vmax —最大反应速度公式用图表示,由公式及图可得出下列结论:

当底物浓度增加时,酶反应的速度趋于一个极限值,即Vmax。

当V=1/2Vmax时则1/2Vmax=Vmax [S]/(Km+[S]),或Km=[S],

即米氏常数相当于反应速度为最大速度一半时的底物浓度。Km是酶和底物亲和力的度量,Km值小表示底物对酶的亲和力大,酶催化反应的速度也大。Km是酶学中的一个重要常数,它的倒数1/Km叫做”亲和力常数”。

7.2.6 抑制剂

有些物质能使酶活性中心的化学性质发生改变,导致酶活力下降或丧失,这种现象称为酶的抑制,引起酶抑制的物质叫抑制剂。

1、竞争性抑制剂

某些物质与底物的结构很相似,它们会与酶活性部位结合,造成与基质竞争而起到抑制酶反应的作用。如丙二酸对琥珀酸脱氢酶的抑制。当底物浓度增加时,可以减少竞争性抑制剂对酶的抑制作用。因反应产物的结构往往类似于底物,所以它是常见的竞争性抑制剂。

2、非竞争性抑制剂

某些物质并不与酶的活性部位结合,而是结合于其它部位,从而引起某些变化,造成抑制。增加底物并不能消除抑制剂的影响,重金属、螯合剂、氧化剂、氰化物及能与—SH作用的物质都属于非竞争性抑制剂。

酶抑制剂的种类很多,但由于毒性、对食品风味的影响以及价格等问题,使得抑制剂在食品工业中的实际应用寥寥无几。

7.2.7 激活剂

与抑制剂相反,把掩蔽酶活性部位的抑制剂以化学法除去,若能使酶还原到原来的性能,则酶被活化。此外还可在酶的其它部分结合活化剂,使酶的立体结构变化而活化。

食品化学模拟试卷5范文

《食品化学》试卷1卷 一、填空题(20分) 1食品的质量属性包括、、、和卫生安全性等。 2 乳糖在的作用下,水解为和。 3 矿物质在生物体内的含量在以上称为常量元素。常见的金属元素污染有 、、、。 4 降低食品水分活度的方法有、、、、。 5国际酶命名与分类委员会将酶分成、、、、和。 6广义的新陈代谢包括物质在体内的的、和的整个过程 7 生物体内的呼吸链包括、和。 8 一分子的葡萄糖经EMP-TCA途径共产生相当于个ATP的能量,其中酵解过程 产生个ATP,丙酮酸形成乙酰辅酶A过程产生个ATP, 乙酰辅酶经TCA循环产生个ATP。 9植物在生长发育过程中的主要生理过程包括、和。 10 从食品学的意义上讲,果蔬的成熟是指。 11 评价风味的方法有和。 12 从生理学角度看,基本味感包括、、和。 13味的相互作用包括、、和。 14 鱼的腥臭味的主要成分是,牛乳的主体风味物质是。 15 食品中的色素分子都由和组成,色素颜色取决于其。 16写出化学名:BHA ;BHT ;PG ;PA 。 17 核果和仁果中常见的植物毒素是;萝卜中常见的植物毒素是;不新鲜的鱼类中常见的能导致人过敏的毒素是。 18霉变的甘蔗中有种能使人手舞足蹈的毒素,它是。 二、判断题(1分×10) 1麦芽酚是美拉德反应产物,它具有特殊的焦糖风味() 2 人体对植物食品中血红素型铁的吸收不受植酸和磷酸影响() 3 氧化1g糖所释放的能量比氧化1g蛋白质所释放的能量高() 4 采收后的水果蔬菜的组织细胞内不存在同化作用() 5 大多数的水果和蔬菜可以在0℃附近的温度下贮藏() 6 市场上销售的鸡精是蛋白质分解产生的小肽、肌苷酸、谷氨酸等混合物() 7可见光区的波长是200-400nm,紫外区的波长是400-800nm () 8含有花青素的水果罐装时最好使用涂料罐或玻璃罐包装() 9生物膨松剂又称为发酵粉;复合膨松剂又称为酵母。() 10六六六属于有机氯农药,敌敌畏属于有机磷农药()

食品化学实验指导书(第二版)

食品化学实验指导书 编写整理人员: 丁长河鲁玉杰王争艳布冠好杨国龙田双岐河南工业大学粮油食品学院 2013年4月

实验一食品水分活度的测定 一、实验目的 掌握食品水分活度仪器测量方法。 二、实验原理 样品在密闭空间与空气水汽交换平衡后,其分水活度近似等于密闭空间空气的相对湿度。 三、实验材料与仪器 水分活度仪LabSwift(瑞士Novasina)。 测量样品:小麦、面粉。 四、实验步骤 1.接上电源线,将电源线插头插入带电插座内; 2.按MENU键开机,仪器自动运行“WARM UP”模式,经几分钟后,稳定并显示出测量腔的温度和水分活度值; 3.将标准品放入测量腔内(体积不要超过塑料器皿的上边缘),盖上仪器的上盖,默认模式为F模式,按MENU键开始测量; 4.仪器显示器上方会显示数据,下方会显示ANALYSIS及温度,下方数字会闪烁; 5.待仪器到达分析终点后会发出蜂鸣声并所有数字停止闪烁,此时即为测定平衡终点; 6.按MENU键,然后按ACTURAL键至屏幕显示CALIB页面,再按MENU 键进入校正程序; 7.仪器页面此时会显示数字,下面会有CAL XX字样,XX代表着放进去的标准品的浓度,然后按MENU键; 8.仪器页面会显示0000提示输入密码,按ACTURAL及MENU键输入8808,具体是按ACTURAL选择数字,按MENU确认; 9.密码输入后仪器显示为CAL NO,此时按ACTURAL使之变为CAL YES,按MENU确认,仪器会显示WAITING至DONE,此时校正结束,仪器页面显示水活度值; 10.将待测样品放入塑料盒(去掉塑料盒的盖子)后放入测量腔内,盖上盖子,默认模式仍然是F,仪器自动进行测量; 11.仪器显示器上方会显示数据,下方会显示ANALYSIS及温度,下方数字会闪烁; 12.待仪器到达分析终点后会发出蜂鸣声并所有数字停止闪烁,此时即为测定平衡终点; 13.分析结束后,长按MENU键仪器会显示OFF,并自动关机,拔下电源线,将仪器及电源线放入便携箱内。 注意:实际试验操作过程中,由于设备已校准,第3-9步不需要操作。

