论柴油发动机动力与喷油泵供油量的关系

论柴油发动机动力与喷油泵供油量的关系
论柴油发动机动力与喷油泵供油量的关系

柴油发动机动力与喷油泵供油量的调整

(李超)

摘要:很多驾驶员、维修人员错误的认为喷油泵油量越高,发动机动力越好,从理论上说是正确的,但是在实际的运用当中往往油量过高使油耗升高,而动力性能反而下降。本文论述了喷油泵供油量调整方法,对发动机动力性,油耗指标的影响。

关键词:发动机动力油耗喷油泵供油量调整参数

现代喷油泵的喷油压力由于零件加工精度的提高,供油压力也有所改善,喷油质量也随之得到改善,燃油控制也相对精确;所以国内发动机推出了欧1、欧2、欧3甚至欧4排放。但是由于车辆使用的地区(如山区)和利益的驱使,很多车主为超载的需要就加大了发动机的动力而增加喷油泵的供油量,以达到超载和山区运行的目的。部分维修人员在一知半解的情况下为车主加大油泵供油量,但得到的结果却不理想。这是因为供油量加大,空气充气量却未得到增加,多余的燃油未完全燃烧。其实车辆大多需要的是较好扭距和储备动力。

旁通阀增压器与供油量关系

以康明斯6C230-10发动机为例予以论述,C230发动机装配霍尔塞特旁通增压器,北京天纬产PB型带增压补偿器喷油泵。带旁通阀的增压器具有和柴油机中速相匹配,以提高柴油机中速的扭矩,并在高转速、高负荷时旁通阀打开,放掉部分废气,以降低增压器转速,控制压比。在调整PB型喷油泵供油量时应先检测增压器在发动机标定转速2400r/min,最大扭距转速1500r/min的压力值(实际运行状况);然

后根据测得数据在实验台上用相应的压力值调整油泵齿条行程;在调整最大扭距转速压力值下的供油量时,要根据发动机负载情况给予适当的放大到约56ml/400次,而最高标定转速只要能达到设定值55.6ml/400次就可以了,这样就达到了增加动力,降低油耗的目的。全负荷限位器的调整

PB喷油泵采用R801调速器,R801调速器装备有全负荷限位器,通过调整限位螺钉,和调节螺钉可以改变全负荷工况.如上图,调整限位凸块与摇杆的相对位置就可以使全负荷齿条行程得以改变,也就是改变全负荷油量,而PB型喷油泵对限位器总行程是以增压器压力来控制.在相同的压力情况下,摇杆与限位凸块的位置决定全负荷油量,而增压器压力又控制着限位凸块与摇杆的行程。调整全负荷工况的供油量就是为达到需要的动力,而又不使整体供油量的提高造成油耗升高,达到调整的目的。

柴油发动机动力与油量的调整

柴油发动机在一定转速下负荷增加,供油量就要增加,在车辆载重的情况下(特别是超载的情况下)就要提高适当的供油量,以达到所需要的动力要求。适当的调整供油量和供油时机要保证供油的有效性,过多的燃油供给会造成燃烧不完全而造成补燃期增长,使动力下降,油耗增高。就康明斯C230-10发动机而言,适当的增加最大扭矩转速补偿油量,可以增加发动机动力。因为在此转速情况下,增压器供给的空气量最大,可以完全燃烧。而在最高转速情况下,由于旁通阀开始起作用而开启和调速器作用下增压补偿器不供补偿油量,如果增加高速供油量,就会使燃烧不充分,排气冒黑烟。造成燃油浪费。

结论

每台汽车在出厂时,都设定了他最佳的燃油供给值,改变燃油供给量必然会提高油耗,所以一般不要调整喷油泵的供油量;但是在一些山区运行的车辆,需要较好的动力,就需要调整供油量,调整供油量一要专业维修人员,二要对发动机的动力储备有充分的了解;三要了解车辆配备的喷油泵的调整特性;不同油泵有不同的油量控制方式。科学调整喷油泵的油量参数,对发动机的使用至关重要,在燃油价格猛涨的趋势下,对提高发动机的动力,降低发动机的油耗是一个新的课题,也是作为一名油泵维修人员所追求的目标。以上的个人工作经验供同行参考。

参考文献:《柴油机喷油泵维修技术》《康明斯发动机维修手册》

2007-12-07

柴油机的四种低温启动方式

柴油机的四种低温启动方式 低温条件下,燃料粘度增加而不利于燃油的雾化与燃烧,润滑油流动性变差使各运动零部件阻力增大,再加上蓄电池工作能力降低等因素的影响,极易导致发动机启动困难、机件磨损、功率降低、燃料消耗增加和动力性能下降。为保证各类工程机械在寒冷条件下能够安全地投入使用,应当做好日常保养,最好安装低温辅助启动系统。 四种常见的低温启动方式 (1)加注冷起动液 冷起动液是一种辅助启动燃料(由乙醚,低挥发点的碳氢化合物和带有添加剂的低凝点机油组成),其中加入的带有添加剂的低凝点机油可改善气缸壁的润滑条件,达到启动的目的。由于乙醚具有较好的挥发性、易点燃和易压燃,因此乙醚的含量越多,柴油机可直接启动的温度就越低,但启动时柴油机的工作粗暴程度也就会越大。因此,使用冷起动液时一定要按规定量加注,切不可过量加入。此种启动方法虽可在瞬间启动发动机,但由于此时机油的温度低、粘度较大,启动后在一段时间内气缸壁上油不多,润滑条件恶劣,发动机工作时机体内作往复运动和回转运动的机件间就会形成干摩擦,使机件磨损加剧;因此,使用冷起动液启动发动机后切忌加大油门运转,选择这种启动方式启动时,应选雾化情况较好的起动液,并控制好喷射时间、喷入位置和喷入量。另外,切忌从空气滤清器的进气口直接喷入起动液,以免影响空滤器滤芯的质量和加大起重液的喷入量,造成发动机冷机启动运转超速。根据以上说明,建议慎用冷起液。 (2)火焰预热启动 火焰预热装置的最低工作温度为-40℃,工作过程为电子自动控制。火焰预热起动装置一般由电子控制器、电磁阀、温度传感器、火焰预热塞及燃油管和导线组成。该装置的工作过程是,将电热塞加热到850-950℃后接通起动机,电磁阀自动打开油路,通过燃油管向电热塞供油,进行火焰预热启动,采用该装置启动发动机后,由于此时机油的温度低、粘度较大,启动后在一段时间内气缸壁上油不多,润滑条件恶劣,发动机工作时机体内作往复运动和回转运动的机件间同样会形成干摩擦,使机件磨损加剧;由于摩擦中产生的高温能使摩擦表面金属熔化,极易造成机件卡死。因此,使用火焰预热装置启动发动机后也应切忌加大油门运转,否则易造成拉缸事故。 (3)循环水加热系统(也称燃油加热器加热系统) 这是近几年新采用的低温辅助启动方式,这种低温启动方式是通过燃油加热器.附带的水泵将发动机机体内的冷却液抽出,通过燃油加热器将其加热后再循环至发动机机体内,以此加热发动机,达到低温条件下启动发动机的目的。 这种低温启动方式的整个加热过程需30-40min,能将发动机机体温度加热到40-50℃左右,此时发动机的机油也得以加热,机油的粘度降低,发动机在低温条件下的润滑条件改善,使发动机顺利启动。这种低温启动方式优点明显,使发动机在低温寒冷条件下的启动性能大大提高,建议采用。ZLG50C高原型装载机、TLG210A高原型推土机上采用了这种低温启动

