高考数学微专题10答案

高考数学微专题10答案
高考数学微专题10答案

微专题10

例题 答案:2.

解法1以A 为坐标原点,AC 为x 轴,建立直角坐标系,

则C ????2a ,0,B ()-a ,3a ,用几何方法,可得

O ????1a ,33????2a +1a .由AO →=xAB →+yAC →,

????1a ,33?

???2a +1a =(-ax ,3ax)+

????2a y ,0,∴x =23+13·1a 2,y =23+13a 2,则x +y ≥43+

2

3

a 2·1

a

2=2.当a =1时,x +y 取

得最小值为2.

解法2因为AB →·AC →=|AB →||AC →

|cos 120°=2a·2a ·????

-12=-2,设AB 的中点为D ,则OD ⊥AB ,又AO →·AB →=(AD →+DO →)·AB →

=AD →·AB →+DO →·AB →=AD →·AB →=

12

AB →2

=2a 2,同理, AO →·AC →=12AC →2=2a

2.

∴?????AO →·

AB →=xAB →2+yAB →·AC →,AO →·AC →=xAB →·AC →+yAC →2.

即?

????4a 2

x -2y =2a 2

,-2x +4y a 2=2a 2.

解得???x =2a 2+13a 2

y =a 2

+2

3.

所以,x +y =

2a 2+1

3a 2

+a 2+23=43+13????a 2+1a 2≥43

23

a 2·1

a

2=2.当且仅当a =1时,上式

等号成立,此时△ABC 是等腰三角形.

变式联想

变式1

答案:7.

解法1因为O 是三角形外心,M 是BC 边的中点.AO →·AM →=12AO →·()

AB →+AC →=14

AB →2+14AC →2=14AB →2+94=4,所以AB →

2=7.即

AB =7.

解法2延长AO 交圆O 于D ,连接BD ,DC ,则BD ⊥AB ,CD ⊥AC.AO →·AM →=12AD →·

12(AB →+AC →

)=

14(AD →·AB →+AD →·AC →)=14(AB →+BD →)·AB →+

14(AC →+CD →)·AC →=14AB →2+14AC →2=14AB →2+94

=4,AB →

2=7.即AB =7. 解法3建系:以BC 为x 轴,OM 为y 轴,建立平面直角坐标系,设B(-a ,0),C(a ,0),O(0,b),A(c ,d).由题意得

???

a 2+

b 2=

c 2+(

d -b )2,

(c -a )2

+d 2

9,c 2

+d 2

-db =4,

????

?a 2

=4-bd ,2ac =-1,c 2+d 2=4+db.

AB 2=(a +c)2+d 2=a 2+2ac +c

2+d 2=7,AB =7.

变式2

答案:2+1.

解法1不妨设a =(1,0),b =(0,1),c =(x ,y ),则a -c =(1-x ,-y ),3b -c =(-x ,3-y ),由题意得-x (1-x )-y (3-y )=1,整理得x 2+y 2-x -3y -1=0,即

????x -122+????y -322

=2,它表示以???

?12,32为圆心,以2为半径的圆,则|c |表示该圆上的点到原点(0,0)的距离,

从而|c |max =2+????122+???

?322

=2+1.

解法2由解法1得????x -122

+????y -322

=2,令

???x =1

2+2cos α,

y =3

2+2sin α,

(α为参数)则 |c |2

=????12+2cos α2+

???

?32+2sin α2

=3+2cos α+6sin α=3+22cos(α-θ)(其中tan θ=3),所以|c |max 2=3+22,于是|c |max =1+ 2.

串讲激活

串讲1 答案:4.

解法1记AB →,AC →

方向上的单位向量分别为a ,b ,则a 2=b 2=1,a ·b =12,AB →

=4a ,

AC →=6b .从而AD →=2a ,AE →=2b ,AF →=12(AD →+

AE →)=a +b ,BF →=AF →-AB →=b -3a ,DE →=AE →-AD →=2b -2a .所以BF →·DE →=(b -3a )·(2b -2a )=2b 2+6a 2-8a ·b =2+6-4=4.