食品化学2007(1)考研试卷

暨南大学2007年研究生考试试题及答案 一、名词解释(每题2.5分,共10分) 1.多烯色素:含有40个碳的多烯四粘,由异戊二烯经头尾或尾尾相连而构成 2.低聚肽:肽键数目少于10个的肽类聚合物 3.味觉相乘:某物质的味感会因为另一味感物的存在而显著加强,这种现象叫味的相乘作用 4.反式脂肪酸:当链中碳原子以双键连接时,脂肪酸分子可以是不饱和的。当一个双键形成时,这个链存在两种形式:顺式和反式 二、填空题(每空1分,共30分) 1.食品中的水分根据其存在状态大致可分为结合水和自由水。 2.在下列几种胶中,属于微生物来源的食品胶有黄原胶 G ELLAN胶、 属于植物来源的食品胶有阿拉伯胶瓜尔豆胶:阿拉伯胶、黄原胶、瓜尔豆胶、Gellan胶、明胶。 3.用作脂肪模拟品的两类大分子物质分别为蛋白质和碳水化合物。 4.使蔗糖甜味显著增强的取代蔗糖为三氯蔗糖。 5. 列出能改善肠道菌群平衡的低聚糖两种低聚木糖和低聚果糖。 6.面筋所含的主要蛋白质为麦谷蛋白和麦醇溶蛋白。 7.具有增香作用的物质有麦芽酚和异麦芽酚等。 8.食品中应用广泛的改性纤维素有三种,请列出两种:羧甲基纤维素、甲基纤维素。 9. 在碱性条件下,一些L-氨基酸加热容易形成醛和酮。 10.制作方便面时,通常添加K2CO3,它可与面粉中麦谷蛋白反应而使面体呈金黄色。 11.含金属元素较多的食物称成碱食物。 12.目前使用较多的油溶性抗氧化剂主要有TBHQ BHA(列出2种)。 13.蛋白质中,氨基酸氧化可形成砜和亚砜。 14.新鲜大蒜、葱和芥菜的组织被破坏后会产生刺激性气味,这些物质的共同特点是含有硫元素。 15.食物中能够增加钙、铁等生物有效性的成分主要有(列2种)植酸草酸。 16.抑制蛋白质起泡的物质主要有酸和碱。 17.甜味和苦味的基准物质分别为蔗糖和奎宁。 18. 某些调配型酱油中含有的有害物质主要为三氯丙醇,它是由于酸水解含油植物蛋白而产生的一种副产物。

中国农业科学院食品化学模拟试卷(三套)附

食品化学模拟试卷(三套)附答案 《食品化学》模拟试卷Ⅰ 一、填空题(2分×21) 1、食品中的结合水根据结合程度可以分为:、、。 2、玻璃态时,体系黏度_______而自由体积_______,受扩散控制的反应速率_______;而在橡胶态时,其体系黏度_______而自由体积_______,受扩散控制的反应速率_______。 3、蛋白质溶解度的常用表示方法为、、。 4、甲壳低聚糖在食品工业中的应用:作为人体肠道的_______、功能性_______、食品_______、果蔬食品的_______、可以促进_______的吸收。 5、食物中的天然苦味化合物,植物来源的主要是_______、_______、_______等,动物性的主要是_______。 二、名词解释(4分×6) 1、滞后现象 2、蛋白质变性作用 3、淀粉的糊化 4、必需脂肪酸 5、酶促褐变 6、食品添加剂 三、简答(44分) 1、什么是水分吸着等温线?形状有哪些?影响因素有哪些?水分吸着等温线的意义有什么?(12分) 2、简述油脂的特点及其在食品工业上的作用。(10分) 3、新鲜肉采用什么方法包装较好,为什么?(10分) 4、为什么多糖具有一定的溶解性?食品体系中的多糖主要起什么作用?(12分) 四、论述(20分×2) 1、试述非酶褐变对食品质量的影响。 2、简述脂类经过高温加热时的变化及对食品的影响。 《食品化学》模拟试卷Ⅰ答案 一、填空题(2分×21) 1、化合水;邻近水;多层水 2、较高;较小;明显降低;显著增大;增大;加快 3、蛋白质分散指数(PDI);氮溶解指数(NSI);水可溶性氮(WSN)

食品化学实验指导2016.3.2

食品化学实验讲义 2016.3

实验注意事项 1. 实验用品均用洗涤剂刷洗,自来水冲洗7-10遍。 2.实验用水均为去离子水。 3. 实验废物去除水后,倒入垃圾桶中。 4. 实验废水没有毒、对环境没有污染的可以倒入下水道;对环境有污染的分类倒入废液瓶中。废液分类:有毒废液,有机废液,含卤素废液,无机废液,碱液,酸液,含重金属废液(重金属指的是原子量大于55的金属。重金属约有45种,一般都是属于过渡元素。如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等)。 5. 实验完毕后,清洗自己组的实验用具,并摆放整齐。 6. 配制好的剩余试剂留给下一个班使用,不要倒掉。 7. 不要用滤纸做称量纸,试剂会粘在滤纸上。 重金属指比重大于5的金属(一般指密度大于4.5克每立方厘米的金属)。

