《APIC 原料药工厂中清洁验证指南(2016版)》英文版(APIC Cleaning Validation Guide 2016)

《APIC 原料药工厂中清洁验证指南(2016版)》英文版(APIC Cleaning Validation Guide 2016)
《APIC 原料药工厂中清洁验证指南(2016版)》英文版(APIC Cleaning Validation Guide 2016)

ACTIVE PHARMACEUTICAL INGREDIENTS COMMITTEE (APIC)

GUIDANCE ON ASPECTS OF CLEANING VALIDATION IN ACTIVE PHARMACEUTICAL INGREDIENT PLANTS

Revision September 2016

Table of Contents

1.0 FOREWORD

2.0 OBJECTIVE

3.0 SCOPE

4.0 ACCEPTANCE CRITERIA

4.1 Introduction

4.2 Methods of Calculating Acceptance Criteria

4.2.1. Acceptance criteria using health-based data

4.2.2 Acceptance criteria based on Therapeutic Daily Dose

4.2.3. Acceptance criteria based on LD50

4.2.4 General Limit as acceptance criteria

4.2.5 Swab Limits

4.2.6 Rinse Limits

4.2.7 Rationale for the use of different limits in pharmaceutical and chemical

production

5.0 LEVELS OF CLEANING

5.1 Introduction

5.2 Cleaning Levels

5.3 Cleaning Verification/Validation

6.0 CONTROL OF CLEANING PROCESS

7.0 BRACKETING AND WORST CASE RATING

7.1 Introduction

7.2 Bracketing Procedure

7.3 Cleaning Procedures

7.4 Worst Case Rating

8.0 DETERMINATION OF THE AMOUNT OF RESIDUE

8.1 Introduction

8.2 Validation Requirements

8.3 Sampling Methods

8.4 Analytical Methods

9.0 CLEANING VALIDATION PROTOCOL

9.1 Background

9.2 Purpose

9.3 Scope

9.4 Responsibility

9.5 Sampling Procedure

9.6 Testing procedure

9.7 Acceptance criteria

9.8 Deviations

9.9 Revalidation

10.0 VALIDATION QUESTIONS

11.0 REFERENCES

12.0 GLOSSARY

13.0 COPYRIGHT AND DISCLAIMER

1.0 FOREWORD

This guidance document was updated in 2014 by the APIC Cleaning Validation Task Force on behalf of the Active Pharmaceutical Ingredient Committee (APIC) of CEFIC.

The Task Force members were:

- Annick Bonneure, APIC, Belgium

- Tom Buggy, DSM Sinochem Pharmaceuticals, the Netherlands

- Paul Clingan, MacFarlan Smith, UK

- Anke Grootaert, Janssen Pharmaceutica, Belgium

- Peter Mungenast, Merck KGaA, Germany.

- Luisa Paulo, Hovione FarmaCiencia SA, Portugal

- Filip Quintiens, Genzyme, Belgium

- Claude Vandenbossche, Ajinomoto Omnichem, Belgium

- Jos van der Ven, Aspen Oss B.V., the Netherlands

- Stefan Wienken, BASF, Germany

With support and review from:

- Pieter van der Hoeven, APIC, Belgium

- Anthony Storey, Pfizer, UK

- Rainer Fendt, BASF, Germany

A further revision of the guidance document has now been done in 2016 to bring it in line with the European Medicines Agency Guidance on use of Health Based data to set acceptance criteria for cleaning. The main changes were introduced in Chapter 4, Acceptance Criteria.

The subject of cleaning validation in active pharmaceutical ingredient manufacturing plants has continued to receive a large amount of attention from regulators, companies and customers alike.

The integration of Cleaning Validation within an effective Quality System supported by Quality Risk Management Processes should give assurance that API Manufacturing Operations are performed in such a way that Risks to patients related to cleaning validation are understood, assessed for impact and are mitigated as necessary.

It is important that the requirements for the finished manufacturing companies are not transferred back in the process to active pharmaceutical ingredient manufacturers without consideration for the different processes that take place at this stage.

For example, higher limits may be acceptable in chemical production compared to pharmaceutical production because the carry-over risk is much lower for technical and chemical manufacturing reasons

The document reflects the outcome of discussions between APIC member companies on how cleaning validation requirements could be fulfilled and implemented as part of routine operations.

In addition, APIC has aligned this guidance with the ISPE Risk MaPP Guide1 that follows the Quality Risk Management Processes as described in the ICH Q9 Guidance on Quality Risk Management.

A further revision of the Guidance has now been done to include the general principles of the EMA Guideline2 on setting health based exposure limits for determining safe threshold values for the cleaning of API’s in shared facilities.

The criteria of Acceptable Daily Exposure (ADE) or Permitted Daily Exposure (PDE) are recommended to be used by companies to decide if Dedicated Facilities are required or not and to define the Maximum Acceptable Carry Over (MACO) of API’s in particular, in Multi-Purpose Equipment.

Chapter 6 defines factors that should be considered in controls of the cleaning processes to manage the risks related to potential chemical or microbiological contamination.

The PDA Technical Report No. 29 –Points to Consider for Cleaning Validation3is also recommended as a valuable guidance document from industry.

The following topics are discussed in the PDA document: Cleaning process (CIP/COP): design and qualification

-Types of residues, setting acceptance criteria, sampling and analytical methods

-Maintenance of the validated state: critical parameters measurements, process alarms, change control, trending & monitoring, training and periodic review -Documentation

2.0 Objective

This document has been prepared to assist companies in the formulation of cleaning validation programmes and should not be considered as a technical standard but a starting

1 ISPE Baseline? Pharmaceutical Engineering Guide, Volume 7 – Risk-Based Manufacture of Pharmaceutical Products, International Society for Pharmaceutical Engineering (ISPE), First Edition, September 2010,

https://www.360docs.net/doc/ad4079287.html,.

2European Medicines Agency, EMA/CHMP/CVMP/SWP/169430/2012, Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities.

3 Parenteral Drug Association (PDA) Guidance for Industry. Technical Report No. 29 (Revised 2012) Points to

Consider for Cleaning Validation, Destin A. LeBlanc, Gretchen Allison, Jennifer L. Carlson, Koshy George, Igor Gorsky, Irwin S. Hirsh, Jamie Osborne, Greg Randall, Pierre-Michel Riss, George Verghese, Jenn Walsh, Vivienne Yankah.

point for internal discussions. The document includes examples on how member companies have dealt with specific areas and issues that arise when performing cleaning validation.

