高光谱研究综述

高光谱研究综述
高光谱研究综述

浙江师范大学

研究生课程论文封面

课程名称:遥感理论与技术

开课时间: 2014-2015年第一学期

学院地理与环境科学学院学科专业自然地理学

学号2014210580

姓名张勇

学位类别全日制硕士

任课教师陈梅花

交稿日期2015年1月21日

成绩

评阅日期

评阅教师

签名

浙江师范大学研究生学院制

高光谱遥感应用研究综述

张勇

(浙江师范大学地理环境与科学学院,浙江金华321004)

摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。

关键字:高光谱遥感;应用;成像光谱以;研究综述

Conclusion application of hyperspectral remote sensing

Zhang Yong

(Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004)

Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages.

Keywords: hyperspectral remote sensing;application;imaging spectrometer

1 引言

遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。

1.1高光谱遥感简介

高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据[2]。它是源于多光谱遥感技术,以测谱学为基础在二十世纪八十年代初发展起

来的遥感前沿技术。

高光谱遥感的显著特点之一是其所提供的高光谱分辨率。过去的多光谱遥感如TM等只能提供7个100-200 nm分辨率的间断波段信息,高光谱遥感则可提供几十数百个10 nm左右分辨率的连续波段信息,使得高光谱遥感有足够的光谱分辨率对那些具有纳米级诊断光谱特性的地表物体进行区分。谱像和一技术是高光谱遥感的另一显著特点。在对目标地物成像的同时,每一个像素都获得了几十至几百个连续光谱的覆盖,使其图像同时具有空间、辐射和波谱的信息。高光谱遥感的出现使遥感领域发生了巨大的变化,大大加快了遥感技术从定性到定量发展的步伐。

对高光谱遥感技术的应用也获得了更广泛的重视。目前世界上许多国家都在进行成像光谱卫星、高光谱遥感仪器的研究。如美国EOS计划中已发射升空的MODES卫星,0.4-14um 的电磁波谱范围内具有36个光谱通道,EOS-Ⅰ在0.4-2.5um范围内有486个波段;我国也先后研制出了多种成像光谱仪:如在中科院遥感所和上海技物所等单位协助下研制的128个波段的OMIS-Ⅰ、68个波段的OMIS-Ⅱ、71个波段的MAIS , 224个波段的PHI[3]。

1.2高光谱的特点与优势

同其它传统遥感相比,高光谱遥感具有以下特点:

(1)波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。

(2)光谱分辨率高。成像光谱仪采样的间隔小,一般为l0nm左右。精细的光谱分辨率反

映了地物光谱的细微特征。

(3)数据量大。随着波段数的增加,数据量呈指数增加[3]

(4)信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。

(5)可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱

曲线可以与地面实测的同类地物光谱曲线相类比。

近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。

高光谱遥感的成像光谱仪具有光谱分辨率高(5-10 nm),光谱范围宽(0. 4 um -2. 5 pm)的显著特点,可以分离成几十甚至数百个很窄的波段来接收信息,所有波段排列在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光、近红外到短波红外的全部电磁辐射波谱范围。高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱维信息的有机融合[4]。高光谱遥感在光谱分辨率方而的巨大优势,使得空间对地观测时可获取众多连续波段的地物光谱图像,从而达到直接识别地球表而物质的目的。地物光谱维信息量的增加为遥感对地观测、地物识别及地理环境变化监测提供了更充分的光谱信息,使传统的遥感数据目标识别和分析方法发生了本质的变化。根据高光谱遥感仪器光机扫描方式的不同,可将成像光谱仪分为掸扫型、推帚型和凝视型[5]。根据分光方式的不同,光谱成像仪又可分为色散型、干涉型和计算层析型三大类型[6]。

2高光谱遥感技术发展现状

高光谱遥感技术是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术,技术成果主要表现为成像光谱仪研制、高光谱影像分析两方面[1-5]。

2.1国外的成像光谱仪研制情况

由于高光谱遥感在地物属性探测方面的巨大潜力,成像光谱技术得到了普遍重视[5-6] 。

(1)机载成像光谱仪

1983年,第一幅高光谱影像由美国研制的航空成像光谱仪(AIS1)获取,标志着第一代高光谱成像仪的面世。1987年,美国宇航局(NASA)喷气推进实验室(JPL)研制成功航空可见光红外成像光谱仪( AV IRIS,这标志着第二代高光谱成像仪的问世。进入20世纪90年代,许多国家开始从事成像光谱仪研制,具有代表性的机载成像光谱仪如表1所示。

表1 国外主要的机载成像光

(2)星载成像光谱仪

在航天领域,由美国喷气推进实验室研制的对地观测计划中的中分辨率成像光谱仪(MODIS),随TERRA卫星发射,成为第一颗在轨运行的星载成像光谱仪,从2000年开始向地面传送图像。到目前为止,已发射的具有代表性的星载成像光谱仪如表2所示。

2000年,NASA发射的EO-1卫星上搭载的高光谱成像仪(Hyperion),地面分辨率为30 m,已在矿物定量填图方面取得了很好的应用效果。2002年美国的海军测绘观测(NEMO)卫星携带的海岸海洋成像光谱仪(COIS)具有自适应性信号识别能力,满足军用和民用的不同需求。另外,2007年6月交付美Kirtland空军基地的高光谱成像传感器将通过TacSat-3卫星载入太空。

目前,许多国家都在积极研制自己的高光谱传感器,已明确有发射计划的有德国环境监测与分析计划的EnMAP只南非的多传感器小卫星成像仪MSMI和加拿大高光谱环境与资源观测者HERO。

表2国外主要的星载成像光谱仪

2.2国外的高光谱影像分析技术的研究现状

在成像光谱仪快速发展的同时,地物光谱数据库、高光谱影像分析技术研究也得到了迅速发展。

地物光谱数据库技术方面,以美国最为先进,有代表性的主要有JPL标准波谱数据库、USGS波谱数据库、A STER波谱数据库和IGCP-264波谱数据库[6]。此外,美国空军部门和环保局针对大气污染和空气成分的诊断建立了AEDC /EPA光谱数据库,并针对美国海军研究室研制的HYDICE成像光谱仪建立了森林高光谱数据库等。部分其他国家也展开了光谱数据库技术研究和建设工作,如英国在20世纪90年代初针对海水颜色研究建立了海水光谱数据库。