实验一碳水化合物功能性质测定 1 淀粉糊化度和老化度——碘量法 此法利用了淀粉糊化后容易生成糖的性质,以加热试样至完全糊化时所生成的糖量为基准,与未加热过的原始试样所生成的糖量比较,其百分比即为“糊化度”。测定生成的糖采用次碘酸法,是根据醛糖在碱性条件下被碘氧化的原理进行测定的。因为碘溶液的消耗量与糖生成量成正比,所以此法不计算糖的生成量,而是根据碘溶液的消耗量求得糊化度。 (1)原理对于淀粉性食品,糊化度的高低是衡量其生熟程度的一个重要指标。糊化度的高低可用α-化度来表示。淀粉在糖化酶的作用下,可转化为葡萄糖。其糊化度越大,α-化度越高,转化生成葡萄糖的量就越多。用碘量法测定转化葡萄糖的含量,根据滴定结果计算α-化度。 (2)试剂 ①0.1 mol/L硫代硫酸钠标准溶液。称取五水合硫代硫酸钠25.00 g,溶于约200 mL水中,稀释 至1000 mL,放置2-3 d,稳定后备用。 ②0.1 mol/L碘标准溶液。称取碘化钾20 g,溶于约150 mL水中。再加入12.7g碘,使其溶解, 用1000 mL容量瓶定容,摇匀,保存于棕色瓶中,置避光处待用。 ③10%硫酸溶液(大约10ml浓硫酸滴加到90ml水中,定容到100ml)。 ④⑤1mol/L盐酸溶液(9ml浓盐酸滴加到90ml水中,定容到100ml)。 ⑤⑥0.1 mol/L氢氧化钠溶液:4g氢氧化钠加水溶解,定容到100ml。用经煮沸排去二氧化碳的 水进行配制。 ⑤淀粉指示剂:称取1 g可溶性淀粉,加入20 mL水,充分混匀,边搅拌边加入到约80 mL的沸 水中,搅拌,加热煮沸2-3 min,放冷,再加氯化钠约20 g,使之溶解。如果溶液混浊,则需过滤。 (3)操作步骤 ①分别称取粉碎后过60目筛的淀粉质样品1.00g,置于2个具塞三角瓶A, B中,分别加入50mL水, 摇匀。另取一个具塞三角瓶C,不加试样,加水50 mL作空白试验。 ②将A瓶放在沸水浴中加热20 min,然后迅速冷却至20℃(在夏天高温时,B,C两瓶同样和A迅 速在水中冷却到20℃)。向各瓶分别加入100mg糖化酶,摇匀后一起置于37℃恒温水浴中保温1 h,在保温过程中随时摇动。取出后,立即分别加入1mol/L HCl溶液2mL,终止糖化。将各三角瓶内反应物移入容量瓶,定容至100 mL后,过滤备用。 ③各取滤液10mL,分别置于250 mL碘量瓶中,各准确加入0.1 mol/L碘液10 mL,水100mL,以及 0.1 mol/L氢氧化钠溶液18 mL,盖严放置15min。然后分别迅速加入 10 %硫酸2 mL,以0.1 mol/L 硫代硫酸钠标准溶液滴定,当碘残留量很少时(溶液呈黄色时),加淀粉指示剂2-3滴,至显示无色为终点,记录所消耗的硫代硫酸钠体积。 (4)计算 α-化度=(V0-V2)/(V0-V1)×100% 式中: V0为滴定空白溶液所消耗硫代硫酸钠的体积,mL;(理论上应为20ml左右) V1为滴定糊化样品所消耗硫代硫酸钠的体积,mL; V2为滴定未糊化样品所消耗硫代硫酸钠的体积,mL。 (5)说明 ①此法用于淀粉转化为糊精的转化率的测定。 ②一般膨化食品的α-化度为98%-99%,方便面为86%,速溶代乳粉为90%-92%,生淀粉为15%。 ④酶糖化时的条件,如加酶量、糖化温度与时间等对测定结果均有影响,操作时应适当控制。 2 美拉德反应能力测定 ①材料。葡萄糖、蔗糖、赖氨酸、甘氨酸、或脯氨酸。

华南农大考研资料食品化学总复习

重要单糖: 三四糖: 赤藓糖甘油醛二羟丙酮 重要的戊醛糖: 核糖木糖脱氧核糖阿拉伯糖重要的已醛糖

葡萄糖半乳糖甘露糖 果糖山梨糖醇山梨糖 低聚糖 麦芽糖(还)乳糖(还)蔗糖(非) 纤维二糖 还原性看有没醛基 5 褐变风味 麦芽酚和乙基麦芽酚是焦糖化产物。具有强烈的焦糖气味,同时也是甜味增强剂。糖的褐变还能产生其它挥发性的风味物质。 3.4.2.1 淀粉粒结构 在显微镜下仔细观察淀粉粒,可看到表面有轮纹结构,各轮纹围绕的一点叫“脐”。 在偏光显微镜下观察,出现黑色的十字将淀粉颗粒分成四个白色区域,这种现象称为偏光十字。

直链淀粉结构 由D-葡萄糖以a-1,4苷键连接而成的线型聚合物(聚合度200~980),在溶液中,可取螺旋结构、部分断开结构和不规则的卷曲结构P75 支链淀粉(Amylopectin):葡萄糖通过-(14)糖苷键连接构成主链,支链通过-(16) 糖苷键与主链连接,是一种非常大的、支化度很高的大分子,分子量为107~5x108。聚合度为600~6000,50个以上小分支,每分支平均含20~30葡萄糖残基,分支与分支之间为11~12个葡萄糖残基 支链淀粉之间通过氢键缔合形成结晶区,直链淀粉与支链淀粉呈有序排列。结晶区与非结晶区交替排列形成层状胶束结构。这种生淀粉称β-淀粉。 - β-淀粉:具有胶束结构,分子排列紧密,水分难以渗透进去的淀粉。 淀粉的理化性质:淀粉一般呈白色粉末状,在热水中能溶胀。纯支链淀粉能溶于冷水中,而直链淀粉不能,直链淀粉能溶于热水 淀粉无还原性,遇碘呈蓝色,加热则蓝色消失,冷后呈蓝色。淀粉能被酶解和酸解。 淀粉结构<6 20 >60 支热 色: 无红蓝紫红无 其中螺旋结构每6个葡萄糖残基为一周。碘分子可进入圈内形成呈色的淀粉-碘络合物。 糊化的概念: 膨润现象:生淀粉在水中经加热后,一部分胶束被溶解形成空隙,水分子进入与其余的淀粉分子结合水化,空隙逐渐扩大,淀粉粒因吸水而膨胀数十倍,胶束消失。 糊化:淀粉膨润后,继续加热,胶束完全崩溃,形成许许多多水化的单淀粉分子,成为溶液状态,这种现象称为糊化,处于这种状态的淀粉称为α-淀粉 第一阶段:可逆吸水阶段,水温未达到糊化温度时,水分只是由淀粉粒的孔隙进入粒内,与许多无定形部分(非结晶区)的极性基相结合,或简单的吸附。淀粉粒体积略有膨胀;溶液黏度略有增加;淀粉粒结晶结构未破坏,有偏光十字,此时若取出脱水,淀粉粒仍可以恢复。 第二阶段:不可逆吸水阶段,加热至糊化温度,淀粉粒突然膨胀,大量吸水,水溶液迅速成为粘稠的胶体溶液。淀粉分子间的氢键破坏,晶体结构也遭到破坏,偏光十字消失;黏度最大。 第三阶段:淀粉粒解体阶段,膨胀的淀粉粒继续与水分子水合,淀粉粒彻底解体,全部进入溶液。分散体系的粘度也明显下降。 糊化的本质 β-淀粉在水中加热后,破坏了结晶胶束区的弱的氢键,水分子开始侵入淀粉粒内部,淀粉粒开始水合和溶胀,结晶胶束结构逐渐消失,淀粉粒破裂,直链淀粉由螺旋线形分子伸展成直线形,从支链淀粉的网络中逸出,分散于水中;支链淀粉呈松散的网状结构,此时淀粉分子被水分子包围, 呈粘稠胶体溶液。 糊化温度:淀粉糊化发生的温度称为~。 -糊化温度与淀粉种类有关,也与淀粉粒大小有关,一般用糊化的温度范围表示