3.0 Scope

Six specific areas are addressed in this Guidance document:

?Acceptance Criteria

?Levels of Cleaning

?Control of the cleaning process

?Bracketing and Worst Case Rating

?Determination of the amount of residue

?Cleaning Validation Protocol

Finally, the most frequently asked questions are answered to give further guidance on specific points related to cleaning validation.

4.0 Acceptance Criteria

4.1. Introduction

Companies must demonstrate during validation that the cleaning procedure routinely employed for a piece of equipment limits potential carryover to an acceptable level. The limits established must be calculated based on sound scientific rational.

This section provides practical guidance as to how those acceptance criteria can be calculated. It is important that companies evaluate all cases individually. There may be specific instances where the product mix in the equipment requires further consideration.

The acceptance criteria preferably should be based on the Acceptable Daily Exposure (ADE) or Permitted Daily Exposure (PDE) calculations whenever this data is available.

The APIC Guidance refers primarily to ADE in the examples of calculations included in this chapter, in line with the ISPE recommended calculations.

The ADE/ PDE define limits at which a patient may be exposed every day for a lifetime with acceptable risks related to adverse health effects. Calculations of ADE/ PDE of API’s and intermediates are usually done with involvement of industrial hygienists and toxicologists, who review all available toxicology and clinical data to set the limits. The justification of the calculation should be documented.

In many cases Occupational Exposure Limits (OEL) will be de fined for API’s, Intermediates and Industrial Chemicals by Industrial Hygienists and toxicologists and the OEL data is then used to define containment measures such that operators are adequately protected while working with the chemicals.

The OEL data can also be used to calculate the ADE / PDE for setting the acceptance criteria for cleaning of equipment.

In certain cases where availability of pharmacological or toxicological data is limited, for example for chemicals, raw materials, Starting Materials, intermediates or API’s in early phase clinical trials, cleaning limits based on fraction of clinical doses, LD50 and / or general cleaning limits may be calculated. In these cases, carcinogenic, genotoxic and potency effect of these structures should be evaluated by toxicologists.

The acceptance criteria for equipment cleaning should be based on visually clean in dry conditions and an analytical limit.

Unlike in pharmaceutical production, where residues on the surface of equipment may be 100 % carried over to the next product, in API production the carry-over risk is much lower for technical and chemical manufacturing reasons. Therefore all the following examples for calculating the limits can be adapted to the suitable situation by using different factors. A competent chemist with detailed knowledge about the equipment and the chemical processes and the properties of the chemicals involved such as solubility should justify this factor by evaluating the specific situation.

4.2. Methods of Calculating Acceptance Criteria

4.2.1 Acceptance criteria using health-based data

The Maximum Allowable Carryover (MACO) should be based upon the Acceptable Daily Exposure (ADE) or Permitted Daily Exposure (PDE) when this data is available. The principle of MACO calculation is that you calculate your acceptable carry-over of your previous product, based upon the ADE / PDE, into your next product.

Procedure

Calculate the ADE (Acceptable Daily Exposure) or PDE (Permitted Daily Exposure) according to the following equations and use either result for the calculation of the MACO.

NOAEL x BW

ADE = ------------------------------

UFc x MF x PK

NOAEL x BW

PDE = ------------------------------

F1 x F2 x F3 x F4 x F5

From the ADE / PDE number, a MACO can be calculated according to:

ADE / PDE previous x MBS next

MACO = ---------------------------------------------

TDD next

MACO Maximum Allowable Carryover: acceptable transferred amount from the previous product into your next product (mg)

ADE Acceptable Daily Exposure (mg/day)

PDE Permitted Daily Exposure (mg/day)

NOAEL No Observed Adverse Effect Level (mg/kg/day)

BW Is the weight of an average adult (e.g. 70 kg)

UFc Composite Uncertainty Factor: combination of factors which reflects the inter-individual variability, interspecies differences, sub-chronic-to-chronic

extrapolation, LOEL-to-NOEL extrapolation, database completeness.

MF Modifying Factor: a factor to address uncertainties not covered by the other factors

PK Pharmacokinetic Adjustments

F1-F5A djustment factors to account for uncertainties. Refer to EMA Guidance 2 for further explanation.

TDDnext Standard Therapeutic Daily Dose for the next product (mg/day)

MBSnext Minimum batch size for the next product(s) (where MACO can end up) (mg)

Instead of calculating each potential product change situation, the worst case scenario can be chosen. Then a case with most active API (lowest ADE or PDE) is chosen to end up in the following API with the smallest ratio of batch size divided with TDD (MBS/TDD ratio).

If OEL data is available, the ADE or PDE can be derived from the OEL.

4.2.2. Acceptance criteria based on Therapeutic Daily Dose

When limited toxicity data is available and the Therapeutic Daily Dose (TDD) is known, this calculation may be used. It is used for final product changeover API Process —A to API Process —B.

Procedure

Establish the limit for Maximum Allowable Carryover (MACO) according to

the following equation.

TDD previous x MBS next

MACO = --------------------------------------

SF x TDD next

MACO Maximum Allowance Carryover: acceptable transferred amount

from the previous product into your next product (mg) TDDprevious Standard Therapeutic Daily Dose of the investigated product (in

the same dosage from as TDD next) (mg/day)

TDDnext Standard Therapeutic Daily Dose for the next product (mg/day)

MBSnext Minimum batch size for the next product(s) (where MACO can

end up (mg)

SF Safety factor (normally 1000 is used in calculations based on

TDD).

4.2.3. Acceptance criteria based on LD50

In cases where no other data is available (e.g. ADE, OEL, TDD,…) and only LD50 data is available (e.g. chemicals, intermediates, detergents, …), the MACO can be based upon LD50 data.

Procedure

Calculate the so called NOEL number (No Observable Effect Level) according to the following equation and use the result for the establishment of MACO (See [3] on page 53 - for reference).

LD50x BW

NOEL = ---------------------------

2000

From the NOEL number a MACO can be calculated according to:

NOEL previous x MBS next

MACO = ------------------------------------------

SF next x TDD next

MACO Maximum Allowance Carryover: acceptable transferred amount from the previous product into your next product (mg)

NOEL previous No Observed Effect Level (mg/day)

LD50 Lethal Dose 50 in mg/kg animal. The identification of the animal

(mouse, rat etc.) and the way of entry (IV, oral etc.) is important

(mg/kg)

BW Is the weight of an average adult (e.g. 70 kg) (kg)

2000 2000is an empirical constant

TDDnext Standard Therapeutic Daily Dose for the next product (mg/day) MBSnext Minimum batch size for the next product (s) (where MACO can end up)

SFnext Safety factor

The safety factor (SF) varies depending on the route of administration (see below). Generally a factor of 200 is employed when manufacturing APIs to be administered in oral dosage forms.

