电容电流测试方案

电容电流测试方案
电容电流测试方案

电容电流测试方案

1、目的

10-35KV系统为中性点不接地系统,通过测量系统对地电容电流,确定是否设置及如何设置消弧线圈,提高设备可靠性。

2、使用仪器:上海思源CI-2000I型电容电流测试仪

3、基本原理及试验接线

在系统的PT二次辅助线圈注入小电流的变频测量信号,对注入的测量信号进行计算分析,从而得出被测结果。

将仪器面板上的“输出”上输出线两端接到PT开口三角(二次低压侧)两个接线端子上(如果为4PT接线方式,则连接到零序PT 二次绕组即系统的N、L两端)。

4、需要测试范围:

其中立新站装有消弧线圈,蒋官屯站(10kV#1母线)装有消谐器。

5、测试班组及人员分工:

试验班、保护班、变压器班

测量分为对设备不停电和停电两种情况进行。

对不需一次设备停电的,由试验班人员负责办理第二种工作票,测试电容电流。保护班人员负责PT二次回路的确认。试验班人员负责必要的回路临时拆除及工作结束后恢复工作。

对装有消弧线圈的变电站(立新)需要将消弧线圈退出运行。

对需要一次设备停电的,由变压器班办理第一种工作票,并负责测量前临时拆除消谐器,使PT一次中性点直接可靠接地,测量完毕后消谐器恢复原运行方式。

6、试验班人员接触二次设备机会少,经验不足,在进行测试接线时,一人负责接线,一人负责监护,一定注意不要误碰其它二次端子。

7、整个测试过程要始终遵守安全第一的原则,并尽可能保证数据的一致性。

附:白庄站电容电流测试方案

(白庄站)电容电流测试方案

1、以白庄站10KV II 段母线为例

(需要对 II 段母线测量时工作程序同上)

2、试验班办理变电站第二种工作票。

3、在进行系统电容电流测试前,试验班、保护班一起确认10KV I 段母线、10KV II 段母线及线路运行正常,系统无绝缘缺陷,即无接地故障、PT二次回路开口三角处电压正常(一般情况下小于5V)。

4、如遇PT二次回路中安装有消谐器或电阻的拆除及恢复由保护班负责。

5、保护班、试验班人员确认PT二次回路接线方式(3PT或4PT),试验班人员负责计算电压互感器变比、输入被测系统电压等有关参数进行正式测量,测量过程中,每个电流重复测量三次,以保证测试结果的一致性。

6、测量工作结束,试验班恢复因测试电容电流而拆除的二次接线,使其恢复原始状态。

7、办理工作票结束手续。工作完毕。

8、测试条件:选择在天气良好,无大风、雷雨天气下进行。

电源线路滤波器中的漏电流

电源线路滤波器中的漏电流 1. 标准中的要求 保护接地器在电气设备出现故障或发生短路时,保护用户不会受到危险接触电压的伤害。为确保此基本功能,保护接地线上的电流必须加以限制,这是为什么大多数产品安全标准中包含漏电流测量和限制条款的原因。办公室设备和信息技术设备的产品安全标准EN 60950-1进行了相关说明。 尽管都使用漏电流这个术语进行描述,但是标准在实际上对接触电流和保护导体电流进行了区分。接触电流是人在接触电气装置或设备时,流过人体的所有电流。另一方面,保护导体电流是在设备或装置正常运行时,流过保护接地导体的电流。此电流也称为漏电流。 所有电气设备的设计都必须避免产生危及用户的接触电流和保护导体电流。一般来说,接触电流不得超过3.5 mA,采用下文所述的测量方法进行测量。 3.5 mA的极限值并不适用于所有设备,因此,在标准中,还对配备工业型电源接线器(B 型可插拔设备)和保护接地器的设备进行了补充规定。如果保护接地电流不超过输入电流的5%,那么接触电流可以超过3.5 mA。另外,等电位联结导体的最小截面积必须符合EN 60950-1的规定。最后,但不是最不重要的,制造商必须在电气设备上附带下述警告标签之一。 “警告! 强接触电流。先接地。” “警告! 强漏电流。先接地。” 除了普通的产品安全标准之外,还有关于无源EMI滤波器的安全标准。在欧洲,新颁布了EN 60939,自2006年1月1日起代替了当时现行的EN 133200。然而,此标准没有关于滤波器漏电流的附加要求。美国的EMI滤波器标准,UL 1283,与此不同。不仅需要进行所有常规安全试验,还需要确认滤波器的漏电流。在默认情况下,此漏电流不允许超过0.5 mA。否则,滤波器必须附带一个安全警告,说明滤波器不适用于住宅区。必须提供接地连接器以防触电,另外滤波器必须连接到接地电源引出线或接头上。 2. 漏电流的计算 本节将说明计算漏电流的方法。因为元件存在误差,并且电网(对于3相供电网)的不平衡只能估计,所以实际结果不一定等于测量结果。另一方面,对顺序生产的每一个滤波器都进

电容电流测试报告

XZZNDQAQ-2014-019 某某煤矿集团西风井35kV变电所6kV电网单相接地电容电流测试报告 徐州智能电气安全研究所 二〇一四年四月

编写:审核:审批:

1. 测量方案 1.1. 测量原理 电网对地电容电流常用的测量方法有:单相直接接地测量法、单相经电阻接地测量法、附加电容测量法和注入法等。其中单相直接接地测量法属于直接测量方法,其它属于间接测量方法。本次测试采用单相经电阻接地测量法,该方法有简单、易实施、测试过程安全、测量精度高、测试时间短、对电网冲击小等优点,并且适用于中性点非有效接地系统各种中性点接地形式,具体原理如下。 R 图1-1 中性点不接地电网绝缘参数测量模型 上图为中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到试验的安全性,采用电网单相经电阻接地的方法,电网的一相经接地电阻和电流表接地。接地电阻R 根据电网类型一般在500~1000Ω范围选取,接地电流控制在几安培范围,测量必要的参数,即可求出电网单相直接接地时的接地电流。 电网单相接地电流是电网对地总的零序电流之和,理论推导可知,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: 2 02 l E R U I I U (1-1) 式中:I E 为电网单相直接接地电流 U l2为电压互感器二次线电压 U 02为电网单相经电阻接地时的二次零序电压 I R 为电网单相经电阻接地的电流 因此,只要测得电网的二次线电压、零序电压、单相经电阻接地时电阻流过

最新DRL300P配网电容电流测试仪说明书汇总

D R L300P配网电容电 流测试仪说明书

配网电容电流测试仪 使用说明书 上海菲柯特电气科技有限公司

目录 一、仪器的用途及特点 (2) 二、主要技术指标及使用条件 (2) 三、面板及各键功能介绍 (3) 四、测量原理 (3) 五、配电网中PT接线方式及PT的变比 (4) 六、从变压器中性点测量配网电容电流的方法 (10) 七、仪器使用方法 (11) 八、测量其他电压等级电网的电容电流的方法 (13) 九、仪器检验和日常校准 (14) 十、常见的故障及处理 (14)

十一、仪器成套性 (14) 十二、维修保养和售后服务: (14) 一、仪器的用途及特点 目前,我国配电系统的电源中性点一般是不直接接地的,所以当线路单相接地时流过故障点的电流实际是线路对地电容产生的电容电流。据统计,配电网的故障很大程度是由于线路单相接地时电容过大而无法自行熄弧引起的。因此,我国的电力规程规定当10kV和35kV 系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对配网的电容电流进行测量以做决定。另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量

配电网的对地电容值。传统的测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法等,这些方法都要接触到一次设备,因而存在试验危险、操作繁杂,工作效率低等缺点。 为解决这些问题,我菲柯特公司与大专院校及试验研究院共同潜心研制,开发出配网电容电流测试仪。该新型智能化测试仪直接从PT的二次侧测量配电网的电容电流,与传统的测试方法相比,该仪器无需和一次侧直接相连,因而试验不存在危险性,无需做繁杂的安全工作和等待冗长的调度命令,只需将测量线接于PT的开口三角端就可以测量出电容电流的数据。由于从PT开口三角处注入的是微弱的异频测试信号,所以既不会对继电保护和PT本身产生任何影响,又避开了50Hz的工频干扰信号,同时测试仪的输出端可以耐受100V的交流电压,若测量时系统有单相接地故障发生,亦不会损坏PT和测试仪,因而无需做特别的安全措施,使这项工作变得安全、简单、快捷,且测试结果准确、稳定、可靠。 该测试仪采用大屏幕液晶显示,中文菜单,操作非常简便,且体积小、重量轻,便于携带进行户外作业,接线简单,测试速度快,数据准确性高,大大减轻了试验人员的劳动强度,提高了工作效率。 二、主要技术指标及使用条件 1)电容电流测量范围:1A~250A 0.3μF~125μF 2)测量误差:≤5% 3)工作温度:-10℃~50℃ 4)工作湿度:0~80% 5)工作电源:AC 220V±10% 50Hz±1Hz 6)外行尺寸:350mm×200mm×150mm 7)仪器重量:2.5kg 8)电压等级:1KV、3KV、6KV、6.3KV、10KV、20KV、35KV、66KV。 三、面板及各键功能介绍(图一) 1)电流输出端子:输出测量信号,接到PT开口三角端 2)保险管:配置220V/2A保险管,用于保护仪器过载或故障 3):仪器的接地端子 4)液晶屏:显示测试状态和测试数据 5)对比度:调节液晶屏的显示对比度 6)AC220V:电源插座及开关 7)复位键:用于仪器复位初始化或中断测试 8)电压选择键:按该键,可以在1kV、3kV、6kV、6.3KV、10kV、20KV、35kV、66KV系 统线电压间循环选择 9)方式/测量键:多功能键,短按(即按下后立刻松开)时,用于循环选择系统PT的 接线方式;长按(即按下2秒后才松开)时,用于启动测量。

电解电容测试指导书

1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于IQC对电解电容器来料的检验。 3准备设备、工具: 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。 4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引岀端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况; 且其标识清晰牢固、正确完整。 4.5检查其引岀端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引岀端子无扭曲、变形和影响插拔的机械损伤。 4.6检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%勺误差范围),其损耗角 正切值tan 9 (即D值)大小是否符合国家标准(电解电容器tan 9 0.25 )。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按POWE!键开启测试仪的工作电压; 按LCR键选择测试类型(L:电感,C:电容,R:电阻)。 5.3按UP'与DOWN!选择测试量程(疗、nF、pF),按FREQ键选择测试频率(100HZ 120HZ 1KHZ,可根据厂商提供的技术参数来选择所需的测试频率,本试验选择100HZ'。