柴油机燃料供给系统练习题

柴油机燃料供给系统试题 一、填空题 1.柴油机混合气的形成和燃烧过程可按曲轴转角划分为(备燃期)、 (速燃期)、(缓燃期)和(后燃期)四个阶段。 2.柴油机燃料供给系统有四部分组成:(燃油供给)、(空气供给)、(混合气形成装置)和(废气排出装置) 3.柴油机的混合气的着火方式是(压燃式)。 4.国产A型泵由(泵油机构)、(供油量调节机构)、(驱动机构)和(泵体)等四个部分构成。 5.喷油泵的传动机构由(凸轮轴)和(挺住组件)组成。 6.喷油泵的凸轮轴是由(曲轴)通过(定时齿轮)驱动的。 7.喷油泵的供油量主要决定于(柱塞)的位置,另外还受齿条的影响。 8.柴油机的最佳喷油提前角随供油量和曲轴转速的变化而变化,供油量越大,转速越高,则最佳供油提前角(越大)。 9.供油提前调节器的作用是按发动机(工况)的变化自动调节供油提前角,以改变发动机的性能。 10.针阀偶件包括(针阀)和(真阀体),柱塞偶件包括(柱塞)和(柱塞套),出油阀偶件包括(出油阀)和(出油阀座),它们都是相互配对,(不能)互换。 二、选择题 1.喷油器开始喷油时的喷油压力取决于(B )。 A.高压油腔中的燃油压力 B.调压弹簧的预紧力 C.喷油器的喷孔数 D.喷油器的喷孔大小 2.四冲程柴油机的喷油泵凸轮轴的转速与曲轴转速的关系为(C )。 A.1:l B.2:l C.1:2 D.4:1 3.孔式喷油器的喷油压力比轴针式喷油器的喷油压力( A )。 A.大 B.小 C.不一定 D.相同 4.在柴油机中,改变喷油泵柱塞与柱塞套的相对位置,则可改变喷油泵的(C )。 A.供油时刻 B.供油压力 C.供油量 D.喷油锥角 5.喷油泵柱塞行程的大小取决于(B )。 A.柱塞的长短 B.喷油泵凸轮的升程 C.喷油时间的长短 D.柱塞运行的时间 6.喷油泵柱塞的有效行程( D)柱塞行程。 A.大于 B.小于 C.大于等于 D.小于等于 7.喷油泵是在(B )内喷油的。 A.柱塞行程 B.柱塞有效行程 C.A、B均可 D.A、B不确定 8.柴油机喷油泵中的分泵数(B )发动机的气缸数。 A.大于 B.等于 C.小于 D.不一定

喷油泵供油量不均的原因

喷油泵供油量不均的原因 喷油泵是柴油机燃油供给系统的重要部件,一般在试验台上调整供油量后装机使用,即便这样有时也会出现功率不足、排气冒黑烟、转速不稳的异常情况。主要是由于喷油泵调试的供油量与实际进缸的油量不符或各缸供油量不均匀引起的,直接影响柴油机的动力性、经济性和可靠性。 一、喷油泵供油不均匀的原因 1、调试状态与使用条件的不同 造成故障的原因要先找到,喷油泵在试验台上是在常温下进行调试的,而装机使用则是在汽缸压缩终了、缸内温度达500~700℃、压力3~5MPa条件下使用,两者差别较大。机车作业时,喷油泵与喷油器的温度均达90℃左右,也会造成柴油粘度下降,因而柱塞与针阀偶件的内漏增多,回油量也比调试时多。据测定,喷油泵实际喷入缸内的油量只有试验台调试量的80%左右,虽然油泵调试人员会考虑这个因素,但不可能精确掌握。另外,由于缸套活塞与配气机构的磨损或密闭程度的不同,各缸压缩后的温度与压力也会有差别。即使试验台上调试好的喷油泵,装机使用后,各缸供油量也会产生不均匀。 2、调试时存在的供油不均匀 喷油泵在试验台调试时,要求各缸在额定转速下的供油量不均匀度应<3%。实际调试过程中,由于试验台专用的喷油器和高压油管长度、形状、口径等不可能与原机完全一致,再加上调试技术的差异,喷油泵装机后,实际喷入缸内的油量不均匀度往往>3%。

3、机件故障引起的供油不均匀 机车经长期使用,由于喷油泵驱动联轴节松旷或间隙过大,驱动齿轮磨损、侧隙增大,也会影响各缸供油均匀度。另外,高压油管接头因频繁振动或拧紧不够的渗漏,以及拧紧力过大使接头金属脱落并堵塞油管,同样会引起各缸供油量的不均匀。 另外,在喷油泵和调速器弹簧中,其中受力较强、变形较大、工作频率较高的当属柱塞弹簧。所以其折断频率也较高。轻者喷油量减少、各缸喷油量不均、各缸喷油间隔时间超差、喷油开始时间延迟;重者供油间断甚至不能供油。 二、喷油泵装机后的再调整 1、喷油泵再调整的依据 根据各缸的排气温度、压力或烟色来判断其实际工作情况与柴油机的燃烧程度,从而确定该缸供油量过多还是过少、供油时间过早还是过迟,然后进行再调整。通过适当调整各缸供油量和供油时间,让喷油泵对柴油机各缸依照按需分配的原则来供油,以消除各缸实际存在的差异。 2、喷油泵再调整的操作技术 (1)喷油泵装机后,按规定标准调好供油时间,同时卸下排气歧管,以便观察各缸的工作情况。 (2)启动柴油机,怠速空转2~3min,用手触摸各缸排气口及喷油器附近的缸盖,若某缸温度过高,可初步断定该缸供油量偏多。 (3)当机温超过50℃时,加大油门,让发动机在额定转速下运转,同时查看各排气口的烟色,注意倾听气缸的声音。若某缸冒黑烟,说明供油量过大,以工程