Safety factors: Topicals 10 – 100

Oral products 100 – 1000

Parenterals 1000 – 10 000

4.2.4 General Limit as acceptance criteria

If MACO calculations result in unacceptably high or irrelevant carryover figures, or toxicological data for intermediates are not known, the approach of a general limit may be suitable. Companies may choose to have such an upper limit as a policy. The general limit is often set as an upper limit for the maximum concentration (MAXCONC) of a contaminating substance in a subsequent batch.

Procedure

Establish MACOppm, based on a general limit, using the following equations.

MACO ppm= MAXCONC x MBS

MACOppm Maximum Allowable Carryover: acceptable transferred amount from the investigated product (“previous”). Calculated from general ppm

limit.

MAXCONC General limit for maximum allowed concentration (kg/kg or ppm) of

“previous” substance in the next batch.

MBS Minimum batch size for the next product(s) (where MACO can end

up)

E.g. for a general limit of 100 ppm: MACO = 0.01% of the minimum batch size (MBS), and for a general limit of 10 ppm: MACO = 0.001% of the minimum batch size (MBS).

A general upper limit for the maximum concentration of a contaminating substance in a subsequent batch (MAXCONC) is often set to 5-500 ppm (100 ppm in APIs is very frequent) of the previous product into the next product depending on the nature of products produced from the individual company (e.g. toxicity, pharmacological activity,…).

The Threshold of Toxicological Concern (TTC) concept could be applied to intermediates or API’s w ith no clinical (e.g. early development) or toxicological data. This concept includes three categories of products with limited or no data:

?Products that are likely to be carcinogenic;

?Products that are likely to be potent or highly toxic;

?Products that are not likely to be carcinogenic, potent or highly toxic.

The corresponding ADE’s recommended for these three categories are 1, 10, 100 μg/day, respectively.

Note - If you decide to employ the concept of levels of cleaning (ref. section 5), then different safety factors (ppm limits) may be used for different levels. Especially if the product cleaned out is within the same synthetic chain and covered by the specification of the API, much higher (qualified) levels are acceptable.

4.2.5 Swab Limits

If homogeneous distribution is assumed on all surfaces, a recommended value can be set for the content in a swab. The maximum allowable carry over from one batch to another can be established based on e.g. ADE, NOEL or TDD (see above). If the total direct contact surface is known, the target value for contamination per square meter can be calculated according

equation 4.2.5-I. This can be used as basic information for preparation of a method of analysis and detection limit.

MACO [μg]

Equation 4.2.5-I Target value [μg/dm 2

] = ------------------------- Total surface [dm 2]

Also other methods with different swab limits for different surfaces in a piece of equipment and/or equipment train can be used. If the equipment can be divided in several parts, different swab limits may be taken for the different parts building up the equipment train. If the result of one part is exceeding the target value, the whole equipment train may still be within the MACO limit. The Carry Over is then calculated according equation 4.2.5-II (see below).

During equipment qualification and cleaning validation hard to clean parts can be determined. Rather than declaring the hard to clean part as the worst case swab limit for the whole equipment train, it could be separated and dealt with as mentioned above. It should be noted that different types of surfaces (e.g. stainless steel, glass lined, Teflon) may show different recoveries during swabbing. In those cases it may be beneficial to divide the equipment train in several parts, and combine the results in a table or matrix. The total calculated amount should be below the MACO, and the individual swab results should not exceed the maximum expected residues established during cleaning validation / equipment qualification. Recovery studies and method validation are necessary when applying swabbing as a method to determine residues.

2020年度WHO清洁验证指南

2020年度WHO清洁验证指南(中文版) 附录3 清洁验证 世界卫生组织药物制剂规范专家委员会第十四次报告。日内瓦,世界卫生组织;2006:附件4(世卫组织技术报告系列第937号) 1.原则 2.范围 3.概述 4.清洁验证方案和报告 5.人员 6.设备 7.清洁剂 8.微生物 9.取样 10.分析方法 11.确定可接受标准 (1)原则 1.1药品质量管理规范(GMP)的目标包括防止可能的污染、药物原料和产品的交叉污染。 1.2药品可能被各物质污染,如与微生物有关的污染物,产品(包括原料药和赋形剂残留)、清洁剂、空气传播的物料,如微尘和颗粒物。润滑剂和辅料材料,如消毒剂、残留降解产物:例如,在清洗的过程中使用强酸和强碱会导致产品残渣分解。洗涤剂、酸和碱的分解产物,可作为清洗工艺的一部分。 1.3适当的清洗程序对防止污染和交叉污染具有重要作用。清洗方法的验证需提供文件证明,经批准的清洗程序将提供与预期用途相适应的清洁设备。 1.4清洁验证的目的是证明设备对产品、洗涤剂和微生物残留物的清洗均能达到可接受水平,以防止可能的微生物污染和交叉污染。 1.5清洁验证对于非关键性的清洗并不一定是必须的,例如批次相同的产品(或散装过程中相同中间体的不同批次)、地板、墙壁、容器外部以及一些中间步骤

之间的清洗。 1.6清洁验证在多产品生产设备清洁中是很重要的,并应在设备、消毒程序和服装洗涤等方面进行验证。 2.范围 2.1指南里描述了清洁验证的一般方面,不包括可能需要的特殊清洁验证或灭活,例如,在生物制造业中去除病毒或支原体污染物。 2.2一般情况下,清洁验证适用于关键清洁,例如,在生产一种产品与另一种产品,与产品、药品和原料药接触的表面的清洗。 3.概述 3.1要有详细的书面标准操作规程(SOP),说明设备和仪器的清洗过程。清洗程序应该经过验证。 3.2制造商应制定清洗策略和一定的清洗验证程序,包括:与产品的接触表面;产品转换后的清洗(当一种药物配方被另一种完全不同的配方替换时);在批次之间的活动(当同一配方是在一段时间内,在不同的日期生产);用于清洁验证的产品组。(这种情况经常发生在产品中含有具有类似性质(如溶解度)或具有不同强度的相同物质的地方。一种可接受的策略是首先制造含量较低的剂型(不一定是最低剂量),然后是含量较高的形式。)有时产品的“组”在活性物质或赋形剂方面略有不同。需定期评估和再清洁验证之间生产的批次数。 3.3至少连续三次应用清洁程序,并证明是成功的,以证明该方法是有效的。 4.清洁验证方案和清洁验证报告 4.1清洁验证应在清洁方案中进行描述,该方案应得到正式批准,例由质量控制或质量保证部门批准。 4.2在制定清洁验证方案时,应考虑一下事项: 系统拆卸 预清洗 清洁剂、浓度、溶液体积、水的质量 时间和温度 流速、压力和冲洗 设备复杂性及设备设计