解法2取CE 的中点G ,连接BG ,设BG 的中点为M ,连接FM ,则BM →=DE →

,且

FM ⊥BM ,所以BF →·BM →=BM →

2=BM 2=DE 2=22=4.

解法3若对坐标法情有独钟,也可以以A 为原点,AB →

方向为x 轴正方向,建立平面直角坐标系,则A (0,0),B (4,0),C (3,33),从而D (2,0),E (1,3),F ????32,3

2,

所以BF →=????-52,32,DE →

=(-1,3),所

以BF →·DE →=52+32

=4.

串讲2 答案:214

.

解法1(AB →+AC →)2=(AB →-AC →

)2+4AB →·AC →AB →·AC →=14(25-CB →

2)≤14(25-22)

=21

4

. 解法2如图所示,建立直角坐标系,

则A(0,3),设B(x 1,2),C(x 2,0),则AB →=(x 1,-1),AC →=(x 2,-3),因为|AB →+AC →

|=5,所以(x 1+x 2)2+(-4)2=25,即(x 1+x 2)2

=9,而AB →·AC →=x 1x 2+3≤

????x 1+x 222+

3=94+3=21

4

(当且仅当x 1=x 2时取等号). 新题在线

答案:14

.

解法1由题意可知,BM ⊥

BN ,∠AMB =90°,所以AM ∥BN ,因为AC =2,B

为AC 的中点,所以BN =BC =BA =1,设∠NBC =∠MAB =α,α∈????0,π2,AM →·CN

=AM →·(BN →-BC →)=AM →·BN →-AM →·BC →=|AM →

||BN →|-|AM →||BC →|cos α=|AM →|-|AM →||AB →|cos α=|AM →|-|AM →|2,令|AM →

|=t ,0<t <1,AM →·CN →=t -t 2∈????0,14,所以AM →·CN →的最大值为1

4

.

解法2AM →·CN →=(BM →-BA →)·(BN →-BC →

)=-BM →·BC →-BA →·BN →+BA →·BC →=BM →·BA →+cos α-1=|BM →||BA →|sin α+cos α-1=|BM →|2

+|AM →|-1=-|AM →|2+|AM →

|,以下同解法

1.

解法3以点B 为坐标原点,线段AC 所在的直线为x 轴,线段AC 的中垂线为y 轴建立平面直角坐标系.

设∠NBC =∠MAB =α,

α∈?

???0,π

2,则

M(-sin 2α,sin αcos α),N(cos α,sin

α),A(-1,0),

C(1,0),AM →·CN →

=(1-sin 2α,sin αcos α)·(cos α-1,sin α)=(1-sin 2α)(cos α-1)+sin 2αcos α=cos α-1+sin 2α=-cos 2

α+cos α,令cos α=t ,0<t <1,以下同解法1.

解法4同解法3建系,设直线BN 的斜率为k(k >0),则直线BM 的斜率为-1

k ,则

直线BN 的方程为y =kx ,直线BM 的方程

为y =-1

k x ,联立???y =kx ,x 2+y 2=1,

解得

N ?

????

11+k 2

,k 1+k 2,联立 ???

y =-1

k

x ,

????x +122

+y 2

=1

4,

解得 M ? ??

??-k

2

k 2+1,k k 2+1,因为A(-1,0),C(1,0),所以AM →=???

?1k 2+1,k k 2+1,CN →

?

????11+k 2-1,k 1+k 2,AM →·CN →

=1k 2+1? ????11+k 2-1+k k 2+1·k 1+k 2=1

k 2

+1

? ????

k 2

+11+k 2

-1=11+k 2

- 1k 2

+1,令t =1

1+k 2

,则0<t <1,以下同解法1.