挖掘机的四大系统、三大装置

一、四大系统 1、动力系统,它指的是柴油内燃机。柴油机的特点,压缩比高动力大。试验证明,柴油机的燃油消耗率平均比汽油机低30%左右。柴油机的缺点:性能差、震动大、噪音大。 ①柴油机有两种冷却方式:A风冷、B水冷。 ②柴油机有四个工作行程:进气、压缩、作工、排气。 ③六缸柴油机的作工顺序:1-5-3-6-2-4。 ④现在的挖掘机多采用六缸直列涡轮增压式柴油内燃机,涡轮增压器在机器上方进气口位置,它使过滤后的空气在没进入气缸前先预压一次,以增加进入气缸的进气量来增大发动机的功率。 ⑤有的挖掘机的动力系统采用电动机,我们习惯上称之为“电铲”,多用于电比较丰富的矿山,优点:动力大,噪音低、环保。 2、液压系统,现在的挖掘机的传动方式多采用液压传动液压系统主要指的是液压油箱、液压油泵、主控阀,液压油缸和液压马达。液压泵压液压系统中属于动力元件,液压油缸和液压马达在液压系统中属于执行元件。 3、操作系统:它是对整个挖掘机进行操作控制的系统,它包括左右工作装置操纵杆,左右行走操纵杆,安全锁定杆,启动开关,油门控制杆或燃油控制杆。 4、电子监控系统:电子监控器、导电线路和电子传感器。 二、三大装置,它主要包括:工作装置,行走装置和回转装置。它们之间的相互配合,充分地完成了挖掘机的行、转工作这些动作的基本要求。 1、工作装置主要分为:大臂、小臂、铲斗、油缸、连杆等。 ①其中大臂也叫动臂,小臂也叫斗杆,铲斗也称为挖斗。 ②动臂是采用优质钢板弯曲成135°左右而制成的。 ③一般挖掘机小臂长2.9米,大臂长5.7米左右。如神钢210标准小臂为2.94米。 ④挖掘机从铲斗的安装方式上可分为正铲和反铲两种。 A、正铲:当挖掘机在针对停车面以上的部位进行挖掘作业时,所采用的一种铲斗的安装方式,其要求是铲斗的开口朝向前方。 B、反铲:其安装方式正铲相反,其作业面处于停车面以下。同时,它又是应用最广泛的一种铲斗安装方式。 ⑤大臂相比小臂和铲斗、油缸而言,它承担的负荷比较大,大臂的支点与大臂油缸的支点是三角形,具有一定的稳定性,使工作时大臂不会来回振动。 2、回转装置:回转平台、回转轴承、回转机构。其中回转机构包括回专马达、回转减速器。 3、行走装置:引导轮、驱动轮、链轮、支重轮和履带习惯上称之为“四轮一带”。

柴油机的燃油系统

柴油机的燃油系统 1.商用车发动机增压式共轨喷射系统及关键技术的研究 随着未来排放法规(美国2010年及欧6排放标准)在重型商用车柴油机上的实施,以共轨喷射系统替代目前尚在许多场合使用的单体泵或泵喷嘴系统的趋势将进一步加快,而废气再循环(EGR)在所有重要的燃烧过程中的应用推动了共轨喷射系统方案的实施。由此产生的发动机对部分负荷时最高喷油压力的需求只能由带蓄压器的喷射系统采用液力方式才能有效地实现。 Bosch公司的产品系列以共轨系统(CRS)的2种变型来支持高负荷运转工况的燃烧过程设计。CRSN3.3系统提供了可挑选的柔性多次喷射自由度,它可用于采用高增压压力和高EGR率的燃烧过程。目前,喷油压力为220~250 MPa的产品分级可满足匹配特殊发动机的需求。 CRSN4.2增压式共轨喷射系统能提供可选择喷油开始时喷油速率的柔性功能,故能降低对氮氧化物(NOx)敏感的特性曲线场范围内的NOx形成。在与传统共轨喷射系统相同的喷油压力下,增压式共轨喷射系统生成NOx较少有利于降低高负荷运转工况下的燃油耗。此外,还能减少发动机在进气增压和废气流冷却方面的费用。 在发动机采用增压式共轨喷射系统进行全面优化时,实际行驶循环的燃油耗最多能降低3.5%。预测表明,在4年使用期内,欧洲长途运输由此而削减的二氧化碳(CO2)排放高达200 t,并能节省10 000欧元的燃油成本。 (1)系统设计 增压式共轨系统的基本结构具有以下众所周知的共轨系统部件及功能:(1)高压泵供应燃油;(2)共轨储存压力,并将燃油分配到各个气缸;(3)喷油器喷射燃油。 与传统共轨系统的最大区别是系统中产生压力的功能被分成两级:高压泵作为产生压力的第1级,将燃油压缩到25~90 MPa范围;第2级由集成在喷油器中的增压装置,即1个阶梯型柱塞,将燃油增压到额定喷油压力210 MPa,而增压装置由其自身的电磁阀来控制。 这种带增压装置的系统配置对于开发先进的发动机方案具有以下优点:(1)柔性和高液力效率的喷油特性曲线可优化高负荷运转工况的燃油耗;(2)共轨压力≤90 MPa的预喷射和后喷射降低了油束的动量,减小了燃油对气缸工作表面的浸湿及对发动机机油的稀释;(3)将喷油器中少数几个零件上承受最高压力的份额降至最少程度,而高压泵、共轨和高压油管最多只需按90 MPa压力来设计。 避免发动机机油掺入燃油是尽可能延长排气后处理装置使用寿命的重要环节,因此,增压式共轨系统将通常商用车上采用发动机机油润滑的高压泵传动机构改成燃油润滑的传动机构。 共轨选用与重型柴油机一样长度的结构型式,与紧凑型结构相比,它具有许多优点:(1)高压油管的变型数目减少了30%;(2)高压油管结构紧凑;(3)减小了共轨 高压油管 喷油器中的压力波动;(4)因共轨和高压油管的连接刚度好,降低了振动加速度。 (2)增压式共轨系统中的喷油器 由于对其提出的任务和要求不同,商用车发动机用的第4代喷油器与老产品有所不同。这主要体现在功能及设计方面,故在形式上考虑采用增压式喷油器,并缩小了最初采用电执行器行使原来喷射及控制功能的喷油器(包括喷油器中的构件)尺寸,使其只占普通商用车发动机共轨系统喷油器的一小部分,为扩展功能范围提供了空间。