第5章 电力电容器局部放电测试方法

第5章电力电容器局部放电测试方法 5.1 电力电容器局部放电的产生和危害 电力电容器采用浸渍纸、浸渍薄膜以及浸渍纸和薄膜组合的绝缘结构。与其它绝缘结构相 比,电力电容器的重要特点是介质的工作场强特别高,由于局部放电使电容膨胀,早期损坏以及发生爆炸的现象早已引起制造部门和运行部门的重视。例如,在全膜电容器中,介质损耗大大降低,热击穿可能性下降了,更加突出了电击穿的可能性。因此,在设计制造全膜电容器时,首先应考虑的就是局部放电问题。 电容器是由几种介质串联的组合绝缘,在交流电压下,电压分配与各层的电容量成反比, 在直流电压下,电压分配与各层的绝缘电阻成正比,因此组合绝缘的耐电强度与各成分的耐电强度和搭配情况有关。局部放电包括绝缘结构内气隙中的放电和浸渍剂中的局部放电。局部放电可以发生在电容器极下面的绝缘层中,即均匀电场部分所包含的气隙中,也可以发生在极板边缘电场集中处。 绝缘中气泡发生放电后,除了产生热,破坏介质的热稳定性之外,还产生离子或电子对介 质的撞击破坏,以及形成臭氧和氮的氧化物,对介质产生化学腐蚀作用。 当气隙厚度增加、介质厚度增加或介质的介电常数增加时,均使局部放电场强下降。在理 想情况下 E可以很高,但如果浸渍剂干燥不够,去气不彻底或液体中含有杂质,则会使电场i 发生畸变,产生电场集中,使 E下降很多。因此,电容器必须采取严格的真空浸渍。 i 另外,产生放电的原因是过电压的作用使介质内部某处场强过高而产生局部放电。在交流 电压作用下,电容器绝缘中局部放电首先在场强较高的电极边缘产生。用显微镜观察油浸纸局部放电的破坏过程,当电场足够高时、首先在电极边缘上的纸纤维发生断裂,于是电极边缘下的纸发生突起并出现小洞,此后小洞不断扩大延伸到下一层纸,这时部分纤维断裂完全脱离了纸,扩散到油中或沉积在损伤部位,但纸没有炭化,最后多层纸均被损伤,在最薄弱点产生击穿,在击穿通道上生成整齐的炭化边缘。当遇到纸层中弱点时也会贯穿纸层,最后发生击穿。 对绝缘材料研究表明,在局部放电作用下寿命是随电场的增加而呈指数式下降的。大量的 事实证明,电力电容器内部局部放电是造成电容器膨胀和早期损坏的一个重要原因。 5.2 电力电容器局部放电测量参数及技术规定 5.2.1 评定电力电容器局部放电的参数 目前,在电力电容器局部放电试验中主要有放电量、起始放电电压以及放电熄灭电压等。 一、放电量q 有的产品(如耦合电容器)规定,在测量电压下放电量不超过某一数值为合格;在另一些 产品中(如移相、串联等电容器)只规定在测量电压下一定时间内放电量不变大就为合格。 放电量q随电压作用时间的变化趋势分析是判断试品质量的重要手段,如图5.1中曲线a 中放电量随电压作用时间变化而增加不多,而曲线b却增加很多,显然试品a的质量好于b。

电容电流测量

附加电容法测量电网单相接地电容电流被测单位: 被测站名称: 日期: 天津市天变航博电气发展有限公司

(1)准备测量工具 a)0.5 级电流表、电压表各一块 b)uF左右高压力率电容器一只 c)高压绝缘线4米左右 d)高压试电笔一只 e)绝缘手套一副 (2)单相接地电容电流的估计 I JD=(电缆总长度)+(架空线总长度/10)+(3倍浪涌电容器的单相值),其中长度单位为KM,电容器单位为uF。 (3)测量前先将网上的消弧线圈退出,PT开口电压上的负载断掉,用万用表测量测量开口电压U0,如果U0>400mv,则需测量三相后取平均值,U0<400mv则测一相便可。 (4)接线(见附图) a)按图接线,注意所有接线必须悬空,并保持安全绝缘距离 b)电容器需放在绝缘垫上,外壳接地 c)封表线方便用试点笔挑开 d)所有接线尤其接地线要可靠接触 e)准备好电容器放电接地线 f)选择电流表量程,电流表的量程安培数必须大于附加电容的微 法数25%左右

(5)重新检查接线,要求无关人员远离现场 (6)开始试验 a) 测量PT二次U AB= v、U BC= v、U AC= v ; U L= (U AB +U BC +U AC)/3= v b) 将万用表接在PT 开口上,封上电流表,合上上隔离开关, 合上空开后一秒,用高压试电笔将电流表封线挑开, 读电流表I= 读开口电压表U jd0= c)断开断路器,拉下隔离开关,将电容器放电 如果三相都测,请重复上面步骤并记录下 I AJD= A U A0= v I BJD= A U B0= v I CJD= A U C0= v d)计算 Uo<0.4V:I C= (U L/Ujd0)*I = Uo>0.4V:

电容阻值降低、漏电失效分析

电容阻值降低、漏电失效分析 2014-08-02 摘要: 本文通过无损分析、电性能测试、结构分析和成分分析,得出导致电容阻值下降、电容漏电是多方面原因共同作用的结果:(1)MLCC本身内部存在介质空洞(2)端电极与介质结合处存在机械应力裂纹(3)电容外表面存在破损。 1.案例背景 MLCC电容在使用过程中出现阻值降低、漏电失效现象。 2.分析方法简述 透视检查NG及OK样品均未见裂纹、孔洞等明显异常。 图1.样品X射线透视典型照片

从PCBA外观来看,组装之后的电容均未受到严重污染,但NG样品所受污染程度比OK样品严重,说明电容表面的污染可能是引起电容失效的潜在原因。EDS能谱分析可知,污染物主要为助焊剂与焊锡的混合物,金属锡所占的比例约为16(wt.)%。从电容外观来看,所有样品表面均未见明显异常,如裂纹等。 图2.电容典型外观照片 利用数字万用表分别测试NG电容和OK电容的电阻,并将部分失效样品机械分离、清洗后测试其电阻,对电容进行失效验证。电学性能测试表明,不存在PCB上两焊点间导电物质(污染物)引起失效的可能性,失效部位主要存在于电容内部。