2018年高考数学试题分类汇编-向量

1 2018高考数学试题分类汇编—向量 一、填空题 1.(北京理6改)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的_________条件(从“充分而不必要”、“必要而不充分条件”、“充分必要”、“既不充分也不必要”中选择) 1.充分必要 2.(北京文9)设向量a =(1,0),b =(?1,m ),若()m ⊥-a a b ,则m =_________. 2.-1 3.(全国卷I 理6改)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = _________. (用,AB AC 表示) 3.3144 AB AC - 4.(全国卷II 理4)已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b _________. 4.3 5.(全国卷III 理13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a+b ,则λ=________. 5. 12 6.(天津理8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=?,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ?uu u r uu u r 的最小值为_________. 6. 2116 7.(天津文8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠= ,2,2,BM MA CN NA == 则· BC OM 的值为_________. 7.6- 8.(浙江9)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2?4e · b +3=0,则|a ?b |的最小值是_________. 8.3?1 9.(上海8).在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF = ,则AE BF ? 的最小值为_________. 9.-3

2018届高考数学立体几何(理科)专题02-二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

2.如图所示的多面体中,下底面平行四边形与上底面平行,且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=u u u v u u u v ,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=o P ,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA P 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30o ,设PM tMC =,试确定t 的值.

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

高考数学微专题12答案

微专题12 例题1 证法1如图1,在四棱锥PABCD中, 取线段PD的中点M,连接FM,AM. 因为F为PC的中点,所以FM∥CD, 且FM=1 2CD. 因为四边形ABCD为矩形,E为AB的中点, 所以EA∥CD,且EA=1 2CD.所以 FM∥EA,且FM=EA. 所以四边形AEFM为平行四边形.所以EF∥AM. 又AM平面PAD,EF平面PAD, 所以EF∥平面PAD. 证法2如图2,在四棱锥PABCD中,连接CE并延长交DA的延长线于点N,连接PN. 因为四边形ABCD为矩形,所以AD∥BC. 所以∠BCE=∠ANE,∠CBE=∠NAE.又AE=EB, 所以△CEB≌△NEA.所以CE=NE. 又F为PC的中点,所以EF∥NP. 又NP平面PAD,EF平面PAD,所以EF∥平面PAD. 证法3如图3,在四棱锥PABCD中,取CD的中点Q,连接FQ,EQ.在矩形ABCD 中,E为AB的中点, 所以AE=DQ,且AE∥DQ. 所以四边形AEQD为平行四边形,所以EQ∥AD. 又AD平面PAD,EQ平面PAD, 所以EQ∥平面PAD.因为Q,F分别为CD,CP的中点, 所以FQ∥PD. 又PD平面PAD,FQ平面PAD,所以FQ∥平面PAD. 又FQ,EQ平面EQF,FQ∩EQ=Q, 所以平面EQF∥平面PAD. 因为EF平面EQF,所以EF∥平面PAD. (2)在四棱锥PABCD中,设AC,DE相交于点G(如图4). 在矩形ABCD中,因为AB=2BC,E 为AB的中点. 所以 DA AE= CD DA=2, 又∠DAE=∠CDA,所以△DAE∽△CDA, 所以∠ADE=∠DCA. 又∠ADE+∠CDE=∠ADC=90°, 所以∠DCA+∠CDE=90°. 由△DGC的内角和为180°,得∠DGC =90°. 即DE⊥AC. 因为点P在平面ABCD内的正投影O 在直线AC上, 所以PO⊥平面ABCD. 因为DE平面ABCD,所以PO⊥DE. 因为PO∩AC=O,PO,AC平面PAC,

高考数学试题分类汇编 算法初步

高考数学试题分类汇编算法初步 1.(天津理3)阅读右边的程序框图,运行相应的程序,则输出i的值为 A.3 B.4 C.5 D.6 【答案】B 2.(全国新课标理3)执行右面的程序框图,如果输入的N是6,那么输出的p是 (A)120 (B) 720 (C) 1440 (D) 5040 【答案】B 3.(辽宁理6)执行右面的程序框图,如果输入的n是4,则输出的P 是 (A)8 (B)5 (C)3 (D)2 【答案】C