美国国家航空航天局(NASA )、欧洲航天局(ESA)、日本国家空间发展局(NASDA)和大学及研究所都有专门的高光谱影像应用分析的研究机构[7]国外商业遥感图像处理系统,相继增加成像光谱数据处理模块,其中具有代表性的有RSI公司的ENVI, PCIGeomatics公司的PCI, MicroImages公司TNT-mips等。

2.3国内高光谱遥感技术发展现状

我国紧密跟踪国际高光谱遥感技术的发展,并结合国内不断增长的应用需求,于20世纪80年代中后期着手发展自己的高光谱成像系统。主要的成像光谱仪有中科院上海技术物理研究所研制的推扫式成像光谱仪(PHI)系列、实用型模块化成像光谱仪(OMIS)系列、中科院长春光机所研制的高分辨率成像光谱仪(C-HRIS)和西安光机所研制的稳态大视场偏振干涉成像光谱仪(SLPIIS) 。

中科院上海技术物理研究所研制的中分辨率成像光谱仪(CMODIS)于2002年随“神舟”三号发射升空,并成功获取航天高光谱影像,其获取影像从可见光到近红外共30波段,中红外到远红外的4波段,空间分辨率为500 m。

2007年10月年发射的“嫦娥1号”卫星已携带中科院西安光机所研制的干涉成像光谱仪升空,用于获取月球表面二维多光谱序列图像及可分辨地元光谱图,通过与其他仪器配合使用对月球表面有用元素及物质类型的含量与分布进行分析,获得的数据用于编制各元素的月面分布图。

从2007年到2010年,我国将组建环境与灾害监测预报小卫星星座,将携带超光谱成像

仪,采用0 45 -0 95 um波段,平均光谱分辨率为5 nm,地面分辨率为100 m。

我国在积极研制具有自主知识产权的成像光谱仪的同时,在地物光谱数据技术、高光谱影像分析技术等方面的研究中也取得了部分的成果。

20世纪90年代初期,中科院安徽光机所、遥感所等单位对大量的典型地物进行了波谱采集,建立了我国第一个综合性“地物波谱特性数据库”。1998年,中国国土资源航空物探与遥感中心建立了“典型岩石矿物波谱数据库”,其中包含了我国主要的典型岩石和矿物500余种。2000年,中国科学院遥感所基于GIS和网络技术研制了典型地物波谱数据库及其管理系统,记录了10 000多条地物波谱,并能动态生成相应的波谱曲线和遥感器模拟波段,实现了波谱数据库与“3S”技术的链接。

3高光谱遥感的应用领域

随着高光谱遥感技术的发展,光谱分辨率和空间分辨率越来越高,高光谱遥感在越来越多的领域得到广泛的应用。

3.1在植被及农业研究中的应用

植被高光谱遥感数据,按获取方式的不同,采用相应的高光谱遥感信息处理技术处理后可用于植被参数估算与分析、植被长势监测等领域。高光谱的出现使精准农业成为可能,利用高光谱图谱合一的优点,能够精准监测作物长势,特别是作物长势评估、灾害监测和农业管理等方而,能准确地反映田间作物本身的光谱特征以及作物之间光谱差异,可以更加精准地获取一些农学信息,如作物含水量、叶绿素含量、叶而积指数等生态物理参数,从而方便地预测作物长势和产量。

1995年12月,中国科学院遥感应用研究所与国外合作开展了湿地植被高光谱遥感监测实验。实验中采用模块化航空成像光谱仪(MAIS ),在研究区选择了典型地物类型进行野外调查、采样分析和野外准同步光谱测量,同时制作了研究区内极为详细的植被分类图[9]。浦瑞良和宫鹏使用多元统计和光谱导数技术评价小型机载成像光谱仪(CA-SI)数据估计冠层生化浓度的潜力和效率[10]。童庆禧等人在鄱阳湖湿地建立了植被因子与生物量之间的经验模型,并对研究区进行生物量制图[11]。Pabl等用高光谱遥感分析了叶绿素荧光效应,认为荧光效应的存在为生化物质尤其是叶绿素含量的遥测提供了一种可能[12]。张霞等利用实用型模块化成像光谱仪(OMIS)在北京小汤山地区获取的航空高光谱遥感图像,运用红边、光谱吸收特征分析方法和逐步回归算法,进行了从高光谱遥感图像直接获取小麦氮含量的方法探索和可行性研究[13]。

3.2在大气环境研究中的应用

大气中的分子和粒子成分如水汽、二氧化碳、氧气、臭氧、云和气溶胶等在太阳反射光谱中反应强烈。波段很窄的高光谱能够识别出由于大气成分的变化而引起的光谱差异,探测到更精细的大气吸收特征。大气环境应用主要有两方而:一方而,测定地球大气中温室气体含量,如CO2, O3 ,CH4及污染气体成分;另一方而,进行大气温度和水气垂直分布的确定、大气过程研究、地球表而成分分析等,以气象应用为主。大气探测对光谱分辨率要求较高,高光谱遥感优势明显。

Anne等利用航空成像光谱仪(A VIRIS)中心在1. 03um的波段与冰雪颗粒关系进行冰雪颗粒填图[14]。在大气监测领域,从20世纪末至今,国际上已经研制多颗高光谱遥感卫星用于气体成分及温室气体探测,如搭载地球观测系统EOS上的大气红外探测仪AIRS,欧空局ENVISTA-1卫星上的大气痕量气体扫描成像光谱仪SCIAMACHY ,加拿大SCISAT-1微小卫星上的大气化学试验傅里叶变换光谱仪ACE-FTS,日本UOSAT卫星搭载的温室气体观测探测器TANSO,以及发射失败的美国NASA研制的天基大气CO2观测专用卫星OCO等。

3.3在地质矿产中的应用

区域地质制图和矿产勘探是高光谱技术主要的应用领域之一,也是高光谱遥感应用中最成功的一个领域。高光谱遥感在地质应用中主要体现在矿物识别与填图、岩性填图、矿产资源勘探、矿业环境监测、矿山生态恢复和评价等方面。

谢红接等运用中国科学院上海技术物理所研制的模块式航空高光谱(MAIS)影像数据,提取了该区的铀矿特征信息(如蚀变、矿化等),为高光谱图像的地质应用奠定了基础[14]。张宗贵等利用机载可成像光谱仪(HyMap)数据,开展了基于地物光谱特征成像光谱遥感矿物识别方法研究,有效地填绘出了这些矿物在该航带上的分布情况[15]oChabrillat等利用辉石在lpm附近的电子跃迁吸收,用航空高光谱数据进行地质填图和岩石鉴别[16]。