喷油泵各缸供油量检测与调整

喷油泵各缸供油量检测与调整 喷油泵是柴油机的重要部件,由于调整不当以及机件故障,柴油机喷油泵会出现供油量不均匀的问题,将导致柴油机产生功率不足、机温升高、排气冒黑烟、转速不稳等故障,直接影响柴油机的动力性、经济性和可靠性。因此,在维修时要对喷油泵各缸的供油量进行调整。主要调整项目:额定转速供油量、怠速供油量、启动供油量、校正供油量、各缸供油量的均匀程度。 一、调试前准备 1.拆卸防碍与喷油泵试验台输出轴连接的部件。不同类型的喷油泵,其凸轮轴上套装的部件会有所区别。若存在不能与试验台输出轴匹配连接的情况,都应给予拆卸。 2.对喷油泵进行彻底清洗。对于粘满油泥的喷油泵,最好先用木片等物刮去油泥,然后将与泵体相通的油口用布塞住,再放入清洗盆内,用干净的柴油冲刷清洗。 3.将喷油泵装上试验台,利用专用夹具进行同心校正和紧固。紧固时要注意泵体紧固螺栓循序渐进。初步校正同心后,用手反复转动联轴器以检查校正的准确性,若有误差应重新校正。 4.检查喷油泵体和调速器的润滑油面,不足时应按油尺标记补充。 5.将高压油管按分泵接至出油阀座,接好低压进油管,松开喷油泵放气螺钉,启动电动机,直至放气螺钉处冒出的柴油无气泡为止。然后重新拧紧放气螺钉,再启动试验台主电动机。最后将加油操纵杆扳向最大供油位置,使转速逐渐增至喷油泵的额定转速,并维持运转数分钟,直至从喷油泵喷出的燃油不含空气为止。 二、调试 1额定供油量的调整

额定供油量是保证柴油机在额定负荷时所需要的供油量。实质是柴油机在额定转速下,调速工作状态和调节齿杆工作位置的调整。对于无校正器装置的高压泵,则应是齿杆端头与油量调节螺钉刚好相碰。对于有校正器装置的高压泵,则是齿杆端头刚好与校正器弹簧座相碰。(1)将喷油泵转速提高到额定转速,使油门操纵臂处于最大供油位置。 (2)将转速表上预置供油次数为200次,量油筒口对准集油杯下口。 (3)按下转速表上计数按钮,开始供油并计数,供油停止后读取各量油筒中的油量。 2. 供油不均匀度的检查调整 由于喷油泵各缸供油量的不均匀度与柴油机的工作平稳性有着密切的关系,因此喷油泵试验时,要对各缸供油量的均匀度进行测算,其计算公式如下: 各缸供油不均匀度=\[(最大供油量-最小供油量)/平均供油量\]×100% 平均供油量=(最大供油量+最小供油量)/2 各缸平均供油量误差不得大于5%。调整供油量前,要求调节齿杆与齿圈、齿圈与控制套筒(或调节拉杆与拨叉)的安装位置,保证其正确无误。 各缸供油不均匀度应小于3%,不符合规定时应进行调整。具体方法是:松开齿圈(或拨叉)紧固螺钉,将柱塞控制套筒相对于齿圈转动一个角度,以改变柱塞与柱塞套筒之间的相互位置,从而实现供油量的调整。对于采用拉杆拨叉式的,则是改变拨叉与拉杆的距离来进行调整。 3. 怠速供油量的调整 怠速供油量是柴油机油门位置在怠速,维持空载运转时克服内部阻力所需要的供油量。这时调速弹簧的弹力与飞块离心力相平衡,齿杆控制着油量控制套筒固定不动,使柱塞稳定在怠速供油量的行程内。若怠速供油量过大或过小,是由于调速弹簧弹力过大或过小所致,可通过调整低速限制螺钉来改变弹簧力,从而达到调整油量的目的。

各种柴油机高压油泵油量调整数据

各种柴油机高压油泵油量调整数据 调整供油正时的方法如下: 打开喷油泵侧面的检查窗口,找准要调的柱塞所对应的挺柱; 拧松该挺柱上的正时螺钉锁紧螺母; 若正时迟后,应旋出正时螺钉少许,用锁紧螺母锁紧再试;若正时超前,应旋入正时螺钉少许,用锁紧螺母锁紧再试(这种情况很少); 每次调后,都要小心地慢转凸轮,使柱塞升到最高点。然后,用螺丝刀撬起柱塞尾部,用厚薄规(塞尺)测量柱塞尾部与正时螺钉头之间的间隙。此间隙不得小于0.4mm,以防柱塞顶到出油阀座,损坏两组偶件。如果只有间隙小于0.4mm才能满足正时要求,则必须换用新柱塞偶件。 供油提前器的维修 正像汽油机的点火提前一样,柴油机也要在活塞运行到压缩行程的上止点之前就开始喷油,称为喷油提前角,有了喷油提前才能保证燃油雾化和燃烧后最大限度的发挥出动力。而喷油泵从喷油开始到压缩上止点前的曲轴转角称为供油提 前角,在喷油泵的前端的提前器外壳上有一条刻线和指示片表示供油提前角。

提前器的常见故障是油封漏油和从动盘磨损。提前器里的零件是在油中工作的,油对飞铁的振动起阻尼作用,缺油会影响提前器的工作性能;从动盘的曲线形状磨损,也会改变提前器的工作性能。因此,当柴油机高速动力不足、烟色变浓、过热时,应想到检查提前器的特性。 提前器的工作特性,需在喷油泵试验台上检查。对于非增压的CA6110型发动机用提前器,在转速低于500r·min-1时,提前角为0°;在1500r·min-1时,提前角为6.5°。对于增压型发动机用提前器,在转速低于500r·min-1时,提前角为0°;在1300r·min-1时,提前角为5°。提前角随转速的变化为线性,即随转速的变化成正比例变化。如果试验所测得的特性曲线偏离了上述要求,应予以检修。 提前器的工作特性发生了变化,说明从动盘与飞铁滚轮接触的表面出现了磨损,可将其拆出,用油石修磨其曲面形状,使其恢复原有形状。再在从动盘弹簧座下垫上相当于磨损和修磨总量厚度的垫片,使曲面的位置不变。修好的提前器,应装好重试,直到工作特性符合要求为止。对于漏油的提前器,通常只要更换油封即可排除故障。 单体泵喷油正时的调整