4. (北京理4)执行如图所示的程序框图,输出的s 值为 A .-3 B .-12 C .13 D .2 【答案】D 5.(陕西理8)右图中, 1x ,2x ,3x 为某次考试三个评阅人对同一道题的独立评分,P 为该题的最终得分。当126,9.x x ==p=8.5时,3x 等于 A .11 B .10 C .8 D .7 【答案】C 6.(浙江理12)若某程序框图如图所示,则该程序运行后输出的k 的值是 。 【答案】5

Read a,b If a >b Then m←a Else m←b End If 7.(江苏4)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值是 【答案】3 8.(福建理11)运行如图所示的程序,输出的结果是_______。 【答案】3 9.(安徽理11)如图所示,程序框图(算法流程图)的输出结果是 . 【答案】15 10.(湖南理13)若执行如图3所示的框图,输入1 1 x= ,23 2,3,2 x x x ==-= , 则输出的数等于。 【答案】 2 3

11.(江西理13)下图是某算法的程序框图,则程序运行后输出的结果是 【答案】10 12.(山东理13)执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是【答案】68

2014年高考数学理科分类汇编专题03 导数与应用

1. 【2014江西高考理第8题】若1 2 ()2(),f x x f x dx =+? 则1 ()f x dx =?( ) A. 1- B.13- C.1 3 D.1 2. 【2014江西高考理第14题】若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 3. 【2014辽宁高考理第11题】当[2,1]x ∈-时,不等式32 430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9 [6,]8 -- C .[6,2]-- D .[4,3]--

4. 【2014全国1高考理第11题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( ) A .()2,+∞ B .()1,+∞ C .(),2-∞- D .(),1-∞- 5. 【2014高考江苏卷第11题】在平面直角坐标系xoy 中,若曲线2 b y ax x =+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3-

6. 【2014高考广东卷理第10题】曲线25+=-x e y 在点()0,3处的切线方程为 . 7. 【2014全国2高考理第8题】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 3 8. 【2014全国2高考理第12题】设函数()x f x m π=.若存在()f x 的极值点0x 满足 ()2 22 00x f x m +

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为

A .1 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30?,求PC 与平面PAM 所成角的正弦值. 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 2018年江苏理科:

全国统考2022高考数学一轮复习素养提升微专题2_抽象函数的定义域的类型及求法学案理含解析北师大版2

抽象函数的定义域的类型及求法 抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说具有一定难度,特别是求其定义域时,许多同学解答起来总感觉棘手,下面结合实例具体探究一下抽象函数定义域问题的几种题型及求法. 类型一已知f (x )的定义域,求f [g (x )]的定义域 其解法是:若f (x )的定义域为[a ,b ],则在f [g (x )]中,令a ≤g (x )≤b ,从中解得x 的取值X 围即为f [g (x )]的定义域. 【例1】已知函数f (x )的定义域为[-1,5],求f (3x-5)的定义域. 【解题指导】该函数是由u=3x-5和f (u )构成的复合函数,其中x 是自变量,u 是中间变量,由于f (x )与f (u )是同一个函数,因此这里是已知-1≤u ≤5,即-1≤3x-5≤5,求x 的取值X 围. 解∵f (x )的定义域为[-1,5], ∴-1≤3x-5≤5,∴43≤x ≤103, 故函数f (3x-5)的定义域为43,10 3. 类型二已知f [g (x )]的定义域,求f (x )的定义域 其解法是:若f [g (x )]的定义域为m ≤x ≤n ,则由m ≤x ≤n 确定的g (x )的X 围即为f (x )的定义域. 【例2】已知函数f (x 2-2x+2)的定义域为[0,3],求函数f (x )的定义域.