随着高光谱遥感地质应用不断扩展和日益深入,近年来在基于高光谱数据的矿物精细识别、高光谱影像地质环境信息反演、基于高光谱遥感的行星地质探测等方而也取得了突出的进展。

3.4在海洋研究中的应用

海洋资源是重要的自然资源,高光谱遥感是当前海洋遥感的前沿领域。通过高光谱遥感,可以了解海洋的生态环境、海洋的温度变化、叶绿素分布、河口海岸的泥沙含量等。

目前,国内海洋遥感应用基础研究主要是一些数学模型的构建,关于如何解决水体的低反射率、大气对蓝紫波段光谱的散射影响等难题的研究还未涉足。在海洋水质监测应用方而,只有可见光光谱能够观测水下的状况,利用成像光谱技术可以观测到海洋中沉积性悬浮物、浮游生物、叶绿素的分布等海况。国际上主要涉及海洋碳通量研究、海洋生态系统与混合层物理性质的关系研究以及海岸带环境监测与管理等方面。

1991年,中科院遥感应用研究所利用MAIS成像光谱数据,制作了澳大利亚达尔文市海水叶绿素浓度分布图[17]。加拿大的Holden和Ledrew等进行了珊瑚礁的高光谱识别的探索研究,研究认为高光谱技术能精确识别珊瑚并监测珊瑚的健康状况的变化[18]。

3.5在军事侦察中的应用

在军事侦察领域,根据目标与伪装材料不同的光谱特性,利用高光谱遥感可以进行伪装识别。高光谱遥感不但可探测目标的光谱特性、存在状况,还可用于物质成分分析,从而可采集工厂产生的烟雾,直接识别物质成分,调查武器生产,适合于生化战争中的监视。海军作战应用方而可进行探测海水透澈度、海洋深度、水下不明物、海流、油泄漏、海底类型、海洋大气能见度、潮汐、生物发光、海滩特征、纵向大气中水汽总量和次见度卷云等,对联合攻击和联合海岸区战争提供支持[19]。

4结束语

高光谱遥感作为一门新兴的传统遥感发展的前沿技术,尽管在理论基础、方法手段上仍有不少稚嫩的地方,但从二十世纪八十年代开始到现在的二十多年中,这门科学技术还是得到了迅速的发展,目前主要应用于对农业、地质、环境、城市、军事等领域各种目标地物的识别、分类及定量化研究,尤其在地质找矿、植被调查等方面获得了较为成熟的应用。当前,面向高光谱遥感应用,发展以地物精确分类、地物识别、地物特征信息提取为目标的高光谱遥感信息处理和定量化分析模型,提高高光谱数据处理的自动化和智能化水平,开发专用的高光谱遥感数据处理分析软件系统和地物光谱数据库仍是高光谱遥感研究的主要任务,旨在将高光谱遥感更精确地应用于更多更广的领域。高光谱遥感以其光谱分辨率高、图谱合一的特点受到了国内外研究者的广泛关注,这是传统的遥感技术无法比拟的。高光谱遥感的这些特点,使得对地物的分类识别,物化信息的提取和预测的广度、深度和精度被大大提高,遥感技术从定性为主向更高精度的定量遥感的发展。同时其所拥有的巨大的信息量,为其向更广领域的拓展提供了巨大的潜力。迄今为止,国内外常用的成像光谱仪还是以航空机载的为主,要进入实用阶段,需要由航空遥感转向卫星遥感。所以,未来携带更高光谱和空间分辨率成像光谱仪的卫星会陆续发射。综上所述,高光谱遥感的应用将会在更多更广的领域中发挥越来越重要的作用。

参考文献:

[1]梅安新,彭望绿.遥感导论区[M].高等教育出版社,2001.

[2]浦瑞良,宫鹏.高光谱遥感及应用[M].北京:高等教育出版社,2000.

[3]王长耀,牛锋、唐华俊.对地观测技术与精准农业[M].北京:科学出版社,2001.

[4]张良培,张立福.高光谱遥感区[M].武汉大学出版社,2005

[5]张卡,盛业华,张书毕.遥感新技术的若干进展及其应用[J].遥感信息,2004 , (2); 58-62.

[6]肖松山,范世福,李晌,等.光谱成像技术进展[J].现代仪器,2003, (5); 5-8.

[7]马玲,崔德琪,王瑞,等.成像光谱技术的研究与发展[J].光学技术,2006, 32(Suppl. ); 573-576.

[8]崔廷伟,马毅,张杰.航空高光谱遥感的发展与应用[J]遥感技术与应用,2003, 18(2); 118-122.

[9]浦瑞良,宫鹏.森林生物化学与CAST高光谱分辨率遥感数据的相关分析[J]遥感学报,1997,1(2):5-23.

[10]童庆禧,郑兰芬,王晋年,等.湿地植被成像光谱遥感研究[J]遥感学报,1997, 1(1), 50-57.

[11]Pablo J,John R. Chlorophyll fluorescence effects on vegetation apparent reflectance;

laboratory and air-borne canopy-levcl measurement with hyperspectral data[J].Remote Sensing of Environment,2000,74:X96-608.

[12]张霞,刘良云,赵春江,等.利用高光谱遥感图像估算小麦氮含量[J].遥感学报,2003, 7(3): 176-179.

[13]Nolin A W, Dozier J. A hyperspectral method for remotely sensing the grain size of

snow[J].Remote Sens. Environ.,2000,74:207-216.

[14]谢红接,李剑锋,刘德长,等.高光谱数据处理及其在广西苗儿山地区的地质应用研究[J].铀矿地质,

1999,15(1):47-54.

[15]张宗贵,王润生,郭小方,等.基于地物光谱特征的成像光谱遥感矿物识别方法[J].地学前缘,2003,

10(2):437-443.

[16]Chabrillat S, Pinct P C,Ceulcnccr U, et al. Ronda pcridotite massif: methodology for its

ecological mapping and lithological discrimination from air-borne hypcrspcctral data[J].lNT J Remote Scnsing, 2000,21(12):2363-2388.

[17]张宗贵,王润生.基于谱学的成像光谱遥感技术发展与应用[J].国上资源遥感,2000, (3): 16-24.

[18]Holdcnt H,Ledrew E. Hyperspectral identification of coral reef features[J].lnt J Remote

Sensing,1999,20(13):2545-2563.

[19]顾聚兴.超光谱遥感技术计划及海军地图观测卫星[J]红外,2000, (7):1-3.