完整版食品化学试题及答案

选择题 1、美拉德反应不利的一面是导致氨基酸的损失,其中影响最大的人体必需氨基酸:( ) A Lys B Phe C Val D Leu 2、下列不属于还原性二糖的是……………………………………………………………() A麦芽糖B蔗糖C乳糖D纤维二糖 3、下列哪一项不是食品中单糖与低聚糖的功能特性……………………………………( ) A产生甜味B结合有风味的物质C亲水性D有助于食品成型4、对面团影响的两种主要蛋白质是……………………………………………………( ) A麦清蛋白和麦谷蛋白B麦清蛋白和麦球蛋白 C麦谷蛋白和麦醇溶蛋白D麦球蛋白和麦醇溶蛋白 5、在人体必需氨基酸中,存在ε-氨基酸的是…………………………………………() A亮氨酸B异亮氨酸C苏氨酸D赖氨酸 6、某油有A、B、C三种脂肪酸,则可能存在几种三酰基甘油酯……………………( ) A、3 B、8 C、9 D、27 7、下列哪一项不是油脂的作用。…………………………………………………………( ) A、带有脂溶性维生素 B、易于消化吸收风味好 C、可溶解风味物质 D、吃后可增加食后饱足感 8、下列哪些脂类能形成β晶体结构………………………………………………………( ) A、豆油 B、奶油 C、花生油 D、猪油E菜籽油F、棉籽油 9、水的生性作用包括……………………………………………………………………() A、水是体内化学作用的介质 B、水是体内物质运输的载体。 C、水是维持体温的载温体, D、水是体内摩擦的滑润剂 10、利用美拉德反应会……………………………………………………………………() A、产生不同氨基酸 B、产生不同的风味 C、产生金黄色光泽 D、破坏必需氨基酸 11、影响油脂自氧化的因素………………………………………………………………() A、油脂自身的脂肪酸组成 B、H2O对自氧化的影响 C、金属离子不促俱自氧化 D、光散化剂对自氧化的影响 12、油脂的热解不会使……………………………………………………………………()A、平均分子量升高B、粘度增大C、I2值降低D、POV值降低

食品检验工(高级工)培训计划

湖北三峡技师学院企业员工职业能力提升培训 食品检验工(高级工)培训教学计划 一、指导思想 以国家职业标准为依据,以提升学员的操作能力为目标,以综合素质培训为基础,以职业技能培训为重点,紧密结合行业、企业生产实际需求,统筹安排各类培训课程,采取理论与实践结合、综合素质教育与职业技能培训结合的培训形式,注重知识的实用性、科学性和先进性,使学员既掌握本工种的操作技术与技能,又全面提升综合素质,以适应现代企业的要求。 二、培训目标 通过培训,使学员具有积极的人生态度、健康的心理素质、良好的职业道德;具有获取新知识、新技能的意识和能力,能适应不断变化的职业社会;熟悉企业生产流程,具有安全生产意识,严格按照行业安全工作规程进行操作,遵守各项工艺规程,重视环境保护,并具有独立解决非常规问题的基本能力。具体要求如下: 1、专业理论 通过培训使学员具备本专业必需的无机与有机化学、生物化学、食品化学、分析化学及其实验技术知识;掌握食品营养与安全知识;熟悉食品分析与检验和食品加工工艺规程;了解本工种的新技术、新工艺、新设备、新材料;会用专业知识指导解决生产岗位中的实际问题。 2、专业技能 (1)具备食品生物化学、分析化学、食品营养与安全、食品分析与检验、食品机械与设备等专业知识。 (2)掌握各类食品的生产工艺流程,在实际生产中能自觉遵守各类食品的生产工艺规程。 (3)具备各类食品生产相关生产单元诸如流体输送、沉降、过滤、离心分离、混合、乳化、蒸发、结晶、干燥、冷冻、包装以及相关操作岗位的操作能力,并能严格执行设备操作规定。 (4)掌握焙烤食品、肉类食品、水产品、果蔬制品、乳制品、软饮料、冷食品等食品生产的原料、半成品、产品的检验标准,具备较为独立的常规检验能力。 (5)了解各类食品生产设备的性能,具备维护设备的基本能力。

江南大学2017食品化学考研复试真题(无答案)

江南大学2017年食品化学研究生复试 一、名词解释 1、离子水合作用: 2、滞后现象: 3、淀粉的糊化: 4、蛋白质变性作用: 5、高铁肌红蛋白: 二、选择题 1、有关蛋白质三级结构描述,错误的是_______ (A)具有三级结构的多肽链都有生物学活性。

(B)三级结构是单体蛋白质或亚基的空间结构。 (C)三级结构的稳定性由次级键维持。 (D)亲水基团多位于三级结构的表面。 2、蚱蚕抗菌肽能有效的杀死革兰氏阴性和阳性菌,但对______无作用。 (A)真核细胞(B)霉菌(C)酵母(D)枯草杆菌 3、多酚类对蛋白质及酶有配合沉淀作用,与蛋白质的相互结合反应主要通过_______和氢键作用。 (A)疏水作用(B)范德华力(C)二硫键(D)盐键 4、破损果蔬褐变主要由_______引起。 (A)葡萄糖氧化酶(B)过氧化物酶(C)多酚氧化酶(D)脂肪氧化酶 5、啤酒的冷后混不用_______水解蛋白,防止啤酒浑浊,延长啤酒的货架期。 (A)木瓜蛋白酶(B)菠萝蛋白酶(C)霉菌酸性蛋白酶(D)碱性蛋白酶 6、下列化合物不属于脂溶性维生素的是______ (A)A(B)B(C)D(D)K 7、维生素D在下面哪个食品中含量最高?_______ (A)蛋黄(B)牛奶(C)鱼肝油(D)奶油 8、溶菌酶可以水解细胞壁肽聚糖的______,导致细菌自溶死亡。 (A)α-1,6-糖苷键(B)α-1,4-糖苷键(C)β-1,6-糖苷键(D)β-1,4-糖苷键 9、抑制剂可分为那两类______。 (A)竞争性抑制剂和非竞争性抑制剂(B)可逆抑制剂和不可逆抑制剂 (C)竞争性抑制剂和可逆抑制剂(D)可逆抑制剂和非竞争性抑制剂