对样品进行切片观察,OK样品和NG样品内部电极层均连续性较差,且电极层存在孔洞,虽然电极层孔洞的存在会影响电容电学性能,但不会造成电容阻值下降,故电极层孔洞不是电容漏电的原因。 对NG样品观察,发现陶瓷介质中存在孔洞,且部分孔洞贯穿多层电极,孔洞内部可能存在水汽或者离子(外来污染),极易导致漏电,而漏电又会导致器件内局部发热,进一步降低陶瓷介质的绝缘性从而导致漏电的增加,形成恶性循环;左下角端电极与陶瓷介质结合处存在机械应力裂纹,可导电的污染物可夹杂于裂纹中,导致陶瓷介质的介电能力下降而发生漏电,使绝缘阻值下降,此外裂纹内空气中的电场强度较周边高,而其击穿电场强度却远比周边绝缘介质低,从而电容器在后续工作中易被击穿,造成漏电;除此之外,电容表面绝缘层存在严重破损,裂纹已延伸至内电极,加之表面污染物的存在,在恶劣潮湿环境下就会与端电极导通,形成漏电。 对比失效样品,OK样品电容内部结构成分一致,内电极为Ni电极,电极层连续性较差,且存在较多细小孔洞。但并未发现贯穿相邻电极的孔洞和机械应力裂纹的存在,电容表面破损程度亦较低,故不存在漏电现象。

为什么国家电力规程要求做电容电流测试

为什么国家电力规程要求做电容电流测试? 为什么国家电力规程要求做配电网电容电流测试? 作者:山凡,时间:2014年8月27日 部分电力测试10年经验的人士,对配电网电容电流测试也不能正确理解此试验的重要性。 在中国,66kV及以下电力系统配电网的中性点都是非直接接地系统,当发生线路系统单相接地时,流过故障点的电流实际是线路对地电容产生的电容电流,并不立即对设备造成损坏,不会造成断路器掉闸。但是,单相接地一定要设法找到故障点并加以消除,否则,它会给电气设备的安全构成威胁,极易发展成为其他事故,这些威胁包括: 1.单相接地电流通过铁心(如调相机、变压器的铁心)会使铁心烧坏。 2.在单相接地的故障点附近,人身有遭到跨步电压的危险。当导线一相碰地时,电流已触地一点为圆心向外扩散,在20m以内的地面上画许多同心圆,则这些圆周均有不同的电位。 人体两脚接触地面两点,该两点之间的电压称为跨步电压。人身遭受跨步电压的作用当然是有一定危险的。 3.易发展成两相短路。因单相接地时,非故障对地电压升高为原来的几倍。若是弧光接地,非故障相甚至还会出现2.5~3倍的电压,尤其弧光还会使导线周围的气体发生游离,这两种情况碰在一起,很容易造成相间短路。这对设备和系统来说,都是破坏性的故障。 4.接地点的存在还会使故障设备外皮(如电缆外皮)或遮拦带电,易造成人身触电事故。 我国电力规程规定当10kV电容电流分别大于30A,或35kV系统电容电流分别大于10A 时,应装设消弧线圈以补偿电容电流,这就要求对配电网电容电流测试以决定是否安装消弧线圈。 配电网的对地电容和PT的参数配合会产生PT铁磁谐振过压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值,这样解释大家一定理解了配电网电容电流测试在电力测试行业的重要性了。 配电网电容电流测试,在2009年以前,常规测试方法是开口三角异频信号注入法测量,测量电容电流要求系统必须平衡,而现场95%的系统都不平衡,所以此方法的适用场合很窄; 武汉某电气试验仪器制造企业经过2年多的设计研发,成功推出中性点外加电容法,实现配电网电容电流测试, 中性点外加电容法对系统平衡与否几乎没有要求,故适用场合很宽,特别适用于煤矿、钢铁等复杂线路,测量过程一下子从复杂变得简单,且测试结果无干扰因素更准确。 关于如何寻找中性点,及中性点外加电容法做配电网电容电流测试的操作方法,目前网上已经有电容电流试验视频和详细的操作说明,有兴趣的朋友可以搜一下。 1 / 1

10kV母线电容电流测试仪

10kV母线电容电流测试仪 我国的电力规程规定当10kV和35kV系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对配网的电容电流进行测量以做决定。另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值。 测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法以及在PT开口三角形加信号等方法,但是,在现场最受欢迎和使用较频繁的还是使用中性点电容法。 全自动电容电流测试仪采用大屏幕液晶显示,中文菜单,在做好安全措施后,事先设置仪器参数后则无需触碰操作仪器,使这项工作变得安全、简单、快捷,且测试结果准确、稳定、可靠,不受其他运行条件影响,特别是系统不平衡的时候。注意事项: 测量时操作绝缘棒人员应带绝缘手套、穿绝缘靴! 绝缘棒碰触变压器中性点时间应尽可能短,在读数完毕后立即断开,读表人员宜站在绝缘垫上 保护间隙F放电电压要低于CN的额定电压,在系统中性点无过电压时不应动作。 1、外加电容C可以按估算电网电容的至3倍值分为几档来选定,以便进行重复测量,电容器的额定电压应在1kV以上。 2、如直接用电压表测量电压,除量程应满足要求外,还要求选用高内阻的,不宜使用内阻低、0.2级或更精密的电压表,也不宜采用磁电式电压表或真空管电压表。