船用柴油机主要系统介绍-燃油-滑油-冷却

第五章柴油机系统 第一节燃油系统 一、作用和组成 燃油系统是柴油机重要的动力系统之一,其作用是把符合使用要求的燃油畅通无阻地输送到喷油泵入口端。该系统通常由五个基本环节组成:加装和测量、贮存、驳运、净化处理、供给。 燃油的加装是通过船上甲板两舷装设的燃油注入法兰接头进行的。这样,从两舷均可将轻、重燃油直接注入油舱。注入管应有防止超压设施。如安全阀作为防止超压设备,则该阀的溢油应排至溢油舱或其他安全处所。注入接头必须高出甲板平面,并加盖板密封,以防风浪天甲板上浪时海水灌入油舱。燃油的测量可以通过各燃油舱柜的测量孔进行,若燃油舱柜装有测深仪表的话,也可以通过测深仪表,然后对照舱容表进行。 加装的燃油贮存在燃油舱柜中。对于重油舱,一般还装设加热盘管,以加热重油,保持其流动性,便于驳油。 燃油系统中还装设有调驳阀箱和驳运泵,用于各油舱柜间驳油。 从油舱柜中驳出的燃油在进机使用前必须经过净化系统净化。燃油净化系统包括燃油的加热、沉淀、过滤和离心分离。图5-1示出了目前大多数船舶使用的重质燃油净化系统。 图5-1 重质燃油净化系统 1-调驳阀箱;2-沉淀油柜燃油进口;3-高位报警;3-低位报警;4-温度传感器;5-沉淀油柜;6、16-水位传感器;7-供油泵; 8-滤器;9-气动恒压阀;9’-流量调节器;10-温度控制器;11、12-分油机;13-连接管;14-日用柜溢油管;15-日用油柜从图可以看出,通过调驳阀箱1,燃油被驳运泵从油舱送入沉淀油柜5,每次补油量限制在液位传感器3与3之间,自动调节蒸汽流量的加温系统加速油的沉淀分离并且可使沉淀油柜

提供给供油泵7的油温变化幅度很小。供油泵后设气动恒压阀9和流量控制阀9’,以确保平稳地向分油机输送燃油,有利于提高净化质量。燃油进入分油机前,通过分油机加热器加温,加热温度由温度控制器10控制,使进入分油机的燃油温度几乎保持恒定。系统设有既能与主分油机串联也能并联的备用分油机,还设有备用供油泵,提高了系统的可靠性。分油机所分的净油进入日用油柜15,日用油柜设溢流管。在船舶正常航行的情况下,分油机的分油量将比柴油机的消耗量大一些,故在吸入口接近日用油柜低部设有溢流管,可使日用油柜低部温度较低、杂质和水含量较多的燃油引回沉淀柜,既实现循环分离提高分离效果,又使分油机起停次数减少,延长分油机使用寿命。沉淀柜和日用柜都设有水位传感器6、16,以提醒及时放残。 燃油经净化后,便可通过燃油供给系统送给船舶柴油机。近年来由于高粘度劣质燃油的使用,其预热温度大大提高。为避免在使用高(700mm2/s)重油时因预热温度过高而汽化,出现了一种加压式燃油系统。如图5-2所示,在日用燃油柜与燃油循环油路之间增设一台输送泵,保证柴油机喷油泵进口处的燃油压力为800kPa(循环泵出口压力为1Mpa),循环油路(回路)中压力为400kPa,防止燃油系统在高预热温度(如150℃)时发生汽化和空泡现象。 图5-2 加压式燃油供给系统 二、主要设备与作用 1.重油驳运泵 重油驳运泵的作用是将任一重油舱中的重油驳至重油沉淀柜中进行沉淀澄清处理;在各

柴油机电控系统的组成、类型及其各类型的特点

柴油机电控系统的组成、类型及其各类型的特点 柴油机电控系统部件的组成 柴油机电控系统的基本组成与其他电子控制系统一样,也是由传感器,ECU 和执行元件三部分组成. A 、传感器:传感器(包括信号开关)用来检测柴油机与汽车的运行状态,并 将检测结果转换成电信号输送给ECU。 1. 加速踏板位置传感器:加速踏板位置传感器用来检测加速踏板所处位置, ECU根据此传感器信号间接判断柴油机的负荷,作为控制柴油机喷油量和喷油正时的主控制信号,常用的加速踏板位置传感器有电位计式和差动电感式。 2. 反馈信号传感器:柴油机电控系统一般对供(喷)油量和供(喷)油正时采用 闭环控制,反馈信号传感器就是指闭环控制系统中用来检测控制系统执行元件实际位置的传感器,主要包括负荷传感器(如供油齿条位置传感器、滑套位置传感器、喷油压力传感器等)和正时传感器(如分配泵正时活塞位置传感器、着火正时传感器等)两大类。 3. 燃油温度传感器:柴油的温度直接影响其黏度,燃油温度传感器用来检 测柴油的温度变化ECU根据此传感器信号对喷油量进行修正;一般采用热敏电阻式,其结构原理与进气温度传感器基本相同。 4.其他传感器和信号开关:发动机转速传感器(或凸轮轴/曲轴位置传感器), 车速传感器,冷却液温度传感器,制动开关,空调开关,E/G开关(点火开关)等的功用,结构和工作原理与汽油机电控系统基本相同。 B 、ECU :ECU的功用和结构与汽油机电控系统基本相同,只是控制程序 有较大差别。 C 、执行元件:执行元件主要是执行ECU的指令,调节柴油机的供(喷)油 量和供(喷)油正时,不同柴油机电控系统的执行元件有很大差异,常用的执行元件有:电子调速器和电磁阀。 柴油机电控系统的类型 按对供油量的控制方式不同,柴油机电控系统可分为位置控制方式、时间控制方式、时间-压力控制方式和压力控制方式四种类型。位置控制方式和时间控制方式是早期的第一代柴油机电控系统,它们保留了传统柴油机燃料供给系统的基本组成和结构,只是取消了机械调速器,增加了传感器、电控单元和电子执

柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展 陈然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国内外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个内燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机柱塞式喷油泵结构工作原理基础

柴油机柱塞式喷油泵结构工作原理基础 喷油泵是柴油供给系中最重要的零件,它的性能和质量对柴油机影响极大,被称为柴油机的"心脏"。 一.功用、要求、型式 功用:提高柴油压力,按照发动机的工作顺序,负荷大小,定时定量地向喷油器输送高压柴油,且各缸供油压力均等。 要求: (1)泵油压力要保证喷射压力和雾化质量的要求。(2)供油量应符合柴油机工作所需的精确数量。(3)保证按柴油机的工作顺序,在规定的时间内准确供油。 (4)供油量和供油时间可调正,并保证各缸供油均匀。(5)供油规律应保证柴油燃烧完全。 (6)供油开始和结束,动作敏捷,断油干脆,避免滴油。 类型:车用柴油机的喷油泵按其工作原理不同可分为柱塞式喷油泵、喷油泵- 喷油器和转子分配式喷油泵三类。

二.柱塞泵的泵油原理 柱塞泵的泵油机构包括两套精密偶件: 柱塞和柱塞套是一对精密偶件,经配对研磨后不能互换,要求有高的精度和光洁度和好的耐磨性,其径向间隙为0.002~0.003mm 柱塞头部圆柱面上切有斜槽,并通过径向孔、轴向孔与顶部相通,其目的是改变循环供油量;柱塞套上制有进、回油孔,均与泵上体内低压油腔相通,柱塞套装入泵上体后,应用定位螺钉定位。 柱塞头部斜槽的位置不同,改变供油量的方法也不同。出油阀和出油阀座也是一对精密偶件,配对研磨后不能互换,其配合间隙为0.01 。 出油阀是一个单向阀,在弹簧压力作用下,阀上部圆锥面与阀座严密配合,其作用是在停供时,将高压油管与柱塞上端空腔隔绝,防止高压油管内的油倒流入喷油泵内。 出油阀的下部呈十字断面,既能导向,又能通过柴油。出油阀的锥面下有一个小的圆柱面,称为减压环带,其作用是在供油终了时,使高压油管内的油压迅速下降,避免喷孔处产生滴油现象。当环带落入阀座内时则使上方容积很快增大,压力迅速减小,停喷