食品化学试题加答案

第一章水分 一、填空题 1。从水分子结构来看,水分子中氧的6个价电子参与杂化,形成4个sp3杂化轨道,有近似四面体的结构. 2. 冰在转变成水时,静密度增大 ,当继续升温至3. 98℃时密度可达到最大值,继续升温密度逐渐下降 . 3。一般来说,食品中的水分可分为结合水和自由水两大类.其中,前者可根据被结合的牢固程度细分为化合水、邻近水、多层水,后者可根据其在食品中的物理作用方式细分为滞化水、毛细管水、自由流动水。 4。水在食品中的存在状态主要取决于天然食品组织、加工食品中的化学成分、化学成分的物理状态;水与不同类型溶质之间的相互作用主要表现在与离子和离子基团的相互作用、与非极性物质的相互作用、与双亲(中性)分子的相互作用等方面。 5。一般来说,大多数食品的等温线呈S形,而水果等食品的等温线为J形。 6。吸着等温线的制作方法主要有解吸等温线和回吸等温线两种。对于同一样品而言,等温线的形状和位置主要与试样的组成、物理结构、预处理、温度、制作方法等因素有关。 7.食品中水分对脂质氧化存在促进和抑制作用。当食品中aw值在0.35左右时,水分对脂质起抑制氧化作用;当食品中aw值 >0.35时,水分对脂质起促进氧化作用. 8。冷冻是食品储藏的最理想方式,其作用主要在于低温。冷冻对反应速率的影响主要表现在降低温度使反应变得非常缓慢和冷冻产生的浓缩效应加速反应速率两个相反的方面。 二、选择题 1.水分子通过的作用可与另4个水分子配位结合形成四面体结构。 (A)范德华力(B)氢键(C)盐键(D)二硫键 2. 关于冰的结构及性质,描述有误的是。 (A)冰是由水分子有序排列形成的结晶 (B)冰结晶并非完整的警惕,通常是有方向性或离子型缺陷的 (C)食品中的冰是由纯水形成的,其冰结晶形式为六方形 (D)食品中的冰晶因溶质的数量和种类等不同,可呈现不同形式的结晶 3。食品中的水分分类很多,下面哪个选项不属于同一类? (A)多层水(B)化合水(C)结合水 (D)毛细管水 4. 下列食品中,哪类食品的吸着等温线呈S形? (A)糖制品(B)肉类 (C)咖啡提取物(D)水果 5.关于BET(单分子层水),描述有误的是一。 (A) BET在区间Ⅱ的商水分末端位置 (B) BET值可以准确地预测干燥产品最大稳定性时的含水量 (C)该水分下除氧化反应外,其他反应仍可保持最小的速率 (D)单分子层水概念是由Brunauer. Emett及Teller提出的单分子层吸附理论三、名词解释 1。水分活度:水分活度能反应水与各种非水成分缔合的强度,其定义可用下式表示:

华中农业大学食品化学2007-考研真题

华中农业大学二○○七年硕士研究生入学考试 课程名称:食品化学 一、名词解释(共20分,每题2分) 1.疏水相互作用 2.水分活度 3.Maillard Reaction 4.淀粉老化 5.酸价 6.油脂的自动氧化 7.盐析作用 8.Essential Amino Acids (并举一例 ) 9.肌红蛋白的氧合作用 10.气味的阈值 二、填空(共20分,每空1分) 1.冷冻法保藏食品是利用了效应,而结冰对食品保藏有两种非常不利的后果,即和。 2.糖类化合物参与的褐变反应属于褐变,包括有和。 3.在高温下长时间加热的油炸油,酸价,黏度,发烟点,碘值。 4.稳定蛋白质三级结构的键力有、、、二硫键和等。 5.亚硝酸盐用于腌肉制品中的作用有、和。 6.面粉精制后白度,和减少。 三、单项选择题(每小题2分,共20分) 1.体相水主要性质为。 A.不易结冰 B.不能作为溶剂 C.能被微生物利用 D.热焓比纯水大 2.油脂在Aw为的条件下贮存,稳定性最高。 A.0.22 B.0.33 C.0.55 D.0.77 3.淀粉易老化的温度是。 A.60℃ B.0℃ C.-18℃ D.2-4℃ 4.下列甜味剂中,可作糖尿病人甜味剂、不致龋齿的是。 A.蔗糖 B.果糖 C.麦芽糖 D.木糖醇 5.脂肪水解能引起。 A.酸价增高 B.过氧化值降低 C.碘值增高 D. 酸价降低 6.不饱和脂肪酸双键的几何构型通常用顺式、反式来表示。天然不饱和脂肪酸多为构型。 A.无一定规律 B.全顺式 C.全反式 D.绝大多数为反式 7.下列不是必需氨基酸的是。 A.丝氨酸 B.赖氨酸 C.色氨酸 D.亮氨酸 8.蛋白质的水化作用对食品生产很重要,以下措施中不具有促进蛋白质水合性质的作用。 A.添加1%的氯化钠 B.将温度从10℃调节至30℃ C.添加30%的硫酸铵 D.将pH 调节至远离等电点 9.绿叶蔬菜在条件下最有利于保绿。