3、测量工作应在天气良好无大风情况下进行,以免系统发生单相接地后中性点产生高电压带来危险。 4、电缆馈电系统一般不对称电压很低,为提高系统电容测量精度,要求有较高的不对称电压值,为此可在一相上接入电容器或断开一相电缆,其容量能 使不对称电压提高到2%相电压,不过最后应当从计算出的系统对地电容中减去或加上这一部分电容。 例如,某一10kV电缆馈电系统估算的电容电流为100A,造成人不对称电压为2%相电压的电容电流 IC≈100×2%=2A 为此可选表2-5中截面95mm2,6km长具有电容电流等于6A的三相备用用电缆,使其一相断开(具有2A电流),即可满足要求。 5、对没有中性点的电网可以利用连接组标号为Y?d11的配电变压器人为构成临时的中性点,然后应用中性点外加电容法确定电网电容电流。 6、在直馈送电系统中,如选择发电机中性点应用外加电容法时,要考虑电机3倍次数谐波对不对称电压的影响; 在测量中发电机的零序保护也要暂时退出,以免电机中性点接入CN后过大的电流使保护误动。 ◆ FS500P配网电容电流测试仪技术参数 ☆电容电流测量范围:0.3μF~125μF ,1A~250A ☆测量误差:0.3μF~90μF,1A~160A时,≤5% ;90μF~125μF,160A~250A时,≤10% ☆工作温度:-10℃~50℃ ☆相对湿度:≤80% ☆工作电源:AC 220V±10% 50±1Hz ☆外行尺寸:350mm×200mm×150mm

10KV电网单相接地电容电流1

山西朔州山阴金海洋台东山煤业有限公司 35kv变电站10KV母线单相接地电容电流测试报告中性点不接地系统的优点是单相接地电流较小,单相电流不形成短路回路,电力系统安全运行规章规定可继续运行1~2小时。但是,长时间接地运行,极易形成俩相接地短路,弧光接地还会引起全系统过电压。特别是矿井电网,因其大部分为电缆供电,若单相接地电流较大,加之井下环境恶劣,故障多,高压电缆经常发生单相漏电或单相接地故障,且过大的单相接地电流经常引起电缆放炮和击穿现象,影响正常生产,并给矿井和人身安全带来严重后果。因此,正确测量、了解电网单相接地电流情况,对保证矿井安全运行极为重要。 1 单相接地电流及其分量的测量方法 电网单相对地绝缘参数的常用测量方法有:附加电源测量法,交流伏安法,中性点位移电压法,谐振测量法。其中第一种方法所测的是测量频率下的绝缘参数,只可间接地反映工频下的绝缘参数;而后三种方法是采用电网工作电源进行测量,反映了电网的实际绝缘参数。中性点位移电压法也称间接测量法,是目前测量小电流接地系统单相接地电容电流的常用方法。其一般作法是在电网一相与地之间接入一个附加电容,实测流过此电容的电流与中性点位移电压,通过计算来求得电网单相接地电容电流。但由于电容的充电效应,在人为接地的瞬间,相当于在电网中产生了一个金属性接地故障,这显然不利于安全。因此,有必要研究一种更加安全可靠地新方法,即单相经电

阻接地的间接测量方法。 图1 中性点不接地电网绝缘参数测量模型 图1为一中性点不接地电网的绝缘参数测量模型,C 、r 分别为各相对地电容和绝缘电阻。考虑到实验的安全性,采用电网单相经电阻接地的方法,电网的任何一相(如A 相)经附加电阻R 和电流表A 接地。接地电阻R 选用500—1000 Ω,接地电流可控制在几安培,并通过理论计算,求出电网单相直接接地时的电流。 我们知道,电网单相接地电流是电网对地总的零序电流之和,不管是直接接地,还是经过电阻接地,电网对地总的零序电流(接地电流)是同零序电压成正比关系。因此,测量出电网单相经电阻接地时的零序电压,就能得到单相电网直接接地的电流。其计算公式是: R E I U I ?=02 100 (1)

电解电容纹波的测试,计算及判定_ 应用报告

一、前言: 铝电解电容的工作状态及工作环境,是影响其寿命的主要因素。在众多因素中,又以环境温度的高低和 Ripple Current 纹波电流的大小对电容寿命的影响最大。所以在实际使用中,电解电容Ripple Current 有否超规格,电解电容工作温度有否超标准值,是影响电容失效爆浆的最主要原因,特别是在整机测试未对电解电容寿命进行估算计算的情况下,电解电容Ripple Current 的测试,计算及判定,尤为重要。 二、标准测试: 1、一次侧Bulk Cap.纹波电流 说明:一次侧Bulk Cap.纹波电流通常由基本频率(低频率)和高频(开关频率)电流构成,因此在计算时,要通过合成公式,利用频率系数计算出其在指定频率下的合成有效值。(如图1所示) R/C(Ripple Current) = Lowf(Low Freq.Current) +Hif(High Freq. Current) 一次侧Bulk Cap.是指:一次侧主电解电容;Lowf 是指:低频纹波电流有效值; Hif 是指:高频纹波电流有效值。 图(1) 2、二次侧Filter Cap.纹波电流 说明:二次侧Filer Cap.纹波电流通常由高频电流构成。 R/C(Ripple Current) = Hif(High Freq. Current) 二次侧Filter Cap.是指二次侧滤波电解电容。 3、温度 机种名称: 机种编号: 机种类别: 电路拓扑: 输出规格: 编写单位: 应用类别: 材料应用 受控日期: 201 年 月 日 应用编号: AR500XbcEedDFf P 应用描述: 电解电容纹波电流的测试,计算及判定

消弧线圈电流测试仪

FS500P 消弧线圈电流测试仪 FS500P配网电容电流测试仪 产品标准:DL/T 308-2012 试验标准:DL/T 596-2005 产品概要:华胜公司专利产品(专利号:ZL 2014 2 0353905.2),配网接地电容测试的技术革命,不停电测试,华胜公司专利产品! ◆概述 FS500是配网电容电流测试的技术革命,华胜公司专利产品。我国35kV(66kV)及以下电压等级电网采用中性点不接地方式。当电力系统发生单相接地短路时,三相线电压仍然保持对称,对用户没有影响,所以规程规定可以继续运行2小时,提高了配网供电可靠性。但是接地点存在接地电容电流,可能烧坏电气设备,因此,规程规定当35kV 或10kV电网接地电容电流分别大于10A和30A时,应装设消弧线圈补偿接地电容电流。因此,对配电网接地电容电流的测试是很重要的试验项目。FS500P配网电容电流测试仪摒弃一次侧直接测试法的缺点,通过二次侧测试,具有原理先进、接线简单、使用安全、测试准确的特点,是测试配网接地电容电流的最佳选择。 ◆FS500P配网电容电流测试仪主要特点