原料药生产设备清洁验证的范围和程度评估

原料药生产设备清洁验证的范围和程度评估 全合成前天 工艺设备的清洁很多年前已经成为药品生产安全的一部分,世界各国GMP 均对设备的清洁提出要求。我国新版GMP 中规定:清洁方法应当经过验证,证实其清洁的效果以有效防止污染和交叉污染。清洁验证应当综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。 美国FDA 的cGMP 中提到“间隔一定时间应该对设备和用具进行清洗、维护和消毒,防止可能的故障和污染及改变药品安全性、均一性、效价、质量和纯度”。欧盟GMP 中提到“生产设备的设计必须容易进行彻底清洁,必须按照详细的书面操作规程进行清洁并贮存在清洁干燥的条件下。洗涤和清洁设备必须正确选择,保证在使用时不会带来污染”。严格来说,任何一种清洁方法均无法将设备中的残留物完全清除,清洁验证的目的就是评价一个清洁方法的可行性和有效性。清洁验证的结论是否正确,是否能够证明某一清洁程序的有效性,则取决于清洁验证中所用策略或方法的科学性和合理性。 1 原料药生产的一般特点 原料药是指通过化学合成、半合成以及微生物发酵或天然产物分离获得的,经过一个或多个化学单元反应及其操作制成的,用于制造药物制剂的活性成分,简称API(active pharmaceutical ingredient)。原料药的工艺复杂多样,往往包含复杂的化学变化或生物变化过程。一般而言,在制剂生产过程中,物料很少有化学结构的变化,

但在API 生产过程中,物料的化学结构变化是经常发生的,往往会产生副产物,最终通常需要纯化。另外,由于API 制备工艺过程较长,往往包含多个子工序和反应步骤,因此涉及众多生产设备。根据化学合成API 的一般生产工艺流程( 图1) ,所需设备主要包括反应釜、过滤器、离心机、干燥机、粉碎机、混合机等。 清洁验证的最终目的是减少污染和交叉污染。API 生产中的污染可能更多地来自于设备中物料的降解。值得注意的是,API 生产中的同一反应设备可能会用于不同的反应,这种情况就需考虑交叉污染。API 生产的工艺特点以及设备特点,决定了其生产清洁验证是一项工程量很大的工作。因此,如何在有效合理的评估下确定清洁验证的范围和程度显得十分必要和需要。 2 原料药生产清洁验证范围的确定

设备清洁验证指南

第四节设备的清洁验证 关于清洁验证的原理及方法将在第三篇第二章详细介绍,制剂生产验证各章亦对相应设备的清洗验证要点进行介绍,可以参阅这些章节的内容。 考虑到制药设备验证的完整性,应包括设备的确认,变动控制程序、仪器仪表的校准和清洗验证。在此对设备的清洁验证从方法上作简单介绍。 设备清洗有自动清洗和人工清洗两种方法,或者两种方法的结合。 所谓清洗是从工艺设备或贮存设备中清除污染物的工艺过程,以保证设备能够安全地进行下一步的产品生产,它包括清洗、消毒和贮存。 设备清洁验证的目的是通过测试证明该设备的自动清洗程序(CIP)或人工清洗程 序能够清除设备部件上的活性药物残留物,并达到可接受的合格标准,并证明此清洁程序具有稳定性和重演性。 一、设备清洁验证中常用的术语 ①人体接触剂量限度(SEL,Subject E×posure Limit)。指一个没有药理学和毒理 学经验的人可以接触的某一药物的暴露剂量。 ②允许残留浓度(ARL,Allowable Residual Limit).指某一设备经清洗后,其表面残留的药物(或清洁剂)的最大允许量。 ③活性成分(API,Active Pharmaceutical lngredient;或ADS,Active Drug Substance):指在某一药物中代表效用的物质。这种物质在制造、工艺或包装过程中就变成了一种活性成分或者药物的最终成型形式。活性成分在疾病诊断、治疗、缓解、处理或预防方面提供药理上的活力或其他直接的作用,以致影响人体或动物的组织和功能。 API 在工艺制造过程中产生,如:①化学合成;②发酵;③重组DNA 或其他 生物工艺;④从自然资源上分离或取得;⑤ 其他工艺的任何组合等。对设备清洁验证来说,API 包括中间体及成品。 一般来说,SEL、ARL 的允许值应从药物安全评价部门获取。 二、验证设计 在验证取样测试时,若发现洗过的设备明显不干净,应立即停止验证,有明显的残留物存在表明现有的清洁程序是不合适的,因此必须在验证开始前重新评价清洁程序。从某种意义上来说,清洁验证就是对清洗标准操作规程的验证。 清洁验证主要是通过擦拭取样法和冲洗取样法对活性成分APl 进行测试。另外可根据日常使用的需要,增加一些其他项目的测试,如清洁剂、酸液、溶剂、消毒剂等残留量的测试。 大部分企业在设备清洗中使用的清洁剂是水(包括饮用水、纯化水和注射用水),原因之 一就是使用化学清洁剂要作清洁剂残留量的测试,从而增加清洗的难度。 制造部门在设备清洁程序中任何关于清洁剂、溶剂、添加剂的改变必须填写变动控制表, 得到批准后执行。并非所有的设备清洁验证需做活性成分APl 的测试。根据APl 是否在特殊的清洁剂或溶剂中溶解而使设备难以清洗的程度来对APl 的浓度作 出评价o APl 允许浓度可根据公式来计 算,如果人体接触剂量限度SEL 太低无法达到时,可用替代基质来覆盖所有的 产品。 (一)验证次数