食品化学实验指导

食品化学实验指导

实验一蛋白质的功能性质(一) 一、引言 蛋白质的功能性质一般是指能使蛋白质成为人们所需要的食品特征而具有的物理化学性质,即对食品的加工、贮藏、销售过程中发生作用的那些性质,这些性质对食品的质量及风味起着重要的作用。蛋白质的功能性质与蛋白质在食品体系中的用途有着十分密切的关系,是开发和有效利用蛋白质资源的重要依据。 蛋白质的功能性质可分为水化性质,表面性质、蛋白质—蛋白质相互作用的有关性质三个主要类型,主要包括有吸水性、溶解性、保水性、分散性、粘度和粘着性、乳化性、起泡性、凝胶作用等。 本实验以卵蛋白、大豆蛋白为代表,通过一些定性试验了解它们的主要功能性质。 二、实验材料和试剂 蛋清蛋白; 2%蛋清蛋白溶液:取2g蛋清加98g蒸馏水稀释,过滤取清液; 卵黄蛋白:鸡蛋除蛋清后剩下的蛋黄捣碎。 分离大豆蛋白粉; 1M盐酸;1M氢氧化钠;饱和氯化钠溶液;饱和硫酸铵溶液;酒石酸;硫酸铵;氯化钠;δ—葡萄糖酸内酯;氯化钙饱和溶液;水溶性红色素;明胶。 三、实验步骤 (一)蛋白质的水溶性 (1)在50ml的小烧杯中加入0.5ml蛋清蛋白,加入5ml水,摇匀,观察其水溶性,有无沉淀产生。在溶液中逐滴加入饱和氯化钠溶液,摇匀,得到澄清的蛋白质的氯化钠溶液。 取上述蛋白质的氯化钠溶液3ml,加入3ml饱和的硫酸铵溶液,观察球蛋白的沉淀析出,再加入粉末硫酸铵至饱和,摇匀,观察清蛋白从溶液中析出,解释蛋清蛋白质在水中及氯化钠溶液中的溶解度以及蛋白质沉淀的原因。 (2)在四个试管中各加入0.1-0.2g大豆分离蛋白粉,分别加入5ml水,5ml饱和食盐水,5ml 1M 的氢氧化钠溶液,5ml 1M的盐酸溶液,摇匀,在温水浴中温热片刻,观察大豆蛋白在不同溶液中的溶解度。在第一、第二支试管中加入饱和硫酸铵溶液3ml,析出大豆球蛋白沉淀。第三、四支试管中分别用1M盐酸及1M氢氧化钠中和至pH 4-4.5,观察沉淀的生成,解释大豆蛋白的溶解性以及pH值对大豆蛋白溶解性的影响。 (二)蛋白质的乳化性 (1)取5g卵黄蛋白加入250ml的烧杯中,加入95ml水,0.5g氯化钠,用电动搅拌器搅匀后,在不断搅拌下滴加植物油10ml,滴加完后,强烈搅拌5分钟使其分散成均匀的乳状液,静置10分钟,待泡沫大部分消除后,取出10ml,加入少量水溶性红色素染色,不断搅拌直至染色均匀,取一滴乳状液在显微镜下仔细观察,被染色部分为水相,未被染色部分为油相,根据显微镜下观察所得到的染料分布,确定该乳状液是属于水包油型还是油包水型。 (2)配制5%的大豆分离蛋白溶液100ml,加0.5g氯化钠,在水浴上温热搅拌均匀,同上法加

考研《食品化学》考试大纲

考研《食品化学》考试大纲 暨南大学2016考研《食品化学》考试大纲 一、考查目标 《食品化学》是报考暨南大学食品科学与工程专业(一级学科)硕士的考试科目之一。为帮助考生明确考试复习范围和有关要求,特制定本考试大纲,适用于报考暨南大学硕士学位研究生的考生。 要求考生全面系统地掌握有关食品化学的基本概念、原理以及食品成分在加工和贮藏过程中的化学变化;能针对食品品质的变化,分析有关食品化学方面的原因,基本了解最前沿的食品化学的进展和发展趋势。 二、考试形式和试卷结构 1.试卷满分及考试时间 本试卷满分为150分,考试时间为150分钟。 2.答题方式 答题方式为闭卷、笔试。 3.试卷内容结构 (1)基本概念、基本理论、基本知识等方面100分 (2)应用理论和方法解决实际问题和综合知识应用题等方面50分 4.试卷题型结构 名词解释(4小题,10分) 填空题(30小题,30分) 简答题(5小题,50分) 综合性答题(4小题选答3小题,60分)。 三、考查范围 水 掌握水和冰的结构和性质、食品中水的存在状态、水和溶质之间的相互作用,食品中水的类型(自由水、结合水)、定义和特点、理解水分活度和水分吸湿等温线的概念及意义,水分活度与食品稳定性,冻结对食品品质的影响。 碳水化合物 掌握氨基糖、糖苷、糖醇、糖酸、糖醛酸、低聚糖等概念;单糖、低聚糖的主要物理性质及其在加工过程中的化学变化;焦糖化反应的主要历程和应用;Maillard反应的主要历程、应用和控制、Maillard反应对食品安全的影响;淀粉的老化、糊化;多糖(果胶、纤维素、其它多糖胶体)的结构、性质及其在食品中的应用(功能特性);了解功能性低聚糖、膳食纤维的生理活性。 脂类 掌握交酯、酸值(酸价,A V)、皂化值(SV)、碘值(IV)、过氧化值(POV)、硫代巴比妥酸值(TBA)、羰基价、同质多晶现象等概念;脂肪酸及三酰基甘油酯的结构、命名;脂肪的物理性质(结晶特性、熔融特性、乳化等),脂肪自动氧化机理及其影响因素、抗氧化剂的抗氧化

食品化学—模拟试题 3-答案

《食品化学》模拟试卷Ⅲ答案 一、填空题(2分×21) 1、组成;温度 2、糖;蛋白质;水 3、D-吡喃葡萄糖、α-1,4糖苷键 4、吸附法;截留法;微囊包封法;离子交换法;交联法;吸附与交联法;共聚法;共价连接法(答出其中五种即可)。 5、美拉德反应;焦糖化褐变;抗坏血酸褐变;酚类物质褐变 6、抗结剂 7、蒜氨酸;蒜素;蒜油;二硫化物 二、名词解释(4分×6,表述意思一样即可) 1、吸湿等温线(MSI):在恒定温度下,以食品的水分含量(用每单位干物质质量中水的质量表示)对它的水分活度绘图形成的曲线,称为水分的吸附等温线(MSI)。 2、改性淀粉:为了适应各种使用的需要,需将天然淀粉经物理、化学或酶处理是,使淀粉原有的物理性质发生一定的变化,如水溶性、粘度、色泽、味道和流动性等。这种经过处理的淀粉总称为改性淀粉。 3、油脂的酸败:油脂在储藏期间,因空气中的氧气、光照、微生物和酶的作用,而导致油脂变哈喇,即令人不愉快的气味和苦涩味,同时产生一些有毒的化合物,这些统称为油脂的酸败。 4、非酶褐变:非酶褐变反应主要是碳水化合物在热的作用下发生的一系列化学反应,产生了大量的有色成分和无色的成分,或挥发性和非挥发性成分。由于非酶褐变反应的结果使食品产生了褐色,故将这类反应统称为非酶褐变反应。就碳水化合物而言,非酶褐变反应包括美拉德反应、胶糖化褐变、抗坏血酸褐变和酚类成分的褐变。 5、食品加工:食品加工就是把可以吃的东西通过某些程序,造成更好吃或更有益等变化。将原粮或其他原料经过人为的处理过程,形成一种新形式的可直接食用的产品,这个过程就是食品加工。 6、LD50和LD0:LD50是半数致死量,指能引起一群动物的50%死亡的最低剂量;LD0是最大耐受量,指能使一群动物虽然发生严重中毒,但全部存活无一死亡的最高剂量。 三、简答题(44分,表述意思一样即可) 1、简述在食品加工中如何通过控制水分活度来提高食品的保藏性。(10分) 答:(1)对微生物的影响:微生物是食品腐败变质的主要原因。食品的水分活度决定了微生物在食品中萌发的时间、生长速率及死亡率。不同的微生物在食品中繁殖时对水分活度的要求不同。一般来说,细菌繁殖活动所需的Aw 一般细菌为0.94-0.99,酵母菌0.88左右,霉菌0.80左右。嗜盐细菌为0.75左右,耐干燥霉菌和高渗酵母为0.65~0.60。当水分活度低于某种微生物生长的最低水分活度时,这种微生物就不能生长。水分活度在0.6以下的食品一般可以长期保存,为长货架期食品。(5分) (2)酶促反应的影响:当Aw降低到0.25-0.30时,就能有效的阻止酶促反应