原子吸收光谱综述

研究生课程 《近代分析化学》作业 原子吸收光谱分析方法及应用综述 学院:理学院 年级:_2007 专业:_应用化学 专业方向:_资源化工 学生姓名:_孟铁宏 教师:_薛赛凤教授 2008年6月30 日

原子吸收光谱分析方法及应用综述 孟铁宏 (贵州大学理学院贵州贵阳550025) 摘要:原子吸收光谱分析又称原子吸收分光光度分析,它是本世纪50年代中期出现并在以后逐渐发展起来的一种新型的仪器分析方法,这种方法根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量。本文综述了原子吸收光谱的发展历史、原子吸收光谱的定量分析原理、分析的最佳条件的选择、干扰及其消除原理和它在元素分析、有机物研究等各领域中的应用情况。并对原子吸收光谱法的未来发展与应用做出了展望。 关键词:原子吸收光谱;分析方法;干扰及消除;应用;综述 Atom absorption spectrum application Tiehong Meng (College of Science, Guizhou University, Guiyang, Guizhou 550025, China) Summary Abstract:The Atomic Absorption Spectrometry also known as Atomic Absorption Spectrophotometry Analysis.It is appeared in the mid-1950s and gradually developed as a new method of analysis equipment. According to this method , the vapor phase elements of the ground state atomic radiation on atomic resonance absorption intensity of the sample tested element contentit have a wide range of applications in metallurgy. This paper reviews the development of The Atomic Absorption Spectrometry history, the choice of the best conditions for the Atomic Absorption Spectrometry Analysis of the quantitative principles, and eliminates interference principle and its elemental analysis, research, and other organic matter in the field of application. At last, it make a Forecast for the Atomic Absorption Spectrometry for development and application in the future. Key words: the Atomic Absorption Spectrometry;the analytical methods; Disturbance and elimination; Application; Summary.

高光谱数据处理基本流程

高光谱数据处理基本流 程 The document was finally revised on 2021

高光谱分辨率遥感 用很窄(10-2l)而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,每个像元均可提取一条连续的光谱曲线,因此高光谱遥感又通常被称为成像光谱(Imaging Spectrometry)遥感。 高光谱遥感具有不同于传统遥感的新特点: (1)波段多——可以为每个像元提供几十、数百甚至上千个波段; (2)光谱范围窄——波段范围一般小于10nm; (3)波段连续——有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱; (4)数据量大——随着波段数的增加,数据量成指数增加; (5)信息冗余增加——由于相邻波段高度相关,冗余信息也相对增加。 优点: (1)有利于利用光谱特征分析来研究地物; (2)有利于采用各种光谱匹配模型; (3)有利于地物的精细分类与识别。 ENVI高光谱数据处理流程: 一、图像预处理 高光谱图像的预处理主要是辐射校正,辐射校正包括传感器定标和大气纠正。辐射校正一般由数据提供商完成。 二、显示图像波谱 打开高光谱数据,显示真彩色图像,绘制波谱曲线,选择需要的光谱波段进行输出。 三、波谱库 1、标准波谱库 软件自带多种标准波谱库,单击波谱名称可以显示波谱信息。 2、自定义波谱库

ENVI提供自定义波谱库功能,允许基于不同的波谱来源创建波谱库,波谱来源包括收集任意点波谱、ASCII文件、由ASD波谱仪获取的波谱文件、感兴趣区均值、波谱破面和曲线等等。 3、波谱库交互浏览 波谱库浏览器提供很多的交互功能,包括设置波谱曲线的显示样式、添加注记、优化显示曲线等 四、端元波谱提取 端元的物理意义是指图像中具有相对固定光谱的特征地物类型,它实际上代表图像中没有发生混合的“纯点”。 端元波谱的确定有两种方式: (1)使用光谱仪在地面或实验室测量到的“参考端元”,一般从标准波谱库选择; (2)在遥感图像上得到的“图像端元”。 端元波谱获取的基本流程: (1)MNF变换 重要作用为:用于判定图像内在的维数;分离数据中的噪声;减少计算量;弥补了主成分分析在高光谱数据处理中的不足。 (2)计算纯净像元指数PPI PPI生成的结果是一副灰度的影像,DN值越大表明像元越纯。 作用及原理:

高光谱遥感技术的发展与展望

高光谱遥感技术的发展与展望 中科院上海技术物理研究所 引言 高光谱遥感技术,又称成像光谱遥感技术,是20世纪最后20年中遥感领域最重要的发展之一,它将传统遥感的成像技术和物理中的光谱分析技术有机结合起来,利用图像和光谱二合一(图谱和一)的优势,在探测物体空间特征的同时,研究地球表层物质特征,识别其类型,进行物质成分分析。十几年来,高光谱成像技术和理论一直是遥感对地观测领域内一个活跃的研究和发展方向,随着本世纪初多个星载高光谱成像仪器的发射和实用化机载商业系统的出现,高光谱遥感图像数据开始进入主流遥感数据源的行列,越来越多的用户将在资源管理、农林矿业调查、环境监测等方面发现其独特的作用。 高光谱遥感技术属于多学科交叉技术,主要由信息获取系统——“成像光谱仪”或“高光谱成像仪”和高光谱图像数据处理系统两大部分组成。成像光谱仪的突出特点是:光谱分辨力高、空间分辨力高,波段数多,数据量大,因此高光谱图像数据包含的地物信息更加丰富,要充分发挥高光谱数据的潜能,必须深刻全面地了解要测量的地表物质的光谱特性及其与高光谱传感器的真实测量值之间的关系,并开发适合高光谱数据特点的严密、精确的数据处理方法和理论。正是高光谱成像设备性能的不断提高和高光谱遥感图像数据处理技术的进步促进了高光谱遥感技术实用化的进程,这两大支撑技术的进一步发展也是该技术的应用能否走向辉煌的保证。 1.高光谱遥感的原理 任何物质都会反射、吸收、透射和辐射电磁波,且不同的物体对不同波长的电磁波的吸收、反射或辐射特性是不同的,物质的这种对电磁波固有的波长特性叫光谱特性,是由物质本身包含的原子、分子与电磁波的关系决定的,因此分析物质的光谱曲线是识别物质的有效手段。遥感成像光谱学所研究的波长范围包括可见光、近红外、短波红外,以及中-热红外波段,在可见光、近红外和短波红外波段,地表物质以反射太阳光能量为主,固体盐矿物质、水体、植被、冰雪、土壤等物质都有诊断性识别信息的特征谱,而在热红外区,地表物质以热辐射为主,其辐射光谱也可以作为矿物岩石等的物质识别的判据[ ]。本文主要介绍反射光的高光谱图像。 反映物质差别的特征光谱的吸收峰或反射峰的宽度一般在5~50nm左右[ ],且越精细的物质分类需要越高的光谱分辨力,而传统的多光谱遥感数据源的光谱分辨力(几十到几百nm)显然无法满足需要,必须采用高光谱图像数据,例如图1为三条光谱曲线,分别属于健康叶面,病害叶面和松软土地,其中土地和叶面的光谱差别很大,利用多光谱数据就可以区分,而两种状况的叶面光谱差别比较小,只能利用光谱分辨力更高的数据才能区分。目前国际上典型的高光谱成像仪,包括我国上海技术物理研究所研制高光谱成像仪的光谱分辨力都优于5-20nm,基本满足地物分类的要求。 图1 光谱曲线与相应的地物波长 反射率