☆原理先进:通过PT二次侧开口三角形异频感应测试。 ☆接线接单:输入接线通过PT二次侧开口三角形。 ☆安全可靠:低压操作,异频小信号,对PT的保护和测量信号无影响。 ☆使用方便:不停电测试。 ☆操作方便:大屏幕液晶显示,中文菜单,操作非常简便。 ◆FS500P配网电容电流测试仪技术参数 ☆电容电流测量范围:0.3μF~125μF ,1A~250A ☆测量误差:0.3μF~90μF,1A~160A时,≤5% ;90μF~125μF,160A~250A时,≤10% ☆工作温度:-10℃~50℃ ☆相对湿度:≤80% ☆工作电源:AC 220V±10% 50±1Hz ☆外行尺寸:350mm×200mm×150mm ☆仪器重量:5kg ☆使用电网电压等级:1kV~66kV

电容电阻测量实验报告

电容、电阻测量实验报告 实验目的:1、掌握电容测量的方案,电容测量的技术指标 2、学会选择正确的模数转换器 3、学会使用常规的开关集成块 4、掌握电阻测量的方案,学会怎样达到电阻测量的技术指标 实验原理: 一、数字电容测试仪的设计 电容是一个间接测量量,要根据测出的其他量来进行换算出来。 1)电容可以和电阻通过555构成振荡电路产生脉冲波,通过测出脉宽的时间来测得电容的值 T=kR C K和R是可知的,根据测得的T值就可以得出电容的值 2)电容也可以和电感构成谐振电路,通过输入一个信号,改变信号的输入频率,使输入信号和LC电路谐振,根据公式W=1/ √LC就可以得到电容的值。 二、多联电位器电阻路间差测试仪的设计 电阻是一个间接测试量,他通过测得电压和电流根据公式R=U/I得出电阻的值 电阻测量分为恒流测压法和恒压测流法两种方法 这两种方法都要考虑到阻抗匹配的问题 1)恒流测压法 输入一个恒流,通过运放电路输出电压值,根据运放电路的虚断原理得出待测电阻两端的电压值,就可以得出待测电阻的阻值。 2)恒压测流法 输入一个恒压,通过运放电路算出电流值,从而得出电阻值 方案论证:数字电容测试仪 用555组成的单稳电路测脉宽 用555构成多谐振荡器产生触发脉冲 多谐振荡器产生一个占空比任意的方波信号作为单稳电路的输入信号。 T1=0.7*(R1+R2)*C T2=0.7*R2*C 当R2〉〉R1时,占空比为50% 单稳电路是由低电平触发,输入的信号的占空比尽量要大 触发脉冲产生电路

电容测试电路 Tw=R*Cx*㏑3

R为7脚和8脚间的电阻和待测电容Cx构成了充放电回路,这个电阻可以用一个拨档开关来选择电容的测试挡位。当待测电容为一大电容时,选择一个小电阻;当电容较小时,选择一个较大的电阻。使输出的脉宽不至于太大或者太小,用以提高测量的精度和速度。 R*C不能取得太小,R*C*㏑3≥T2,如果R*C取得太小,使得充放电时间太小,当来一个低电平时,电路迅速充电完毕,此时输入信号仍然处于低电平状态,输出电压为高电平,此时的脉宽就与RC无关,得到的C值就不是所要测的电容值。 仿真波形: 、 从仿真波形可以看出Tw=1.1058ms 根据公式Tw=1.1*R*C可以得出C=100uf 多联电位器电阻路间差测试仪设计方案 软件设计流程图 主程序流程图:

【产品手册】JY6701电容电流测试仪使用手册-11页精选文档

JY6701电容电流测试仪 操作手册 目录 一、概述 (1) 二、技术指标 (1) 三、面板介绍 (2) 四、测量原理 (2) 五、中性点种类 (4) 六、使用步骤 (5) 七、安全事项 (9) 八、中性点电压的处理 (9) 九、仪器自检 (10) 十、仪器成套 (9) 十一、售后服务 (10) 使用本仪器前,请仔细阅读操作手册,保证安全是用户的责任 本手册版本号:JY6.28-2010 本手册如有改动,恕不另行通知。

全自动电容电流测试仪 一、概述 我国的电力规程规定当10kV和35kV系统电容电流分别大于30A和10A时,应装设消弧线圈以补偿电容电流,这就要求对配网电容电流进行测量以做决定。 另外,配电网的对地电容和PT的参数配合会产生PT铁磁谐振过电压,为了验证该配电系统是否会发生PT谐振及发生什么性质的谐振,也必须准确测量配电网的对地电容值。 测量配网电容电流的方法有单相金属接地的直接法、外加电容间接测量法以及在PT开口三角形加异频信号等方法,但是,在现场最受欢迎和使用较频繁的还是使用中性点电容法。 本型号电容电流测试仪,采用中性点电容法原理测量配网的电容电流。在做好安全措施后,在接触中性点前,先设置系统参数,然后则无需触碰操作仪器,使这项工作变得安全、简单且测试结果准确、可靠,不受其他运行条件影响,特别是系统不平衡的时候。 二、技术指标 1、测量范围:对地总电容≤120μF(三相对地); 电容电流≤100 A(35kv系统) 电容电流≤200 A(6、10kv系统) 2、测量精度:±5% (0.5μF<电容容量≤90μF); ±10%(90μF<电容容量≤120μF) 3、环境温度:-10~50℃; 4、相对湿度:≤90%; 5、工作电源:AC 220V ± 10% 50 Hz ± 1%;