食品化学实验指导

实验一水分含量和水分活度 姓名:学号:班级:分数: 一.实验目的 1.了解水分含量和水分活度的概念及关系。 2. 了解水分活动度对食品品质的影响。 二.实验原理 食品中的水分都随环境条件的变动而变化。当环境空气的相对湿度低于食品的水分活度时,食品中的水分向空气中蒸发,食品的质量减轻;相反,当环境空气的相对湿度高于食品的水分活度时,食品就会从空气中吸收水分,使质量增加。不管是蒸发水分还是吸收水分,最终是食品和环境的水分达平衡时为止。据此原理,我们采用标准水分活度的试剂,形成相应湿度的空气环境,在密封和恒温条件下,观察食品试样在此空气环境中因水分变化而引起的质量变化,通常使试样分别在Aw较高、中等和较低的标准饱和盐溶液中扩散平衡后,根据试样质量的增加(即在较高Aw标准饱和盐溶液达平衡)和减少(即在较低Aw标准饱和盐溶液达平衡)的量,计算试样的Aw值,食品试样放在以此为相对湿度的空气中时,既不吸湿也不解吸,即其质量保持不变。 三.实验设备 干燥箱(1个),干燥器(8个),称量瓶或培养皿(数个),精密天平(2 台),水分活度仪(1)。 四、实验步骤 1、水分含量的测定:称量瓶的重量为m1,称量2g左右的样品(记录样品和称量瓶的重质量,m2),放入干燥箱内(温度为103℃±2℃)干燥至恒重(恒重:两次的质量差不超过2mg),恒重后的总质量为m3,计算样品的水分含量。计算公式:(m2- m3)×100%/(m2- m1) 五、思考题 绘制样品的水分含量和水分活度的曲线,并讨论两者的关系。

实验二、油脂氧化酸败 一.实验目的 1.了解油脂酸败的概念及机理。 2.研究影响脂肪酸败的因素。 二.实验原理 由于化学结构的特点,不饱和脂肪酸和油脂容易氧化降解,这就是所谓的氧化酸败。这是一类自由基链式反应,从脂肪酸链上脱除一个有反应性的烯丙基上的氢,随之产生一系列的化、重组、链的断裂和风味化合物的产生。脂肪酸败是肉眼看不见的,胡萝卜素是一种高度不饱和的碳氢化合物,其结构与脂肪酸相似,当氧化发生时能从明亮的橙色变为无色。本实验中,用胡萝卜素作为脂肪酸败反应的标记物,胡萝卜素颜色变浅的速率可以作为脂肪氧化酸败的速率指示,研究光、温度、抗氧化剂和促氧化剂对脂肪酸败的影响。 三、实验材料与器材 炼好的猪油(50g),胡萝卜素(10mg),氯仿,0.01%CuSO4,0.001%BHA(丁基 羟基茴香醚,一种人工合成的抗氧化剂),5%血色素,饱和盐溶液,萝卜叶提取 物,新鲜洋葱顶部提取物,马铃薯提取物。 四、实验步骤 取50g炼好的猪油,添加10mg溶解在少量的氯仿中的胡萝卜素。用塑料钳子、骨 头钳子或覆盖聚乙烯的钳子,将小滤纸(直径7cm的较方便)浸到熔化的油脂中并 保持20s。转移到培养皿中,并做如下的处理: 1. 温度和光对脂肪氧化的影响 (1)将培养皿盖住并在室温下储存于暗处。 (2)将培养皿盖住并储存在光下(可能的话直接阳光照射)。 (3)将培养皿盖住并储存在冰箱中。 (4)将培养皿盖住并储存在60℃的培养箱中。 2. 抗氧化剂和促氧化剂对脂肪氧化的影响 实验中,将浸入待测溶液中(如下)的小圆形滤纸片放置在浸有胡萝卜素-猪油混 合物的滤纸上。将内含滤纸的培养皿扣在含有水的培养皿盖上(水封),不同测试 使用单独的培养皿。在6℃的培养箱中储存器皿。 待测的溶液包括: (1)水对照 (2)稀释的铜溶液(0.01% CuSO4) (3)稀释的血色素溶液(0.5%) (4)Vc(0.01%) (5)饱和氯化钠溶液 (6)将20g切碎的蔬菜和80ml水加热到沸腾制备浸出物(萝卜叶,新鲜洋葱的 顶部,马铃薯皮),在使用前轻轻倒出并冷却。

2015年暨南大学食品化学考研真题,考研流程,考研笔记,真题解析

1/9 【育明教育】中国考研考博专业课辅导第一品牌官方网站:https://www.360docs.net/doc/a16983324.html, 1 2015年暨南大学考研指导 育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。更多详情可联系育明教育孙老师。硕士研究生入学统一考试 食品化学 考试大纲 一、考查目标 《食品化学》是报考暨南大学食品科学与工程专业(一级学科)硕士的考试科目之一。为帮助考生明确考试复习范围和有关要求,特制定本考试大纲,适用于报考暨南大学硕士学位研究生的考生。 要求考生全面系统地掌握有关食品化学的基本概念、原理以及食品成分在加工和贮藏过程中的化学变化;能针对食品品质的变化,分析有关食品化学方面的原因,基本了解最前沿的食品化学的进展和发展趋势。 二、考试形式和试卷结构 1.试卷满分及考试时间 本试卷满分为150分,考试时间为150分钟。 2.答题方式 答题方式为闭卷、笔试。 3.试卷内容结构 (1)基本概念、基本理论、基本知识等方面100分 (2)应用理论和方法解决实际问题和综合知识应用题等方面50分 4.试卷题型结构 名词解释(4小题,10分)