供油系统简介

供油系统(Fuel supply system),是发动机五大系统之一,根据发动机运转工况的需要,向发动机供给一定数量的、清洁的、雾化良好的燃油,以便与一定数量的空气混合形成可燃混合气。同时,还需要储存相当数量的燃油,以保证汽车有相当远的续驶里程。 供油系统包括了燃油输送系和燃油喷射系,由于燃油输送系中,汽油泵跟柴油机的输油泵结构并无太大特别之处(都是液压元件里的膜片泵或者柱塞泵),所以小编想着重介绍一下燃油喷射系。 车用汽油喷射系统有多种类型,可按不同的方法分类:(1)按汽油喷射系统的控制方法分为机械控制式、电子式及机电混合控制式3种。其中机械控制式就是我们所熟知的化油器喷射,已经在97年明令淘汰;电子控制式是大家平时口中的电喷;机电混合式则是两者之间的过渡产物——即节气门控制还是用拉索控制。(2)按喷射位置的不同可分为缸内直喷和缸外喷射。缸内直喷是通过安装在上的喷油器,将汽油直接喷入内。这种喷射压力较高,需要3到5MPa的压力,国外产品比较常见,国内基本没有。缸外喷射是将喷油器安装在进气管或上,以到的喷射压力将汽油喷入进气管或进气道内,前者称为进气管喷射,后者称为进气道喷射。 图:左图为进气管喷射,由于一台发动机只装有1或2个喷油器在节气门体上,所以这种喷射方式称为单点喷射(SPI)。右图为进气道喷射,每个气缸设置一个喷油器,各个喷油器分别向各缸进气道(进气门前方)喷油,这种喷射方式又称为多点喷射(MPI) (3)按喷射的连续性将汽油喷射系统分为连续喷射式和间歇喷射式。间歇喷射由于燃油经济性等原因已经用于绝大多数汽车中,电喷中的程序喷射就是间歇喷射式中的一种。 下面要介绍的是一款比较古老的电喷系统,但也是市面上最常见到的——L型电控汽油喷射系统。 这种电喷系统与其他最大的不同之处就是用了叶片式空气流量计,从精度上看比热线式和热膜式都要差。当驾驶员踩下油门时,通过此时的发动机进气量、转速和负荷确定基本喷油量,再通过此时的水温、温度、气压、氧反馈信号确定补偿喷油量,从而得出最佳喷油量。喷油量的多少一般式通过喷油时间和喷油压力来决定的。此外,大家在爱车上看到的比如TSI、TFSI等字母中的I都代表着车上所应用的是电控喷射系统。 下面小编再向大家介绍一下柴油机的电控喷油系统。由于燃烧方式的不同,柴油机的喷油器不但要起到喷油的作用,还要像汽油机中的一样,具备喷油提前的功能。另外,柴油机燃烧时需要很高的压缩比,所以喷油器还要能提供16MPa以上的喷油压力(高压油泵供油时,高压共轨则需要130MPa以上),因而喷油器件间的结构非常精密,通常以微米级表示。

柴油机喷油提前角的调整

柴油机喷油提前角的调整 为了检查调整供油提前角,厂家在制造柴油机时,一般将正时标记做在柴油机和喷油泵的相应位置上:喷油泵第一分泵开始供油正时的标记,多指喷油泵联轴器(或自动提前器)上和喷油泵轴承盖上的定时刻线,只要两刻线对准,便可肯定是喷油泵向第I缸开始供油的时刻;柴油机供油提前角的标记,多指飞轮壳(或其上的检视孔)上的指针和飞轮上该机型要求的供油提前角的角度,个别的是指曲轴前端胶带轮上的刻线和机体前盖上的指针;对于多缸柴油机,当指针对上相应角度或刻线,并保证I缸进、排气门都有间隙时,才可肯定该卸在供油提前角位置。喷油泵与相应传动齿轮的啮合记号在柴油机大修后将啮合齿轮上相应的正时标记对上即可。个别的机型在安装喷油泵时还注意连接标记。 1、就机检查供油正时喷油泵固定在柴油机上,可能因为各种情况造成供油正时不准,这时就需要检查供油正时。进口计量泵(a)一人摇转曲轴使I缸活塞处于压缩行程(即I缸进、排气门都出现间隙)时,当固定标记正好对准飞轮或曲轴胶带轮上的供油提前角记号时,停止摇转曲轴。(b)对于有喷油泵第一分泵开始供油正时标记的,检查联轴器(或自动提前器)上的定时刻线标记是否与泵壳前端上的刻线记号对上。若两记号正好对上,则说明供油正时正确;若联轴器上的标决还未到泵壳刻线记号,则说明供油时间过晚;反之若联轴器上的标记已超过泵壳刻线记号,则说明供油时间过早。而对于联轴器和泵壳前端无刻线记号的,此时就应该拆下喷油泵I缸高压油管,一人摇转曲轴,当快要到达I缸供油提前角位置时,要缓慢摇转曲轴,一人凝视I缸出油阀的出油口油面,当油面刚刚向上一动时,停止摇转曲轴,检查飞轮或曲轴胶带轮上的供油提前角刻线是否与其对应的指针对

喷油泵速度特性

实验四喷油泵速度特性 一、实验目的 1、熟悉喷油泵试验台的结构、原理及用途,并掌物其操作方法。 2、了解柴油机的供油系统和喷油泵的结构及其工作原理。 3、掌物喷油泵速度特性的试验方法,加深对喷油泵速度特性的理解。 二、实验条件 1、PSDW110-2C喷油泵试验台一台 2、四缸Ⅱ号高压油泵一台 三、实验原理 喷油泵速度特性:在喷油泵的油量控制调节机构(拉杆或齿条)位置不变时,每循环供油量随转速的变化特性。 四、实验内容和要求(按内容逐项写清楚) 1、调节喷油泵转速,一人;转速调整应均匀。 2、记录喷油泵的供油量,一人;实验数据记录应准确无误。 五、实验方法与步骤 1、将喷油泵的拉杆固定在最大位置,并保持不变。 2、起动喷油泵试验台,设定喷油泵的低压供油压力(0.2MPa)和温度(25℃)。 3、起动主轴电机,选择手动方式调节喷油泵的调速旋钮改变喷油泵的转速(也可选择自动方式预先设定喷油泵的工作转速),测量在下列转速下喷油泵工作100次循环的供油量:200、300、400、500、600、700、800、900、1000 r/min,同一转速测量二次。 4、试验完毕后,做好保养清理工作,将实验数据记入柴油机喷油泵速度特性记录表(表五),经实验指导老师签字后即可离开实验室。 六、实验的重点或难点 1、实验数据的读取。 2、喷油泵的结构及其工作原理。