洁净区离心机清洁验证方案

洁净区离心机 (咪喹莫特用)清洁验证方案天方药业有限公司

目录 一、目的 (1) 二、适用范围 (1) 三、职责 (1) 四、内容 (1) 1、概述 (1) 2、风险评估结果 (1) 3、参考资料 (2) 4、验证小组成员 (2) 5、验证前资料检查 (3) 6、验证原理 (4) 7、清洁方法及清洁产品 (4) 8、接受标准限度 (4) 9、取样部位的确定 (5) 10、取样方法及回收率测定 (5) 11、检验方法 (7) 12、清洁验证结果 (7) 13、清洁有效期的验证 (8) 14、偏差分析与整改 (9) 15、结果分析及评价: (9) 16、再验证: (9) 17、相关文件: (9) 18、相关记录: (9) 19、文件发放范围: (9) 20、附件: (9)

洁净区离心机 (咪喹莫特用)清洁验证方案 一、目的 建立《洁净区离心机(咪喹莫特用)清洁验证方案》,确认用于咪喹莫特产品离心甩滤时,按《离心机(34)清洁标准操作规程》清洗后,设备上的的残留物不超过规定的清洁限度要求,不会对将生产的产品造成交叉污染,证明《离心机(34)清洁标准操作规程》的有效性,保证药品质量。 二、适用范围 适用于《离心机(34)的清洁标准操作规程》的验证。 三、职责 1、验证小组成员负责《洁净区离心机(咪喹莫特用)清洁验证方案》的起草与实施。 2、质量管理部负责验证方案的审核与验证过程的监督。 四、内容 1、概述 合成车间洁净区离心机(34)是咪喹莫特离心甩滤所用设备,在药品生产中主要通过高速旋转使结晶液固液分离。其规格型号为PSL-1000。本次验证对《离心机(34)清洁标准操作规程》的可行性进行确认,评价在整个设备内表面(或与物料所接触部位)的潜在残留量和微生物污染情况,以保证药品的生产是在符合GMP要求的情况下生产的。使用该设备生产产品时没有来自上批产品及清洗过程所带来污染的风险,从而制造出安全、符合质量标准的原料药。 2、风险评估结果 清洁验证实施前,对影响清洁验证效果的风险因素进行评估,评估结果如下: 低风险点:人员因素中人员培训不到位及身体健康状况不能满足卫生要求,设备因素中设备材质及维护、清洁剂的清洗设计参数不合理,原辅料因素中清洁剂残留量超标,环境因素中环境洁净度超标造成微生物污染、设备使用后清洁之前污染情况过于严重导致无法使用。 中风险点:人员因素中人员清洁操作失误、人员取样位置不具有代表性,原辅料

APIC颁布原料药工厂清洁验证指南

APIC颁布原料药工厂清洁验证指南 An APIC multinational working group has compiled a new guidance on cleaning validation with the title "APIC Guidance on Aspects of Cleaning Validation in Active Pharmaceutical Ingredients Plants". Publication date is May 2014 and the document can be downloaded from the APIC website. The following is a summary description of the document. The document contains 55 pages and is subdivided into 13 chapters. APIC多国工作组汇编了新的清洁验证指南,题为“APIC原料药工厂清洁验证指南面面观”。颁布日期为2014年5月,文件可以从APIC官网下载。以下是该文件的摘要。文件包括55页,分为13章。 Foreword 前言 Objective 目的 Scope 范围 Acceptance Criteria 可接受标准 Levels of Cleaning 清洁水平 Control of Cleaning Process 清洁工艺控制 Bracketing and Worst Case Rating 括号法和最差情况分类法 Determination of the Amount of Residue 残留量的检测 Cleaning Validation Protocol 清洁验证方案 Validation Questions 验证问题 References 参考文献 Glossary 术语 Copyright and Disclaimer 版权和声明 The topic cleaning validation gained new importance in the EU with the publication of the EMA Guideline "Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities" and with the chapter Cleaning Validation in the draft of the revision of Annex 15. The foreword refers to the integration of cleaning validation within a quality system supported by quality risk management processes in order to protect the patients. According to the authors the document is aligned with ISPE Risk-MaPP

中英对照-APIC 原料药厂清洁验证指南:7.0 分组法(括号法)

APIC 201405原料药厂清洁验证指南:7.0 分组法(括号法)和最差情况分级(中英文) 2014-07-15julia翻译蒲公英 7.0 Bracketing and Worst Case Rating 分组法(括号法)和最差情况分级 7.1 Introduction 介绍 The cleaning processes of multiple product use equipment in API facilities are subject to requirements for cleaning validation. The validation effort could be huge. In order to minimize the amount of validation required, a worst case approach for the validation can be used. 原料药工厂中的多产品设备清洁要求进行清洁验证。清洁工作量会比较大。为了减少验证的工作量,可以采用最差情形方法进行验证。 By means of a bracketing procedure the substances are grouped. 采用分组法时,物质按类进行分组。 A worst case rating procedure is used to select the worst case in each group. 然后在每组中采用最差情形分级法选择各组中最差的情况。 Validation of the worst case situation takes place. However, it is of utmost importance that a documented scientific rational for the chosen worst cases exists. 对最差情形进行验证。至关重要的是,选择最差情形的科学合理性要进行记录。This chapter gives an overview of the suggested work to be carried out, the acceptance criteria and the methodology for evaluation of the data. It should be emphasized that this is only an example to give guidance. The equipment, the substances produced and the procedures in place may vary; and this results in other solutions than those given in this example.

APIC原料药厂清洁验证指南(201405 中英文)

APIC原料药厂清洁验证指南(201405中英文) ACTIVE PHARMACEUTICAL INGREDIENTS COMMITTEE (APIC) GUIDANCE ON ASPECTS OF CLEANING VALIDATION IN ACTIVE PHARMACEUTICAL INGREDIENT PLANTS APIC原料药工厂中清洁验证指南 May 2014 Table of Contents