电解电容漏电流测试仪操作规程示范文本

电解电容漏电流测试仪操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电解电容漏电流测试仪操作规程示范文 本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时 针方向调至最低端。如果220V电源的地线接地性能不良, 应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压 调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预 置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择 合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时

间置于适当的值上,通过二位BCD 拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2 秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电 流数据,并一直处于测试状态。 6. 如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结

XX地区电网电容电流测试及补偿状况分析

XX地区电网电容电流测试及补偿状况分析 发表时间:2018-03-12T14:55:27.890Z 来源:《电力设备》2017年第30期作者:刘宁超1 乔恺1 刘华英2 [导读] 摘要:随着系统电网规模的不断扩大和配网电缆出线的不断增加,发生单相接地时,系统电容电流也在不断增大。 (1国网平顶山供电公司河南平顶山 467000;2国网新郑供电公司河南新郑 451100) 摘要:随着系统电网规模的不断扩大和配网电缆出线的不断增加,发生单相接地时,系统电容电流也在不断增大。本文通过测试6--35kV配网电容电流的大小,分析其现有的消弧线圈补偿状况及存在的问题,并提出解决的方法。 关键词:电容电流消弧线圈补偿状况 0、引言 在6-35 kV的电缆网络中,当电容电流达到规定的限值时,应加装消弧线圈进行补偿,消弧线圈的容量应按系统实测电容电流值来选择。由于运行方式的变化,电容电流也在发生变化。XX供电公司多次因消弧线圈的投退和补偿不到位导致6-35 kV设备故障扩大化,为了掌握电容电流基本情况,对其6-35 kV系统进行了电容电流测试,分析现阶段消弧线圈的补偿状况及存在的问题,并提出解决的方法。 1、系统电容电流测试及分类 《中华人民共和国电力行业标准》DL/T620-1997中“交流电气装置的过电压保护和绝缘配合”3.1.2中规定3-10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统中,如果接地电容电流大于10A,都需要采用中性点经消弧线圈接地方式[1]。由于变电站运行方式的变化,系统电容电流也在发生变化。而理论计算值与实际运行值误差大,当采用理论值选择消弧线圈进行补偿时,易造成欠补偿,形成谐振过电压,从而产生负作用。因此对供电区域内各变电站电容电流值进行定期测量,为便于进行分析,现将xx年的测量结果按不同方式进行列表分析: a 、变电站电容电流超过规定值,并且未装设消弧线圈进行补偿,如表一: 2、电容电流现状分析 1、李庵变系统电容电流IC为110.8A,如表一所示,其为110/10kV终端变电站,低压侧为△接线且无中性点引出,10kV出线13条,担任新城区政府、学校等重要负荷,未安装消弧线圈,较大的电容电流远远超过其自熄弧能力,一旦出现弧光过电压,造成绝缘损坏,引发的开关柜和母线事故,将会出现大面积停电。 2、通过表二数据,我们可以发现,中兴路变电站IC为115.1A,IL为73.78A;肖营变IC为165.9,IL为50.94,相差115A,属于欠补偿,与电网常采用的过补偿方式相悖。当系统运行方式发生改变时,消弧线圈不仅未能消除弧光接地过电压,还可能造成谐振过电压,进一步损坏设备。 3、五一路、光明等变电站电容电流均较大,如表三所示,远远超过了100A,虽然这些变电站均加装了消弧线圈,但感性电流都大于电容电流,属于过补偿。一般情况下,补偿系数为1.35左右,消弧线圈通过其自身的调节装置,根据电容电流的大小自动调整消弧线圈的补偿电流,满足了现场要求。 4、规程中规定3kV—35kV电容电流不能超过10A,因此当IC小于10A时,不需考虑消弧线圈进行补偿,如表四所列的变电站,电容电流最大者不超过9A,能够自动熄弧。 5、有些变电站如表五所列出的,由于某些方面的原因,电容电流无法测量。在未知电容电流值的情况,无法分析是否需要采用消弧线圈进行补偿。一旦出现单相接地故障,出现间歇性电弧时,将对出线较多、担任重要用户的变电站,如孙岭变,带来极大的安全隐患。 3、存在问题分析 对于架空线路,虽然中性点不接地系统有较好的供电可靠性,在出现单相金属性接地时,可以运行1—2小时[2],但根据理论及现场经验分析,现有的杆塔入地、电缆延伸等电网改造状况,导致电容电流不断增大,电弧难以熄灭,弧光过电压的可能性增加,且在电缆发生单相接地时,易导致相间短路,扩大故障范围。在电容电流较大且没有消弧线圈补偿或者补偿容量不足时,将导致以下问题: 1、过电压对设备绝缘破坏:当发生间歇性接地时,电容电流持续时间比较长,非故障相电压升高至正常相电压的3.1-3.5倍,在过电压持续作用下,将造成绝缘的积累性损伤,最终可能导致绝缘薄弱点击穿而发展成相间短路,扩大故障范围。 2、弧光接地产生过电压可致PT烧毁或熔断保险:电压互感器的最大饱和值为正常数值的1.7倍左右,在弧光接地产生过电压情况下,其互感器的饱和状态更是严重超标,故可大大地增强励磁电流,加重电压互感器的过载程度,将会造成烧毁互感器或熔断保险。 3、过电压可致避雷器发生爆炸:发生弧光接地时,在长时间的作用下,可聚集大量能量,而通常的避雷器所能承受的最大能量指标为400A、2ms,因此一旦聚集的能量超过此值,就势必会引发避雷器发生爆炸。 4、防范措施 1、增加变电站系统电容电流检测密度,随时掌握系统电容电流数值,同时安装可调节容量的消弧线圈。 在系统发生单相接地时,规程规定电网可带单相接地故障运行2小时,不需要跳闸。实际运行经验和资料表明,当电容电流电流小于10A时,电弧能自灭。当电容电流大于10A时,易产生间歇性弧光接地,引起过电压。当采用消弧线圈补偿,调节适当时(接地电流小于10A),电弧能熄灭。 2、采用消弧及过电压保护装置。 当系统发生单相接地时,消弧控制器根据电压互感器传来的电压信号进行计算处理,判断接地相别、接地性质,作出如下判断:(1)判断是金属性或稳定性电阻接地,直接进行线路拉路选线处理;(2)判断是不稳定的间歇性弧光接地,若消弧控制器显示是A相接地,消弧控制器自动将A相真空接触器闭合,使系统由不稳定的弧光接地快速转变成稳定的金属性接地,消除电弧的影响和危害[3]。 3、快速隔离故障 在已投运且无补偿或补偿容量不足的变电站中,发生单相接地且电容电流大于10A时,应立即断开故障分路,不能再执行原规程规定的单相接地故障可以运行2小时的规定。 4、在变电站改造、扩建、增容时考虑消弧及过电压保护装置和自动补偿装置的容量。 一般的110/10kV变电站,其变压器低压侧为△接线,系统低压侧无中性点引出,电缆馈电回路日益增加,电容电流将不断增加。在变