七、实验注意事项 1、实验过程中,喷油泵禁止无油工作,其转速变化不能太快。 2、应尽量保证喷油泵喷出的燃油都要进入测试量筒内;读数时要保证燃油液面水平,等到量筒内的油沫消失之后再读数,避免测量误差。 八、思考题 1、做此实验时为什么要将喷油泵的油量控制机构(拉杆或齿条)的位置固 定不变?2、柴油机喷油泵的每循环供油量随转速的增加如何变化?为什么? 表五柴油机喷油泵速度特性实验记录表 签字年月日

柴油机喷油泵原理

柴油机燃油喷射系统的工作原理及故障诊断 一、柴油机的工作原理柴油发动机是一种压燃式发动机,压燃式发动机吸入气缸的是纯净的空气,并被压缩到很高的温度,柴油经喷射装置以高压喷入气缸并与高温空气混合着火燃烧,对外作功,从而将化学能转变为机械能。柴油发动机的优点是:燃油消耗低,较低的有害废气排放。柴油发动机有四冲程也有二冲程的,汽车使用的柴油机多为四冲程。柴油机工作循环(四冲程)第一冲程活塞由上死点向下运动,将空气经打开的进气门吸入气缸,故而称之为进气冲程;第二冲程活塞由下死点向上运动,进、排气门关闭,气缸内的空气以14:1—24:1的压缩比被压缩,空气升温至800℃,在压缩行程结束时,喷油器以接近1500巴的压力将柴油喷入气缸。该冲程称之为压缩冲程。第三冲程在一定的发火延迟后,雾化的燃油与空气混合自行发火燃烧,气缸内空气压力迅速升高,推动活塞下行对外作功。该冲程称之为作功冲程。第四冲程活塞向上运动,排气门打开,燃烧的废气被子排出气缸。该冲程称之为排气冲程。 二、发动机的构造发动机由:机体、曲柄连杆机构、配气机构、供给系、冷却系、润滑系、起动系组成。 三、燃油喷射系的工作过程 1、功用:按照柴油机的工作顺利及负荷的新变化,将清洁的柴油定时、定量、定压并以一定的空间状态雾化喷入燃烧室。 2、组成:由低压油路与高压油路两大部分组成。低压油路:由燃油箱、滤清器、输油泵、低压油管等组成;高压油路:由喷油泵、高压油管、喷油器等组成。 3、燃油供给路线:柴油从燃油箱内被吸出,经油管进入输油泵,输油泵以一定的压力将柴油压送到柴油滤清器,经滤清器过滤后的清洁柴油输入到喷油泵,再经喷油泵增压,由高油管送到喷油器,喷油器将柴油雾化后喷入燃烧室中。 四、喷油泵 1、油泵的功用:按照柴油机不同工况,定时、定量、定压、敏捷地将柴油雾化喷入气缸。 2、油泵的种类:柱塞式喷油泵、分配式喷油泵、泵-喷油器、PT泵、滑套计量。 3、柱塞式喷油泵的工作原理:柱塞式喷油泵是通过与发动机的凸轮轴的旋转推动柱塞向上运动,在柱塞弹簧的弹力作用下柱塞向下运动。柱塞在柱塞套内连续的往复运动实现了油泵的供油。柱塞在柱塞套内作往复直线运动的同时,还可作旋转运动,柱塞的旋转运动完成了油泵的油量调节。 五、喷油器 1、喷油器的功用:将高压油泵送来的高压油,按设定的压力,以最佳的雾化状况喷入燃烧室,与压缩空气充分的混合。 2、喷油的构造:由喷油器体、调压螺钉、调压弹簧、顶杆、针阀偶件等组成。 3、喷油的工作原理:当喷油泵工作时,高压柴油经高压油管,进入喷油器油道、针阀体环形油道、直油道、直达压力室。当压力室的油压力足以克服调压弹簧的预紧力和针阀偶件内的磨擦力时,针阀抬起,高压柴油就以高速以环形喷孔喷出。喷出的柴油又撞击在针阀的倒锥体上,形成均匀细碎的倒锥形喷雾。当喷油泵停止供油时,压力室内的油压骤降,针阀在调压弹簧的作用下迅速复位,密封锥体与锥座密封,喷油器停止喷油。 六、供油提前器 1、喷油提前角:柴油是在活塞到达上止点前的某个角度喷入燃烧室的,这个喷油时间为喷油正时,此时相应的曲轴转角为喷油提前角。 2、供油提前角:喷油泵开始供油到活塞到达压缩上止点这段时间的转角。 3、供油提前角对发动机的影响: 1)供油提前角过大:工作粗暴、敲缸、燃烧不完全、冒白烟、功率下降、油耗大、起动困难、怠速不稳; 2)供油提前角过小:功率下降、油耗大、水温高、难起动、冒黑烟。 4、喷油泵供油提前角的调整:1)改变喷油泵凸轮轴与曲轴的相对位置; 2)改变油泵与滚轮体的相对位置。 5、供油提前器的功用:使喷油泵的供油提前角随油泵转速的增加而自动增大,使柴油机在不同的转速条件下有最佳的供油正时与之相适应,从而获得较好的动力性和经济性。 七、调速器 1、调速器的功用:根据柴油机的速度特性,分别在起动、怠速、超速等不同的工作状况提供不同的喷油量,以保证柴油机正常平稳的工作,同时能灵敏地感觉到外界负荷变化所引起的柴油机转速的变化而自动调节控制齿杆的位置增减供油量,从而改变喷油泵的自然供油特性,改变柴油机的扭矩特性,以适应外界负荷的变化。 2、调速器的分类: 1)按调速作用范围可分为单