1.0 FOREWORD 前言 The original version of this guidance document has now been updated by the APIC Cleaning Validation Task Force on behalf of the Active Pharmaceutical Ingredient Committee (APIC) of CEFIC. 本指南文件的原版本现已由APIC清洁验证工作组代表CEFIC的APIC委员会进行了更新。 The Task Force members are:- 以下是工作组的成员 Annick Bonneure, APIC, Belgium Tom Buggy, DSM Sinochem Pharmaceuticals, The Netherlands Paul Clingan, MacFarlan Smith, UK Anke Grootaert, Janssen Pharmaceutica, Belgium Peter Mungenast, Merck KGaA, Germany. Luisa Paulo, Hovione FarmaCiencia SA, Portugal Filip Quintiens, Genzyme, Belgium Claude Vandenbossche, Ajinomoto Omnichem, Belgium Jos van der Ven, Aspen Oss B.V., The Netherlands Stefan Wienken, BASF, Germany. With support and review from:- 以下为提供支持和进行审核的人员 Pieter van der Hoeven, APIC, Belgium Anthony Storey, Pfizer, U.K. Rainer Fendt, BASF, Germany. The subject of cleaning validation in active pharmaceutical ingredient manufacturing plants has continued to receive a large amount of attention from regulators, companies and customers alike. 原料药生产工厂的清洁验证一直是法规人员、公司和客户等关注的问题。 The integration of Cleaning Validation within an effective Quality System supported by Quality Risk Management Processes should give assurance that API Manufacturing Operations are performed in such a way that Risks to patients related to cleaning validation are understood, assessed for impact and are mitigated as necessary. 原料药生产企业应将清洁验证与有效的质量体系相结合,由质量风险管理来支持,了解与清洁验证相关的患者风险,评估其影响,并在必要时降低风险。 It is important that the requirements for the finished manufacturing companies are not transferred back in the process to active pharmaceutical ingredient manufacturers without consideration for the different processes that take place at this stage. 重要的是,不能将对制剂生产企业的要求直接用于原料药生产商,而不考虑在此阶段所用生产工艺的差异。 For example, higher limits may be acceptable in chemical production compared to pharmaceutical production because the carry-over risk is much lower for technical and chemical manufacturing reasons 例如,与制剂生产相比,化学生产可以接受较高的残留限度,因为技术原因,化学生产所带入后续产品的残留风险会低很多。

2010版实施指南清洁验证

2010版实施指南清洁验证 【技术要求】应根据产品性质、设备特点、生产工艺等因素拟定清洁方法并制定清洁规程。制定清洁规程时应考虑各种设备的清洁周期、设备的拆卸、清洁剂的选择、清洗方法(包括清洗次序、各种参数等)、清洁效果的确认、设备贮存管理等。验证方案中最关键技术问题为如何确定限度,用什么方法能准确地定量残留量,清洁验证不应采用“不断测试,直至清洁”的方式。 【要点分析】 A. 清洁方法和清洁规程的检查要点 1必须保证清洁效果和重现性 2固定所有可变量,包括: ①设备拆卸程度和装配方法 ②清洁剂名称与成分 ③清洁溶液的浓度、数量和配制方法 ④清洁溶液的温度、流速、接触时间 ⑤清洁各步骤、部位 ⑥已清洁设备的放臵时间 ⑦已清洁设备的保留时间 3清洁规程要点:严密,易懂,可操作 ①拆卸、连接:应规定清洁一台设备需要拆卸的程度。 ②预洗/检查:应建立相对一致的起始点,以提高随后各步操作的重现性,重点在于检查。 ③清洗:重点在固定各参数,必须明确规定清洁剂的名称、规格和使用的浓度以及配制该清洁溶液的方法,应明确清洁剂的组成,必须规定温度控制的范围、测量及

控制温度的方法。 ④淋洗:目的在于洗去清洁剂。为提高淋洗效率,宜采用多次淋洗的淋洗方法。 ⑤干燥:根据需要决定是否进行干燥。除去设备表面的残留水分可防止微生物生长。 ⑥检查:发现可能的意外,及时发现,便于采取补救措施,而不危害下批产品。 ⑦储存:规定已清洁设备和部件的储存条件和最长储存时间,以防止再次污染。 ⑧装配:应规定装配的各步操作,附以图表和示意图以利于操作者理解。此外,要注意装配期间避免污染设备和部件。 B. 清洗验证的要求 1建议至少进行连续三批的验证 ①每批生产后按照清洁规程清洁,按验证方案检查清洁效果、取样并化验。重复上述过程三次。三次试验的结果均应符合预定标准。 ②不得采用重新取样再化验直至合格的方法。如检测不合格,应调查原因为清洁方法不当还是人员操作失误等原因。如为清洁方法原因,应重新制定清洁规程,重新取样,进行验证。 2采用已经验证的分析方法。 检验方法应足以检测出设定合格限度水平的残留或污染物。 3对擦拭取样方法验证 ①棉签擦拭方法需进行回收率验证。 ②取样点的选择应有代表性,考虑取样部位材质、取样面积等因素,应同待检测设备相适应。 4根据具体情况进行再验证 ①在发生各种变更时,需进行评估是否必要再进行清洁验证。

清洁验证检查FDA指南(中英文对照)

《美国FDA认证与申办指南》 权威资讯系列 清洗过程验证检查指南 GUIDE TO INSPECTIONS VALIDATION OF CLEANING PROCESSES 正大资询 清洗过程验证检查指南 GUIDE TO INSPECTIONS VALIDATION OF CLEANING PROCESSES 请注意:本指南是检查官和其他FDA人员的参考材料。本指南不受FDA约束,并没有赋予任何人任何权利、特权、收益或豁免权。 Note: This document is reference material for investigators and other FDA personnel. The document does not bind FDA, and does no confer any rights, privileges, benefits, or immunities for or on any person(s).

I.介绍 I. INTRODUCTION 自从机构文件,包括原料药化学制剂检查指南和生物制剂检查指南,大体上提到该清洗问题以来,就出现了关于清洗过程验证的大量讨论。这些机构文件清晰的建立了要验证的清洗过程需要达到的要求。 Validation of cleaning procedures has generated considerable discussion since agency documents, including the Inspection Guide for Bulk Pharmaceutical Chemicals and the Biotechnology Inspection Guide, have briefly addressed this issue. These Agency documents clearly establish the expectation that cleaning procedures (processes) be validated. 本指南是为了通过讨论实际操作是可接受的(或不可接受的),来建立检查要求的一致性和统一性。同时,对清洗验证需要了解的是,像其他过程验证一样,可能有不止一种方法来对过程进行验证。最后,任何验证过程的测试就是指科学数据是否显示出系统与要求相符和产生的结果是否符合预先定义的参数指标。 This guide is designed to establish inspection consistency and uniformity by discussing practices that have been found acceptable (or unacceptable). Simultaneously, one must recognize that for cleaning validation, as with validation of other processes, there may be more than one way to validate a process. In the end, the test of any validation process is whether scientific data shows that the system consistently does as expected and produces a result that consistently meets predetermined specifications. 本指南只适用于化学残留物的设备清洗。 This guide is intended to cover equipment cleaning for chemical residues only. II.背景 II. BACKGROUND 对于FDA来说,要求设备在使用前进行清洗并不新奇。1963GMP法规(部分133.4)中指出“设备***应该按照清洁和有序的方式进行维护***。” 在1978 CGMP法规中也包含了非常相似的有关设备清洗的章节(211.67)。当然,清洁设备的主要理由是防止药品被污染或掺假。在历史上,FDA检查官寻找由于对设备不当的清洗和维护和/或不良的灰尘控制系统而带来的总体不卫生情况。而且,从历史上来说,FDA对非青霉素药品中的青霉素污染或药品中的活性激素或荷尔蒙交叉污染更加关注。有很多药品在过去十年中被撤回就是因为实际的或潜在的青霉素的交叉污染。 For FDA to require that equipment be clean prior to use is nothing new, the 1963 GMP Regulations (Part 133.4) stated as follows "Equipment *** shall be maintained in a clean and orderly manner ***." A very similar section on equipment cleaning (211.67) was