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 35 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为 21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

高光谱遥感技术及发展

遥感技术与系统概论 结课作业 高光谱遥感技术及发展

高光谱遥感技术及发展 摘要:经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的 发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技 术为主的时代。本文系统地阐述了高光谱遥感技术在分析技 术及应用方面的发展概况,并简要介绍了高光谱遥感技术主 要航空/卫星数据的参数及特点。 关键词:高光谱,遥感,现状,进展,应用 一、高光谱遥感的概念及特点 遥感是20 世纪60 年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通 常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可

探测的物质,在高光谱中能被探测。 同其它传统遥感相比,高光谱遥感具有以下特点: ⑴波段多。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。 ⑵光谱分辨率高。成像谱仪采样的间隔小,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 ⑶数据量大。随着波段数的增加,数据量呈指数增加[2]。 ⑷信息冗余增加。由于相邻波段的相关性高,信息冗余度增加。 ⑸可提供空间域信息和光谱域信息,即“图谱合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。近二十年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术。 二、发展过程 自80 年代以来,美国已经研制了三代高光谱成像光谱仪。1983 年,第一幅由航空成像光谱仪

遥感技术综述

遥感技术综述 遥感是指非接触的,远距离的探测技术。一般指运用传感器/遥感器对物体的电磁波的辐射、反射特性的探测,并根据其特性对物体的性质、特征和状态进行分析的理论、方法和应用的科学技术。遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。它是60年代在航空摄影和判读的基础上随航天技术和电子计算机技术的发展而逐渐形成的综合性感测技术。任何物体都有不同的电磁波反射或辐射特征。 一、遥感技术的基本内容 遥感可按数据获取、处理、分析和应用的整个过程中的主要内容分类。遥感技术包括五个方面的内容: 传感器研制、数据获取、数据处理、信息提取和遥感应用。从这几方面的内容可见,遥感是一个多学科交叉的产物。 二、遥感技术的应用 遥感技术已广泛应用于农业、林业、地质、海洋、气象、水文、军事、环保等领域。在未来的十年中,预计遥感技术将步入一个能快速,及时提供多种对地观测数据的新阶段。遥感图像的空间分辨率,光谱分辨率和时间分辨率都会有极大的提高。其应用领域随着空间技术发展,尤其是地理信息系统和全球定位系统技术的发展及相互渗透,将会越来越广泛。 1、在地质找矿中的应用 遥感地质找矿是遥感信息获取含矿信息提取以及含矿信息成矿分析与应用的过程。(1) 遥感岩石矿物识别 遥感岩矿识别技术非常适宜于植被稀少基岩裸露区的区域性地质。 (2) 矿化蚀变信息提取 矿化蚀变信息提取技术对于地质工作程度低的西部地区在一定程度上相当于区域化探扫面的功效,具体运用时应注意多种矿化蚀变信息提取方法的结合。 (3) 地质构造信息提取 (4) 植被波谱特征的找矿应用 高植被覆盖区遥感地质找矿可以结合植物波谱信息和植物地球化学方法来进行实践证明,对寻找隐伏矿床卓有成效但目前仍主要处于研究阶段。 2、在土地荒漠化监测中的应用 20世纪70年代,国外开始使用遥感技术进行土地荒漠化的监测。如阿根廷完全基于遥感手段对土地荒漠化的状态进行了评估;Tripathy等利用MSS和印度资源卫星(IRS)数据对印度古尔伯加的土地荒漠化进行了评价;Michael等应用遥感技术结合土地荒漠化的理论,通过对荒漠化动态变化规律的监测编制土地退化野外调查手册。我国从20世纪70年代开始利用国外卫星数据进行资源调查和灾害环境的监测80年代初期开始运用遥感技术进行有关土地荒漠化的资源调查 三、遥感科学技术的发展趋势 随着科学技术的进步,光谱信息成像化,雷达成像多极化,光学探测多向化,地学分析智能化,环境研究动态化以及资源研究定量化,大大提高了遥感技术的实时性和运行性,使其向多尺度、多频率、全天候、高精度和高效快速的目标发展。

高光谱数据处理基本流程

高光谱分辨率遥感 用很窄(10-2l)而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,每个像元均可提取一条连续的光谱曲线,因此高光谱遥感又通常被称为成像光谱(ImagingSpectrometry)遥感。 高光谱遥感具有不同于传统遥感的新特点: (1)波段多——可以为每个像元提供几十、数百甚至上千个波段; (2)光谱范围窄——波段范围一般小于10nm; (3)波段连续——有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱; (4)数据量大——随着波段数的增加,数据量成指数增加; (5)信息冗余增加——由于相邻波段高度相关,冗余信息也相对增加。 优点: (1)有利于利用光谱特征分析来研究地物; (2)有利于采用各种光谱匹配模型; (3)有利于地物的精细分类与识别。 ENVI高光谱数据处理流程: 一、图像预处理 高光谱图像的预处理主要是辐射校正,辐射校正包括传感器定标和大气纠正。辐射校正一般由数据提供商完成。 二、显示图像波谱 打开高光谱数据,显示真彩色图像,绘制波谱曲线,选择需要的光谱波段进行输出。 三、波谱库 1、标准波谱库 软件自带多种标准波谱库,单击波谱名称可以显示波谱信息。 2、自定义波谱库 ENVI提供自定义波谱库功能,允许基于不同的波谱来源创建波谱库,波谱