【解题指导】令u=x 2-2x+2,则f (x 2-2x+2)=f (u ), 由于f (u )与f (x )是同一函数,因此u 的取值X 围即为f (x )的定义域. 解由0≤x ≤3,得1≤x 2-2x+2≤5. 令u=x 2-2x+2,则f (x 2-2x+2)=f (u ),1≤u ≤5. 故f (x )的定义域为[1,5]. 类型三已知f [g (x )]的定义域,求f [h (x )]的定义域 其解法是:先由f [g (x )]的定义域求得f (x )的定义域,再由f (x )的定义域求f [h (x )]的定义域. 【例3】函数y=f (x+1)的定义域是[-2,3],则y=f (2x-1)的定义域是() A.0,52 B.[-1,4] C.[-5,5] D.[-3,7] 答案A 解析因为f (x+1)的定义域是[-2,3],即-2≤x ≤3,所以-1≤x+1≤4,则f (x )的定义域是[-1,4].由-1≤2x-1≤4,得0≤x ≤52,所以f (2x-1)的定义域是0,5 2.故选A . 类型四运算型的抽象函数

2015届高考数学(理)二轮专题配套练习:解析几何(含答案)

解析几何 1.直线的倾斜角与斜率 (1)倾斜角的范围为[0,π). (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y 1-y 2 x 1-x 2(x 1≠x 2);③直 线的方向向量a =(1,k );④应用:证明三点共线:k AB =k BC . [问题1] (1)直线的倾斜角θ越大,斜率k 就越大,这种说法正确吗? (2)直线x cos θ+3y -2=0的倾斜角的范围是________. 2.直线的方程 (1)点斜式:已知直线过点(x 0,y 0),其斜率为k ,则直线方程为y -y 0=k (x -x 0),它不包括垂直于x 轴的直线. (2)斜截式:已知直线在y 轴上的截距为b ,斜率为k ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线. (3)两点式:已知直线经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,则直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标 轴的直线. (4)截距式:已知直线在x 轴和y 轴上的截距为a ,b ,则直线方程为x a +y b =1,它不包括垂直于坐标轴的直 线和过原点的直线. (5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式. [问题2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________. 3.点到直线的距离及两平行直线间的距离 (1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C | A 2+ B 2; (2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d = |C 1-C 2|A 2 +B 2. [问题3] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. 4.两直线的平行与垂直 ①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2?k 1=k 2;l 1⊥l 2?k 1·k 2=-1. ②l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2?A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2?A 1A 2+B 1B 2=0. 特别提醒:(1)A 1A 2=B 1B 2≠C 1C 2、A 1A 2≠B 1B 2、A 1A 2=B 1B 2=C 1 C 2仅是两直线平行、相交、重合的充分不必要条件;(2)在解 析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线. [问题4] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合. 5.圆的方程 (1)圆的标准方程:(x -a )2+(y -b )2=r 2. (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为(-D 2,-E 2),半径为1 2D 2+E 2-4F 的圆. [问题5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________. 6.直线、圆的位置关系 (1)直线与圆的位置关系 直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2(r >0)有相交、相离、相切.可从代数和几何两个方面来判断: ①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0?相交;Δ<0?相离;Δ=0?相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d r ?相离;d =r ?相切. (2)圆与圆的位置关系 已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则①当|O 1O 2|>r 1+r 2时,两圆外离;②当|O 1O 2|=r 1 +r 2时,两圆外切;③当|r 1-r 2|<|O 1O 2|b >0);焦点在y 轴上,y 2a 2+x 2 b 2=1(a >b >0).