清洁验证方案

TSY-SCQ-002-01 目的:通过对颗粒剂生产设备清洁效果的验证,证实各设备按其清洁操作规程操作能够有效地除去残留物,达到预先规定的限度,从而 达到对下批产品无影响。 适用范围:适用生产车间(一)生产设备的清洁方法和储存有效期的确定。制定依据:依据《中国药典(2010年版)》、《药品生产质量管理规范(2010年修订)》、《药品生产验证指南(2003年版)》、设备相应清洁规 程操作文件,制订本验证方案。 内容: 1. 验证组织及职责 1.1验证组织见《验证总规划》,由清洁验证小组执行本验证方案。 1.2职责 第 1 页共20 页

TSY-SCQ-002-01 2. 概述 2.1根据GMP要求,在每次更换品种、批号或生产工序完成后,要认真按清洁规程,对设备、容器、生产场地进行清洁,以避免造成不同批号或不同品种产品之间的污染和交叉污染,有效地保证药品质量。 2.2设备清洁在制药生产中有特殊地位,生产设备的清洗是指从设备表面去除可见及不可见物质的过程。这些物质包括活性成分及其衍生物、辅料、清洁剂、环境污染物质、水冲洗残留物及设备运行过程中释放出的异物。为正确评估清洗程度的效果,需定期对直接接触药品的设备进行清洁验证。 3. 颗粒剂生产设备 3.1颗粒剂生产设备清单 第 2 页共20 页

TSY-SCQ-002-01 3.2本次验证设备的主要材质为304不锈钢。 3.3本次验证设备及与产品接触面积 第 3 页共20 页

TSY-SCQ-002-01 4. 验证周期 为了验证清洁方法的稳定性和可靠性,三批生产后,分别进行清洁验证。 5. 清洁验证准备工作 5.1进行生产设备清洁验证前,所有与清洁验证有关的仪器、设备应进行过校验或确认。仪表、计量器具等应校验合格,仪器、设备等应建立相应的操作、维护保养规程,对清洁验证的样品应建立相应的检验操作规程。本次清洁验证中所使用设备的确认情况及QC检验过程中所使用的仪器、设备、仪表、计量器具等确认或校验情况见附表。 5.2设备清洁规程及文件编号 5.3清洁介质及用品 清洁介质:饮用水、纯化水、压缩空气、75%乙醇 清洁用品:清洁布、一次性清洁布 第 4 页共20 页

原料药清洁验证方案知识讲解

目的: 1 生产过程中,由于存在产品的残留,容易对下次生产的产品造成污染,影响产品质量。这种污染主要来自于对设备清洁不彻底,极易造成微量污染。因此需要在连续生产一段时间后及换品种时,制定切实可行的设备清洁操作程序并按该程序进行清洁,设备上的残留物(可见的与不可见的,包括前一批次或前一品种的残留物及清洗过程中的残留溶剂)达到了规定的清洁限度要求,不会对将生产的产品造成交叉污染,以保证产品的质量。 2 为再验证提供数据资料。 范围: 工程设备部负责验证过程中设备的正常运行,对设备和设备系统的取样和操作提供帮助。人力资源部负责对验证相关人员组织培训。生技部负责指派生产人员按对应设备相应的设备清洁操作规程,对设备进行清洁,确保清洁操作满足规范要求,为验证操作及取样提供帮助。质量部负责组织起草验证方案并组织相关部门、人员实施验证。 内容: 1、验证实施小组成员 2.1生产过程中,待生产完后,设备中残留的物料为,残留的物料有可能对下批产品产生影响。因此,在生产完以后按清洁操作规程对设备进行大清洁,清洁后组织实施验证,以确保清洁规程能确实有效的对釜内残留的物料进行清除。

2.2验证时间:与生产时同步进行,记录连续三次大清洁检测结果 3、验证内容:

板框压滤机: 图二 板框压滤机清洗关键点示意图 三足离心机:

三足离心机清洗关键点示意图 振动筛: ②出料口

周转桶: 3.2.2 可接受标准 3.2.2.1 化学残留可接受限度:1/1000 生产的组小批量为500kg,最大允许残留量为:1/1000 ×500kg = 500g 擦拭法取样残留限度: 根据计算结果,最大允许残留量为500g,各个产品的内表面积一定,按产品平均分配到各个设备表面,其残留限量为: 擦拭测试:擦拭面积以10㎝×10㎝的区域计

清洁验证方案.

一引言 1 概述 贝诺酯合成车间生产设备均为专用型设备,专门用于单一品种、同一规格原料药的生产,各类型设备均制定有详细、完善的设备清洁规程和清洁记录,在生产工艺过程中与成品质量关系密切的清洗过程包括:氯化反应罐、酯化反应罐、离心机、板框压滤机、脱碳过滤系统、精制结晶罐、洁净区离心机、干燥箱、粉碎机、二维混合机等设备的清洗。同时,对洁净区的清洁进行验证,确认洁净厂房的清洁效果。本验证即针对以上关键环节的清洁规程和清洁效果进行清洁验证。 2 目的 通过对反应罐、离心机、脱碳过滤系统、精制结晶罐、洁净区离心机、气流干燥、气流粉碎等设备清洗过程的检查和监测,证明已经制定的设备清洁规程切实可行,能够达到保证药品质量的目标,文件资料符合GMP的管理要求,并为设备清洁规程的进一步修改和完善提供资料和依据。 3验证类别 本次验证为同步验证。 二参考资料 本文件参考了以下标准和指南: 1.中华人民共和国药典(2010版) 2.GMP(2010年修订版) 3.药品GMP指南 4.药品生产验证指南(2003版) 三验证准备 1 验证人员及职责 1.1 各部门的验证职责 质量负责人: 批准验证方案、验证报告。 生产负责人: 审核验证方案、验证报告。 生产运营部职责: 审核验证方案、验证报告。 提供公用系统保证。 提供设备维修保证。 针对不一致项界定解决办法。 负责测量仪器的校验,并提供校验证书。 生产车间职责: 起草、审核验证方案、验证报告。 组织实施验证方案。 收集相关数据,编写相关的验证报告。 对参与验证的人员完成必需的的培训。 指定操作人员,对生产设备进行操作,清洁和维护保养。 确定最终的SOP。 质量管理部职责: 负责审核验证方案。 负责监督严格按照验证方案及所依据文件规定方法和标准实施验证。 负责对验证过程中户县的偏差和变更评价和处理。 维护全部受控的文件符合法规。