来源包括收集任意点波谱、ASCII文件、由ASD波谱仪获取的波谱文件、感兴趣区均值、波谱破面和曲线等等。 3、波谱库交互浏览 波谱库浏览器提供很多的交互功能,包括设置波谱曲线的显示样式、添加注记、优化显示曲线等 四、端元波谱提取 端元的物理意义是指图像中具有相对固定光谱的特征地物类型,它实际上代表图像中没有发生混合的“纯点”。 端元波谱的确定有两种方式: (1)使用光谱仪在地面或实验室测量到的“参考端元”,一般从标准波谱库选择; (2)在遥感图像上得到的“图像端元”。 端元波谱获取的基本流程: (1)MNF变换 重要作用为:用于判定图像内在的维数;分离数据中的噪声;减少计算量;弥补了主成分分析在高光谱数据处理中的不足。 (2)计算纯净像元指数PPI PPI生成的结果是一副灰度的影像,DN值越大表明像元越纯。 作用及原理: 纯净像元指数法对图像中的像素点进行反复迭代,可以在多光谱或者高光谱影像中寻找最“纯”的像元。(通常基于MNF变换结果来进行)

高光谱图像非监督分类方法

高光谱图像非监督分类方法 高光谱遥感技术起源于20世纪80年代初,它是在多光谱遥感技术的基础上发展起来的。经过数十年的发展,现在的高光谱遥感技术已经达到了一定的水平,在很多领域也得到了应用。比如它在农业中的应用,其主要表现在快速、精准地获取各种环境信息,以及农作物生长情况。在大气与环境应用上,在太阳光谱中,大气中的分子,如氧气、臭氧、二氧化碳、水蒸气等成分的反应十分强烈。而因为大气成份生变而引起的光谱差异通过传统宽波遥感方法难以准确识别,而这种差异可通过窄波段的高光谱识别出来。广西善图科技有限公司 非监督分类方法 1 K-means分类 K-means分类方法是最典型的目标函数聚类方法,以原型为依据。包含了以下流程: 1)从n个数据对象任意选择k个对象作为初始聚类中心(m1,m2,m3,…,mk); 2)依据各个聚类中心对象,即对象的均值来计算出与它距离最近的聚类中心,并将对象向聚类中心做以分配。 3)对各个聚类的均值做二次计算: K-means方法是比较快捷和简单的,不过初始聚类中心和最佳聚类数也会影响到聚类结果。 1.2.2 ISODATA方法 ISODATA(Iterative Selforganizing Data Analysis),又叫作迭代自组织数据分析。它是在先验不足的情况下,通过给出一个初始聚类,然后再判断其是否达标,再利用迭代法反复调整,最后得出一个准确的聚类。其采用以下步骤: 1)选择初始值,设置聚类分析控制参数。可以运用各种参数指标,按照指标,将所有模式标本向各个聚类中心进行分配。

2)对各类中全部的样本的距离指标函数进行计算。 3)依据要求,对前一次所得到的聚类集进行分裂,并做并合处理,从而计算出新的聚类中心和分类集。 4)再次做迭代运算,对各项指标进行计算,以判断结果是否达标,直至求出最理想的聚类结果。 IOSDATA算法规则十分明确,便于计算机实现,但是要把握好迭代的次数,防止出现分类不到位的现象。 2 谱聚类方法 谱聚类算法是依据谱图理论所设计的高性能聚类方法。它是基于以下原理:假设{x1,x2,…,xn}代表n个聚类样本,图G=(V,E)可用于表示数据之间的关系,其中V代表顶点集。E代表连接任何两点边的集合。在图中,每个样本xi都可作为顶点,两顶点间的关联性Wij可通过xi与xj相连边的权值来表示。权值矩阵度量图G中,每个顶点间的相似性共同构成相似矩阵,记作W。为了实现图的划分,需要在空中优化某一准则,使同一类的点差别较小,不同类的点差别较大。通常准则函数的优化问题可以通过求解相似矩阵的特征值和特征向量来解决,通过分解相似矩阵的特征值,得到原有的数据集的谱映射,再利用聚类划分算法去计算映射得到的新样本空间,最终得到分类结果。该聚类算法仅与样本点的个数有关,而数据的维数对其没有影响。并且,其对聚类数据样本空间的形状没有特殊要求,容易得到最优解。 3 新型的分类方法 3.1 支持向量机分类法 支持向量机(Support Vector Machine,SVM)是新的分类方法,由Vapnic等人所设计,以统计学理论为基础。近年来,在图像识别中,支持向量机已得到应用,这和中方法的工作机理是,先设计出最佳的线性超平面,最大化它的正与反例间的隔离边缘,从而实现超平面的寻找算法的最优解。SVM作为一种高维的监督分类方法,它是有着不受休斯效应影响的优势,有着不错的效果。但同时,这种方法也有一定缺陷。首先,最大的问题是核函数的选择缺乏指导性,当针对具体的函数时,选择最佳的核函数是一个比较难的问题,还有就是这个方法的计算量较大。 3.2 最小二乘支持向量机分类法 近些年发展了许多SVM的变形,其中最小二乘SVM将优化问题的约束条件变为等式约束,从而不用花费大量的时间解决二次规划问题,使得分类效率大大提高。其算法表达式为:

高光谱遥感技术的介绍及应用

高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。最近几十年,随着空间技术、计算机技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。 1 高光谱遥感简介 1.1高光谱遥感概念 所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。 高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。 1.2高光谱遥感数据的特点 同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点: 1)、多波段、波段宽度窄、光谱分辨率高。波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。如A VIRIS在0. 4~214 波段范围内提供了224 个波段。研究表明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。这是传统的多光谱等

高光谱图像分类讲解学习

高光谱图像分类

《机器学习》课程项目报告 高光谱图像分类 ——基于CNN和ELM 学院信息工程学院 专业电子与通信工程 学号 2111603035 学生姓名曹发贤 同组学生陈惠明、陈涛 硕士导师杨志景 2016 年 11 月