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

高考数学真题分类汇编集合专题(基础题)

高考数学真题分类汇编集合专题(基础题) 一、单选题 1.集合M={x|1<x+1≤3},N={x|x2﹣2x﹣3>0},则(?R M)∩(?R N)等于() A. (﹣1,3) B. (﹣1,0)∪(2,3) C. (﹣1,0]∪[2,3) D. [﹣1,0]∪(2,3] 2.已知R是实数集,M={x| <1},N={y|y= +1},N∩?R M=() A. (1,2) B. [0,2] C. ? D. [1,2] 3.已知集合,,若,则实数的值为() A. 1 B. C. 2 D. 4.已知集合,,则等于() A. B. C. D. 5.已知集合A={x|x>0},函数的定义域为集合B,则A∩B=() A. [3,+∞) B. [2,3] C. (0,2]∪[3,+∞) D. (0,2] 6.已知集合,,则() A. B. C. D. 7.已知集合A={x|x2﹣x+4>x+12},B={x|2x﹣1<8},则A∩(?R B)=() A. {x|x≥4} B. {x|x>4} C. {x|x≥﹣2} D. {x|x<﹣2或x≥4} 8.已知M={x|x2-2x-3>0},N={x|x2+ax+b≤0},若M∪N=R,M∩N=(3,4],则a+b=() A. 7 B. -1 C. 1 D. -7 9.已知集合A={2,4},B={2,3,4},,则C中元素个数是() A. 2 B. 3 C. 4 D. 5 二、填空题 10.集合,,则的子集个数是________. 答案 一、单选题 1.D 2.D 3. A 4. C 5.B 6. D 7.B 8. D 9.B 二、填空题 10. 2 第1 页共1 页

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

高考数学(理)二轮配套训练【专题9】(2)数形结合思想(含答案)

第2讲数形结合思想 1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错. (3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线. 3.数形结合思想解决的问题常有以下几种: (1)构建函数模型并结合其图象求参数的取值范围. (2)构建函数模型并结合其图象研究方程根的范围. (3)构建函数模型并结合其图象研究量与量之间的大小关系. (4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式. (5)构建立体几何模型研究代数问题. (6)构建解析几何中的斜率、截距、距离等模型研究最值问题. (7)构建方程模型,求根的个数. (8)研究图形的形状、位置关系、性质等. 4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: (1)准确画出函数图象,注意函数的定义域. (2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解.

全国高考数学复习微专题:函数的切线问题

函数的切线问题 一、基础知识: (一)与切线相关的定义 1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。这样直线AB 的极限位置就是曲线在点A 的切线。 (1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上 (2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。例如函数3 y x =在 ()1,1--处的切线,与曲线有两个公共点。 (3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点 A 处的切线。对于一个函数,并不能保证在每一个点处均有切线。例如y x =在()0,0处, 通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当 0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相 同,故y x =在()0,0处不含切线 (4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边) 2、切线与导数:设函数()y f x =上点()() 00,,A x f x ()f x 在A 附近有定义且附近的点 ()()00,B x x f x x +?+?,则割线AB 斜率为: ()()()()() 000000 AB f x x f x f x x f x k x x x x +?-+?-= = +?-? 当B 无限接近A 时,即x ?接近于零,∴直线AB 到达极限位置时的斜率表示为: ()()000 lim x f x x f x k x ?→+?-=?,

高考数学真题专题(理数) 双曲线

专题九 解析几何 第二十七讲 双曲线 2019年 1.(2019全国III 理10)双曲线C :22 42 x y -=1的右焦点为F ,点P 在C 的一条渐进线 上,O 为坐标原点,若=PO PF ,则△PFO 的面积为 A B C .D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2 2 21(0)y x b b -=>经过点(3,4), 则该双曲线的渐近线方程是 . 3.(2019全国I 理16)已知双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2, 过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =uuu r uu u r ,120F B F B ?=uuu r uuu r ,则C 的 离心率为____________. 4.(2019年全国II 理11)设F 为双曲线C :22 221(0,0)x y a b a b -=>>的右焦点,O 为坐标 原点,以OF 为直径的圆与圆222 x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率 为 A B C .2 D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是 A B .1 C D .2 6.(2019天津理5)已知抛物线2 4y x =的焦点为F ,准线为l ,若l 与双曲线 22 221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为 C.2

2010-2018年 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C . D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .=y x D .=y 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为 A B .2 C D 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

相关文档
最新文档