APIC_清洁验证指南_201609 中英文

ACTIVE PHARMACEUTICAL INGREDIENTS COMMITTEE (APIC) GUIDANCE ON ASPECTS OF CLEANING VALIDATION IN ACTIVE PHARMACEUTICAL INGREDIENT PLANTS 原料药工厂中清洁验证指南 Revision September 2016

Table of Contents 目录

1.0 FOREWORD 前言 This guidance document was updated in 2014 by the APIC Cleaning Validation Task Force on behalf of the Active Pharmaceutical Ingredient Committee (APIC) of CEFIC. 本指南文件于2014年由APIC清洁验证工作组代表CEFIC的APIC委员会进行了更新。 The Task Force members are:- 以下是工作组的成员 ―Annick Bonneure, APIC, Belgium ―Tom Buggy, DSM Sinochem Pharmaceuticals, The Netherlands ―Paul Clingan, MacFarlan Smith, UK ―Anke Grootaert, Janssen Pharmaceutica, Belgium ―Peter Mungenast, Merck KGaA, Germany. ―Luisa Paulo, Hovione FarmaCiencia SA, Portugal ―Filip Quintiens, Genzyme, Belgium ―Claude Vandenbossche, Ajinomoto Omnichem, Belgium ―Jos van der Ven, Aspen Oss B.V., The Netherlands ―Stefan Wienken, BASF, Germany. With support and review from:- 以下为提供支持和进行审核的人员 ―Pieter van der Hoeven, APIC, Belgium ―Anthony Storey, Pfizer, U.K. ―Rainer Fendt, BASF, Germany. A further revision of the guidance document has now been done in 2016 to bring it in line with the European Medicines Agency Guidance on use of Health Based data to set acceptance criteria for cleaning. The main changes were introduced in Chapter 4, Acceptance Criteria. 本指南文件进一步修订已于2016年完成,使其与EMA使用基于健康数据设定清洁可接受标准的指南保持一致。主要变化在是第4章“可接受标准”中。 The subject of cleaning validation in active pharmaceutical ingredient manufacturing plants has continued to receive a large amount of attention from regulators, companies and customers alike. 原料药生产工厂的清洁验证一直是法规人员、公司和客户等关注的问题。 The integration of Cleaning Validation within an effective Quality System supported by Quality Risk Management Processes should give assurance that API Manufacturing Operations are performed in such a way that Risks to patients related to cleaning validation are understood, assessed for impact and are mitigated as necessary.

01 APIC清洗验证指南(APIC,中文)

活性药物成分清洁验证指南 APIC (Active Pharmaceutical Ingredients Committee) 2000.12

目录 1.0 前言 (1) 2.0 目标 (1) 3.0 范围 (1) 4.0 可接受标准 (1) 4.1 简介 (1) 4.2 可接受标准的计算方法 (1) 4.2.1 基于治疗日剂量 (1) 4.2.2 基于毒性数据 (3) 4.2.3 一般限度 (4) 4.2.4 擦拭限度 (5) 4.2.5 淋洗限度 (11) 5.0 清洁水平 (12) 5.1 简介 (12) 5.2 程序 (12) 6.0 分类和最坏情况评估(WCR) (14) 6.1 简介 (14) 6.2 分类程序 (15) 6.3 清洁程序 (17) 6.4 调查及最坏情况评估 (18) 6.5 最坏情况评估 (21) 7.0 残留量确定 (24) 7.1 简介 (24) 7.2 验证要求 (24) 7.3 取样方法 (29) 7.4 分析方法 (31) 8.0 清洁验证方案 (32) 8.1 背景 (33) 8.2 目的 (33) 8.3 范围 (33) 8.4 职责 (34) 8.5 取样程序 (34) 8.6 检测程序 (34) 8.7 可接受标准 (35) 8.8 与方案的偏差 (37) 9.0 验证相关的问题 (37) 10.0 参考书目 (40) 11.0 术语 (40) 12.0 版权和声明 (43)

1.0 前言 本指南由CEFIC的原料药委员会(APIC)清洁验证特别工作组所编写。 近年来,原料药厂的清洁验证这个主题受到了药政官员、公司与顾客的众多关注。重要的是,对制剂生产公司的要求没有反馈到原料药制造企业的工艺中,而没有考虑在本阶段不同的工艺。 本文件的主要内容是原料药委员会的成员公司关于如何满足清洁要求以及如何在日常操作中执行清洁验证的讨论结果。 本文件应当与原料药委员会发布的名为“Cleaning Validation in Active Pharmaceutical Ingredient Manufacturing Plants”的文件一道阅读。 2.0 目的 该文件仅用于帮助公司系统地完成清洁验证项目,不应被视为一种技术标准,而是内部讨论的一个起点。该文件还包括成员公司处理清洁验证过程中的特殊问题的例子。 3.0 范围 该指导文件包括五个区块,即: 可接受标准 清洁水平 分类和最坏情况评估 确定残留量 清洁验证方案 最后是常见问题的回复。 4.0可接受标准 4.1简介 公司必须在验证中证明,每件设备的日常清洁程序能将带入量(carry-over)限制在一个可接受水平范围内,而且限制范围的计算必须有科学根据。 第四章节介绍计算可接受标准的实用指南。而重要的是,公司要分别评估所有的清洁情况。对于有产品混合的设备的情况,需要进一步的考虑。 4.2可接受标准的计算方法 4.2.1基于治疗日剂量 这个计算方法的要求原则是,标准治疗日剂量的后续物质(“被污染”物质,在这里被称为“后续”物质)可以被不超过标准治疗日剂量的一定比例(一般为1/1000份)的清洁验证研究的物质(污染物质,在这里被成为“前”物质)所污染。只有当治疗日剂量已知时,这种方法才适用。通常成品原料药工艺“A”转换

相关文档
最新文档