柴油机的四种供油系统说课讲解

柴油机的四种供油系 统

精品文档 柴油机的四种供油系统 1.直列泵系统 体积较大,每个气缸对应一个分泵,分泵与对应缸之间通过高压油管连接,喷油器利用柴油自身的压力被动喷油。该系统多采用机械离心式调速器,可靠性较好,但精度较差。驾驶员通过油门控制调速器弹簧的预紧力,飞锤离心块产生的离心力与弹簧力相互制约,保持动态平衡。弹簧力将油量控制机构向供油量增加的方向移动,供油量增加使柴油机加速,同时调速器飞锤离心块的离心力也增加,离心力使油量控制机构向减油的方向移动,制约转速的增加,油门位置与调速弹簧预紧力对应,弹簧预紧力与转速相对应,从而达到控制转速的目的。一旦调速器失灵或油量控制机构卡住、断开,极易造成柴油机“飞车”。加速时烟色较深,燃油利用率和尾气排放标准较低。喷油压力为17~19MPa,不利于柴油充分地雾化燃烧。 2.分配泵系统 与直列式相同之处是,采用柱塞式喷油泵和机械离心式调速器,喷油器与喷油泵用油管连接,喷油器为被动式喷油;不同之处是分配泵减少了柱塞泵的数量(只有1个柱塞偶件),通过分配转子按各缸工作顺序将高压柴油送至各缸的喷油器,高压油管在安装时必须按照分配转子的旋转方向和各缸的工作顺序连接。分配泵数量的减少使喷油泵本身体积减小,结构更紧凑,降低了成本。驱动转速的增加使喷油压力更高。分配泵驱动转速可以达到曲轴转速的3倍。在柱塞偶件密封程度不变的前提下,喷油泵驱动转速越高喷油压力越高,分配泵喷油压力可达60~80MPa。高压喷射有利于柴油更充分地雾化燃烧,降低烟度。3.PT供油系统 这是康明斯公司的专利。喷油器为主动式喷油,低压柴油在喷油器中通过摇臂压动喷油器的柱塞产生高压,喷油器也是一种柱塞泵,P和T分别指作用于喷油器油杯计量孔的压力和计量孔的开启时间。当加油门时,油路中的柴油流量增加,油路中的油压也随之增加。在计量孔开启时间不变的前提下,进入油杯中的柴油增多,使柴油机加速,同时喷油器喷油的频率增加,计量孔开启的时间缩短,限制了单次喷油量过多,其控制精度要高于直列泵系统。PT泵的调速器也是机械离心式的,其结构是柱塞在柱塞套内滑动,控制油路的宽窄,离心力推动柱塞向油路变窄的方向移动,减小压力和喷油量,限制转速的增加。弹簧推动柱塞向油路变宽的一侧移动,弹簧力与离心力相互制约,保持动态平衡。该系统的油门和停机电磁阀在油路中串联在调速器之前,所以不会出现“飞车”。其喷射压力可达70~100MPa。PT供油系统在动力性、经济性以及环保方面都优于直列泵系统和分配泵系统。 4.电控系统 有电控调速器系统和电控喷油器系统两大类。电控调速器系统就是将直列泵、分配泵的机械离心式调速器改为电控调速器。这一类柴油机利用各种传感器 将柴油机运转时的转速、气压、油压等工况参数转化成电信号送给处理器,经程序处理后处理器将指令传送到执行机构进行控制,通过不断的反馈修正使柴油机的工况接近于理想状况。控制单元将转速传感器的反馈信号经程序处理后,将控制信号作用于电磁执行机构,利用电磁力控制加油或减油,泵体部分和机械离心式的完全一样。电控系统可以实现喷油率的智能控制。电控直列泵系统同时也加装了“飞车”保护装置。 电控喷油器系统又可分为电控泵喷嘴系统和电控共轨系统。 电控泵喷嘴系统是以PT供油系统为基础的一种改进型,利用喷油器上的电磁阀的开闭控制进入油杯的油量,去掉了调速器。泵油方式仍然是摇臂压动柱塞,与PT供油系统相同。电控共轨系统是在缸盖上安装了一个燃油轨,燃油轨是一个长管状密闭容器,各缸喷油器都安装在容器上,共同使用这一燃油轨,即所谓共轨。燃油泵通过单向阀向共轨内部不断泵入柴油产生高压,类似于制动系统的储气罐。压力传感器将共轨内压力值反馈给控制单元,并通过控制电磁阀的适当开启泄油以调节共轨内的压力。共轨内的压力就是喷油器的喷油压力,可达100~120MPa。油压的产生方式与柱塞泵的完全不同。供油正时由喷油器电磁阀的开启时刻控制,喷油量由电磁阀的持续开启时间控制,所以该系统既不需要提前器也不需要调 收集于网络,如有侵权请联系管理员删除

喷油泵工作原理

柱塞式喷油泵——A型喷油泵工作原理 A型喷油泵工作原理 A型喷油泵泵体为整体式,由铝合金硬模铸造而成。其结构紧凑、体积小、质量轻。泵体侧面开有窗口,底部用盖板封闭,侧盖和底盖均用螺栓固定,使喷油泵的拆装、调整和维修极为方便。 1.运动过程 当喷油泵凸轮轴转动时,若挺柱滚轮在凸轮的基圆面上滚动,则柱塞停在柱塞下止点的位置。若滚轮滚到凸轮的上升段时,则凸轮推动挺柱,挺柱再推动柱塞上移,同时将柱塞弹簧压缩。当滚轮滚到凸轮的顶弧上时,柱塞到达柱塞上止点。随后滚轮在凸轮的下降段滚动,柱塞弹簧则推压柱塞,柱塞又推压挺柱下移,直到滚轮又滚到凸轮的基圆面上,柱塞又回到柱塞下止点为止。即当喷油泵工作时,随着凸轮轴的转动,挺柱和柱塞在柱塞的上、下止点之间分别在挺柱孔和柱塞套中作往复运动。 2.泵油过程

柱塞由其下止点移动到上止点所经过的距离称作柱塞行程,也就是喷油泵凸轮的最大升程。由上述泵油过程可知,喷油泵并不是在整个柱塞行程内都供油,只是在柱塞顶面封闭柱塞套油孔到柱塞螺旋槽打开柱塞套油孔这段柱塞行程内供油。称这段柱塞行程为柱塞有效行程。显然,柱塞有效行程越大,供油的持续时间越长,喷油泵每一次的泵油量即循环供油量便越多。欲改变柱塞有效行程,只需转动柱塞即可。 3.供油量的调节 当供油量调节机构的调节齿杆拉动柱塞转动时,柱塞上的螺旋槽与柱塞套油孔之间的相对位置发生变化,从而改变了柱塞的有效行程。当柱塞上的直槽对正柱塞套油孔时,柱塞有效行程为零,这时喷油泵不供油。利用供油量调节原理,可将多缸喷油泵的各缸供油量调匀。其操作步骤为:保持调节齿杆不动,拧松调节齿圈紧固螺钉,适当地转动控制套筒,使其带动柱塞在柱塞套内转动,改变柱塞的有效行程,便可使供油量或增或减,然后拧紧调节齿圈紧固螺钉。根据需要再拧松另一个调节齿圈的紧固螺钉,重复上述步骤,直到各缸供油量均匀一致为止。这项工作须在专门的喷油泵试验台上进行。(如下左图)

相关文档
最新文档