一、项目意义与价值 高光谱遥感技术起源于 20 世纪 80年代初,是在多光谱遥感技术基础之上发展起来的[1]。高光谱遥感能够通过成像光谱仪在可见光、近红外、短波红外、中红外等电磁波谱范围获取近似连续的光谱曲线,将表征地物几何位置关系的空间信息与表征地物属性特征的光谱信息有机地融合在了一起,使得提取地物的细节信息成为可能。随着新型成像光谱仪的光谱分辨率的提高,人们对相关地物的光谱属性特征的了解也不断深入,许多隐藏在狭窄光谱范围内的地物特性逐渐被人们所发现,这些因素大大加速了遥感技术的发展,使高光谱遥感成为21 世纪遥感技术领域重要的研究方向之一。 在将高光谱数据应用于各领域之前,必须进行必要的数据处理。常用的数据处理技术方法包括:数据降维、目标检测、变化检测等。其中,分类是遥感数据处理中比较重要的环节,分类结果不但直接提取了影像数据有效信息,可以直接运用于实际需求中,同时也是实现各种应用的前提,为后续应用提供有用的数据信息和技术支持,如为目标检测提供先验信息、为解混合提供端元信息等。 相对于多光谱遥感而言,由于高光谱遥感的波谱覆盖范围较宽,因此我们可以根据需要选择特定的波段来突显地物特征,从而能够精确地处理地物的光谱信[2]。目前,许多国家开展大量的科研项目对高光谱遥感进行研究,研制出许多不同类型的成像光谱仪。高光谱遥感正逐步从地面遥感发展到航空遥感和航天遥感,并在地图绘制、资源勘探、农作物监测、精细农业、海洋环境监测等领域发挥重要的作用。高光谱遥感技术虽然是遥感领域的新技术,但是高光谱图像的分类一直制约着高光谱遥感的应用[3,4],因此对其进行研究显得尤为重要。 高光谱遥感图像较高的光谱分辨率给传统的图像分类识别算法提出严峻的挑战。波段维数的增加不仅加重了数据的存储与传输的负担,同时也加剧了数据处理过程的复杂性,并且由于波段与波段间存在着大量的冗余信息,从而使得传统图像分类算法并不适用于高光谱遥感图像的分类。传统

高光谱数据的制图方法简介

高光谱数据的制图方法简介 ENVI软件在Spectral菜单中提供许多波谱制图方法,包括:二进制编码、波谱角制图、线性波段预测(LS-Fit)、线性波谱分匹配滤波、混合调制匹配滤波、包络线去除,以及波谱特征拟合等。 本文主要介绍几种高光谱数据处理的过程操作。 1.二进制编码 二进制编码分类技术根据波段值落在波谱均值的下方或上方,将数据和端元分别编码为0和1。在编码过程中,使用一个高级的(exclusive)OR函数,用于将需要编码的数据波谱与参照波谱相比较,从而生成一幅分类图像。 选择菜单栏Spectral—Mapping Methods—Binary Encoding。在打开的窗口设置参数如下: 图1-1 二进制编码分类参数设置 注意:“OutputRuleImages”切换按钮被设置为“No”,规则图像将不被保存。 分类结束后,规则图像将出现在可用波段列表中,可以在任何显示窗口中显示(或链接/覆盖),并可以使用ENVI的像元位置/值功能进行查询。结果显示如图1-2:

图1-2 原影像图(左)与二进制编码分类结果图(右) 2. 波谱角分类 波谱角分类(SAM)是一种基于自身的波谱分类方法,这种方法将图像波谱与参照波谱在N-维空间进行匹配。SAM用到的参照端元波谱可以来自于ASCII文件、波谱库、统计文件或直接从图像中抽取(如ROI均值波谱),本实验中用的是ROI均值波谱。SAM把端元波谱(被认为是一个N维向量,N维波段数)和像元向量放在n维空间中进行角度比较。较小的角度代表象元与参照波谱匹配紧密。这一技术用于数据定标时,对照度和反照率的影响并不敏感。 选择菜单栏Spectral—Mapping Methods—Spectral Angle Mapper。设置参数如图2-1,波谱角分类结果,如图2-2: 图2-1 波谱角分类参数设置图2-2 波谱角分类结果影像 3.LS-Fit(线性波段预测)

高光谱应用研究综述

浙江师范大学 研究生课程论文封面 课程名称:遥感理论与技术 开课时间: 2014-2015年第一学期 学院地理与环境科学学院学科专业自然地理学 学号2014210580 姓名张勇 学位类别全日制硕士 任课教师陈梅花 交稿日期2015年1月21日 成绩 评阅日期 评阅教师 签名 浙江师范大学研究生学院制

高光谱遥感应用研究综述 张勇 (浙江师范大学地理环境与科学学院,浙江金华321004) 摘要:高光谱遥感是近二十年发展起来的谱像和一的遥感前沿技术。虽然发展时间不长,但由于其本身的特点,使其获得了广泛的重视和应用。本文阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。 关键字:高光谱遥感;应用;成像光谱以;研究综述 Conclusion application of hyperspectral remote sensing Zhang Yong (Geography and environmental sciences, Zhejiang Normal University, Jinhua 321004) Abstract:Hyperspectral remote sensing, developed in the late twenty years, is the advanced technology of remote sensing. Because of its characters, Hyperspectral Remote Sensing has been attached importance to and used widly. The characteristics and advantages of hyperspectral remote sensing, and development situation are presented in the fields of aviation and aerospace. Several typical hyperspectral imager optical system principle and the main technical indicators are particularized. At the same time, the applications with hyperspectral remote sensing in vegetation ecology, atmospheric science ,geology and mineral resources, marine and military fields are summarized. The suggestions for the future development trend of hyperspectral remote sensing are given in the end,including the remote sensing of low reflectivity target, high signal-to-noise ratio, high spatial resolution and wide coverages. Keywords: hyperspectral remote sensing;application;imaging spectrometer 1 引言 遥感是20世纪60年代发展起来的对地观测综合性技术,是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。经过几十年的发展,无论在遥感平台、遥感传感器、还是遥感信息处理、遥感应用等方面,都获得了飞速的发展,目前遥感正进入一个以高光谱遥感技术、微波遥感技术为主的时代。本文系统地阐述了高光谱遥感技术在分析技术及应用方面的发展概况,并简要介绍了高光谱遥感技术主要航空/卫星数据的参数及特点。 1.1高光谱遥感简介 高光谱遥感技术又称为成像光谱技术,是指利用很多很窄的电磁波波段从感兴趣的物体

拉曼光谱技术综述

拉曼光谱技术综述 摘要:本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。 关键字:光谱分析、拉曼散射、激光、光子 1、拉曼光谱的发展简史 印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射,称之谓并合散射。然而到1940年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太弱(约为入射光强的),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rrin show公司相继推出,拉曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,这样入射光的功率可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。 2、拉曼光谱简介:

红外光谱的原理及应用综述

红外光谱分析基本原理及应用 摘要红外光谱分析技术具有很快速,非破坏性,低成本及同时测定多种成分等特点, 在很多领域得到了广泛应用。本文介绍了红外光谱技术的检测原理,红外光谱仪的构造,指出了其检测的优点与不足。综述了红外光谱法的发展、应用以及对红外光谱研究前景的展望。 关键词:红外光谱原理构造发展1.引言 红外光谱法(infrared spectrometry,IR)是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法。分子吸收红外辐射后发生振动和转动能级跃迁。所以,红外光谱法实质是根据分子内部振动原子间的相对振动和分子转动等信息来鉴别化合物和确定物质分子结构的分析方法。 2.红外光谱分析的基本原理 2.1 红外光谱产生的条件 物质分子吸收红外辐射发生振动和转动能级跃迁,必须满足以下两个条件:一是辐射光子的能量与发生转动和转动能级跃迁所需的能量相等;二是分子转动必须伴随有偶极距的变化,辐射与物质间必须有相互作用。 2.2 红外吸收光谱的表示方法 红外吸收光谱一般用T_σ曲线或T_λ曲线来表示,λ与σ的关系式为: σ(cm-1)=1/λ(cm)=10^4/λ(μm)

2.3 分子的振动与红外吸收 2.3.1 双原子分子的振动 若把双原子分子(A-B)的两个原子看成质量分别为M1,M2的两个小球,中间的化学键看做不计质量的弹簧,那么原子在平衡位置附近的伸缩振动可以近似地看成沿键轴方向的简谐振动。量子力学证明,分子振动的总能量为: E=(u+1/2)hv 当分子发生△v=1 的振动能级跃迁时(由基态跃迁到第一激发态)根据胡克(Hooke)定律它所吸收的红外光波数σ为: σ=(1/2пc)√(k/μ) 其中:c—光速,3×10^8cm/s;k—化学键力常数N/cm;μ—两个原子的折合质量,g,μ=(m1.m2)/(m1+m2) 显然,振动频率σ与化学键力常数k成正比,与两个原子的折合质量成反比。不同化合物k和μ不同,所以不同化合物有自己的特征红外光谱。 2.3.2 多原子分子的振动 可分为伸缩振动和弯曲振动两类。伸缩振动是指原子沿着键轴方向伸缩,使键长发生周期性变化的振动。弯曲振动是指基团键角发生周期性变化的振动或分子中原子团对其余部分所做的相对运动。弯曲振动键力常数比伸缩振动的小。因此,同一基团的弯曲振动在其伸缩振动的低频区出现,所以,一般不把他做基团频率。多原子的复杂振动数又叫分子的振动自由度。每一种振动形式都有他特定的振动频

高光谱遥感及其发展与应用综述

高光谱遥感及其发展与应用综述 摘要:高光谱遥感是20世纪80年代兴起的新型对地观测技术。文中归纳了高光谱遥感技术波段多、波段宽度窄,光谱分辨率高,数据量大、信息冗余,“图谱合一”等特点,具有近似连续的地物光谱信息、地表覆盖的识别能力极大提高、地形要素分类识别方法灵活多样、地形要素的定量或半定量分类识别成为可能等优势,简单介绍了高光谱遥感在国外及国内的发展情况。在此基础上,概述了高光谱遥感在地质矿产、植被生态、大气科学、海洋、农业等领域的应用。 关键词:高光谱遥感;发展;应用 1高光谱遥感 高光谱分辨率遥感是指利用很多很窄的电磁波波段从感兴趣的物体获取有关数据。它的基础是测谱学。测谱学早在20世纪初就被用于识别分子和原子及其结构,20世纪80年代才开始建立成像光谱学。它是在电磁波谱的紫外、可见光、近红外和中红外区域,获取许多非常窄且光谱连续的图像数据的技术。成像光谱仪为每个象元提供数十至数百个窄波段光谱信息,能产生一条完整而连续的光谱曲线。 1.1高光谱遥感的特点 (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。 (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。(4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2高光谱的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势: (1)蕴含着近似连续的地物光谱信息。高光谱影像经过光谱反射率重建,能获取

高光谱在遥感技术的应用

高光谱在遥感技术的应用 高光谱遥感技术(Hyperspectral Remote Sensing)的兴起是20世纪80年代遥感技术发展的主要成就之一.作为当前遥感的前沿技术,高光谱遥感在光谱分辨率上具有巨大的优势。,随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛。本文主要阐述高光谱遥感的特点和主要应用。 1 高光谱遥感 孙钊在《高光谱遥感的应用》中提到,高光谱遥感是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,利用成像光谱仪获取许多非常窄的光谱连续的影像数据的技术。 [1]高光谱遥感具有较高的光谱分辨率,通常达到10~2λ数量级。[2] 1.1 高光谱遥感特点 综合多篇关于高光谱的期刊文章,总结高光谱具有如下特点: (1)波段多,波段宽度窄。成像光谱仪在可见光和近红外光谱区内有数十甚至数百个波段。[3]与传统的遥感相比,高光谱分辨率的成像光谱仪为每一个成像象元提供很窄的(一般<10nm) 成像波段,波段数与多光谱遥感相比大大增多,在可见光和近红外波段可达几十到几百个,且在某个光谱区间是连续分布的,这不只是简单的数量的增加,而是有关地物光谱空间信息量的增加。[4] (2)光谱响应范围广,光谱分辨率高。成像光谱仪响应的电磁波长从可见光延伸到近红外,甚至到中红外。[5]成像光谱仪采样的间隔小,光谱分辨率达到纳米级,一般为10nm 左右。精细的光谱分辨率反映了地物光谱的细微特征。 (3)可提供空间域信息和光谱域信息,即“谱像合一”,并且由成像光谱仪得到的光谱曲线可以与地面实测的同类地物光谱曲线相类比。在成像高光谱遥感中,以波长为横轴,灰度值为纵轴建立坐标系,可以使高光谱图像中的每一个像元在各通道的灰度值都能产生1 条完整、连续的光谱曲线,即所谓的“谱像合一”。 (4)数据量大,信息冗余多。高光谱数据的波段众多,其数据量巨大,而且由于相邻波段的相关性高,信息冗余度增加。 (5)数据描述模型多,分析更加灵活。高光谱影像通常有三种描述模型:图像模型、光谱模型与特征模型。 1.2 高光谱遥感的优势 高光谱遥感的光谱分辨率的提高,使地物目标的属性信息探测能力有所增强。因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:

相关文档
最新文档