2/9 【育明教育】中国考研考博专业课辅导第一品牌官方网站:https://www.360docs.net/doc/a16983324.html, 2 填空题(30小题,30分) 简答题(5小题,50分) 综合性答题(4小题选答3小题,60分)。 三、考查范围 水 掌握水和冰的结构和性质、食品中水的存在状态、水和溶质之间的相互作用,食品中水的类型(自由水、结合水)、定义和特点、理解水分活度和水分吸湿等温线的概念及意义,水分活度与食品稳定性,冻结对食品品质的影响。 碳水化合物 掌握氨基糖、糖苷、糖醇、糖酸、糖醛酸、低聚糖等概念;单糖、低聚糖的主要物理性质及其在加工过程中的化学变化;焦糖化反应的主要历程和应用;Maillard 反应的主要历程、应用和控制、Maillard 反应对食品安全的影响;淀粉的老化、糊化;多糖(果胶、纤维素、其它多糖胶体)的结构、性质及其在食品中的应用(功能特性);了解功能性低聚糖、膳食纤维的生理活性。 脂类 掌握交酯、酸值(酸价,AV )、皂化值(SV )、碘值(IV )、过氧化值(POV )、硫代巴比妥酸值(TBA )、羰基价、同质多晶现象等概念;脂肪酸及三酰基甘油酯的结构、命名;脂肪的物理性质(结晶特性、熔融特性、乳化等),脂肪自动氧化机理及其影响因素、抗氧化剂的抗氧化机理,油脂加工化学的原理及应用,反式脂肪的形成及其危害。 蛋白质 掌握氨基酸的结构及物理化学性质,蛋白质的结构、维持蛋白质构象的键力,蛋白质的变性及其影响因素;蛋白质的功能性质;蛋白质在食品加工和贮藏过程中的物理、化学、营养变化及其对食品安全性的影响;主要食物蛋白的特性;了解蛋白质的改性方法。 维生素和矿物元素 掌握主要维生素(A 、D 、E 、C 、B 族)的生理功能、加工方法对维生素的影响;矿物质钙、铁、锌等的生理功能及食物因素对其生物有效性的影响;加工对矿物质的影响。 酶

食品化学试题及答案

水 的作用:①保持体温恒定②作为溶剂③天然润滑剂④优良增塑剂 水的三种模型:①混合型②填隙式③连续结构模型 冰是有水分子在有序排列形成的结晶,水分子间靠氢键连接在一起形成非常“疏松”的刚性建构,冰有11种结晶型。主要有四种:六方形,不规则树形,粗糙球状,易消失的球晶, 蛋白质的构象与稳定性将受到共同离子的种类与数量的影响。 把疏水性物质加入到水中由于极性的差异发生了体系熵的减少,在热力学上是不利的,此过程称为疏水水合。结合水指存在于溶质或其他非水组分附近的、于溶质分子之间通过化学键结合的那一部分锥,具有与同一体系中体相水显著不同的性质,分为①化合水②邻近水③多层水 体相水称为游离水指食品中除了结合水以外的那部分水,分为不移动水、毛细管水、和自由流动水。 结合水与体相水的区别:①结合水的量与食品中有机大分子的极性基团的数量有比较固定的比例关系②结合水的蒸汽压比体相水低得多,所以在一定温度下结合水不能从食品中分离③结合水不易结冰④结合水不能作为溶质的溶剂⑤体相水能被微生物利用,大部分结合水不能。 水分活度是指食品中水的蒸汽压与同温下纯水的饱和蒸汽压的比值。Aw=P/P0 水分活度与微生物生命活动的关系:水分活度决定微生物在食品中萌发的时间、生长速率及死亡率,不同微生物对水分的活度不同,细菌对低水分活度最敏感,酵母菌次之,霉菌的敏感性最差。当水分活度低于某种微生物生长所需的最低水分活度时微生物就不能生长。食品的变质以细菌为主;水分活度低于0.91时就可以抑制细菌生长。 低水分活度提高食品稳定性的机理:①大多数化学反应都必须在水溶液中进行②很多化学反应属于离子反应③很多化学反应和生物化学反应都必须有水分子参加才能进行,水分活度低反应就慢④许多酶为催化剂的酶促反应,水除了起着一种反应物的作用外,还能作为底物向酶扩散输送介质,通过水化促使酶和底物活化⑤食品中微生物的生长繁殖都要求有一定限度的Aw:细菌0.99-0.94,霉菌0.94-0.8,耐盐细菌0.75,干燥霉菌和耐高渗透压酵母味0.65-0.6,低于0.6时多数无法生长。 冷冻与食品稳定性:低温下微生物的繁殖被抑制,可提高食品储存期,不利后果:①水变为冰体积增大9%会造成机械损伤计液流失,酶与底物接住导致不良影响。②冷冻浓缩效应。有正反两方面影响:降低温度,减慢反应速度,溶质浓度增加,加快反应速度。冷冻有速冻和慢冻。 碳水化合物:多羟基醛或酮及其衍生物和缩合物。自然界中最丰富的碳水化合物是纤维素。蔗糖是糖甜度的基准物,相对分子大,溶解度越小,甜度小。 糖的吸润性是指在较高的空气湿度下,糖吸收水分的性质,糖的保湿性是指在较低空气湿度下,糖保持水分的性质。 糖的抗氧化性是氧在糖中的含量比在水中含量低的缘故。 水解反应:低聚糖或双糖在酸或酶的催化作用下可以水解成单糖,旋光方向发生变化。 酵母菌 发酵性: 醋酸杆菌 产酸机理 功能性低聚糖:①改善人体内的微生态环境②高品质的低聚糖很难被人体消化道唾液酶和小肠消化酶水解③类似于水溶性植物纤维,能降低血脂,改善脂质代谢④难消化低聚糖属非胰岛素依赖型,不易使血糖升高,可供糖尿病人使用⑤低聚糖对牙齿无不良影响。 淀粉的糊化:由于水分子的穿透,以及更多、更长的淀粉链段分离,增加了淀粉分子结构的无序性,减少了结晶区域的数目和大小,最终使淀粉分子分散而呈糊状,体系的黏度增加,双折射现象消失,最后得到半透明的粘稠体系的过程。 淀粉的老化:表示淀粉由分散态向不溶的微晶态、聚集态的不可逆转变。 即是直链淀粉分子的重新定位过程。

相关文档
最新文档