发电机电容电流的测量及数据分析

发电机电容电流的测量及数据分析 摘要:凌津滩电厂装机9台,总容量27万千瓦,是我国大容量、灯泡式贯流式机组的电厂。其中#1—#5机组为日立公司生产,#6—#9机组为日立设计哈尔滨电机厂生产。单机容量为30MW,额定电压10.5KV,发电机中性点不接地。 关键词:发电机电容电流测量数据分析 0 前言 凌津滩电厂装机9台,总容量27万千瓦,是我国大容量、灯泡式贯流式机组的电厂。其中#1—#5机组为日立公司生产,#6—#9机组为日立设计哈尔滨电机厂生产。单机容量为30MW,额定电压10.5KV,发电机中性点不接地。 根据《凌津滩电厂水轮发电机组及其附属设备》合同: 1)第6.6.3.8中第2条《中性点装置》第3项中规定:两台机联合运行,单相接地电容电流大于3A时,若不能保证机组安全运行2小时,则各机组中性点均应采取补偿措施,补偿装置由卖方配套供货。 2)附件6.3条设备性能保证及参数中规定:定子绕组每相对地电容0.3μF。 3)第6.8条规定现场试验:6.8.3.8条定子对地电容电流测量。这一条明确规定与电机交流耐压并列,即每台机都应作电容电流测量。 1发电机电容的计算 凌津滩电厂发电机定子绕组为波绕双层、每槽两根线棒,定子线棒采用真空压力浸渍环氧树脂浸透线圈、线圈表面涂阻燃林料,分上下层嵌放到定子槽内。定子Z=342槽、计684根线棒,单支路每相线棒N=228根。 定子绕组对地电容,由线圈的机械尺寸、绝缘材料的电介系数所确定。按机械尺寸、交流耐压及单相接地三种方法可计算得出,以#1机为例,分述如下。 1.1 机械尺寸进行电容的计算 一般的平板极电容计算,电容与电介系数εO及εr、极板面积 S成正比,与极间距离d成反比。 常用式子 C0=εOεr S/d 发电机的绕组电容计算,可将线棒导体展开成为一极。包有半导体材料的线棒与铁芯是紧靠的,当另外一极同时展开。中间的绝缘材料也展开,这是极板间的介质。 线棒导体的面积 S1=(2b1+2h1)L 包半导体的面积 S2=(2b2+2h2)L

功放电流测试

技术文件 技术文件名称:3.6V功放馈电方案及电流测试报告技术文件编号: 版本: 文件质量等级: 共 2 页 (包括封面) 拟制汤继平 审核 会签 标准化 批准 日期一九九九年十一月 深圳市中兴通讯股份有限公司

3.6V功放PF08103B馈电方案及工作电流测试报告 1.目的 GSM手机所用功放电压以前都是高于电池电压的, 所以采用把电池电压经DC-DC变换到所需电压对储能电容充电, 发射时由储能电容放电的馈电方式. 但目前随着器件制造水平的提高, 功放制造商纷纷推出低电压功放, 逐步淘汰高电压功放, HITACHI停产 4.8V的PF08103A推出3.6V的PF08103B即是一例, 市面上采用低压功放的手机也逐渐 增多. 为适应这种趋势, 特以PF08103B为例进行瞬态工作电流测试, 为设计低电压功放馈电电路提供依据. 2.测试原理 2.1 馈电方案: 1)电池加储能电容直接馈电. 优点: 输出电流大, 损耗小, 电路简单; 缺点: 电池瞬态 电流大, 小容量电池需大容值电容, 大容值电容在电池安装时会产生极大充电瞬态电流, 可能引起电极烧结及电池损坏. 此方案选大容量电池较好. 2)电池通过限流电路对储能电容充电. 优点: 电池放电电流被限制在安全范围内, 有 利于延长电池寿命; 缺点: 增加电路, 限流电路增加额外损耗(发射时大约3mW); 需储能电容容值较大. 2.2测试电路: 1) R1 电路中:R1=R2=0.1Ω;C1=C2=……Cn=1000μF;PA处于最大功率发射状态。 为测量电池的瞬态电流,在电池输出串联一个0.1Ω电阻R1,用示波器监测R1两端A,B两点的瞬态电压VA,VB可计算出电流,为减小功放工作时R1对放电电流的影响,在电容上串联一个同样的电阻R2。 2) R1

相关文档
最新文档