高中数学教材变式题汇总:不等式

高中数学教材变式题汇总:不等式
高中数学教材变式题汇总:不等式

高中数学教材变式题汇总:不等式

1(人教A 版82页例1)

已知0,0<>>c b a ,求证:b

c a c >. 变式1:(1)如果0,0a b <>,那么,下列不等式中正确的是( )

A.11a b

< B < C.22a b < D.||||a b > 解:选A 设计意图:不等式基本性质的熟练应用

变式2:设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是( )

A .a +c >b +d

B .a -c >b -d

C .ac >bd D.c

b d a > 解:选A 设计意图:不等式基本性质的熟练应用

2(人教A 版89页习题3.2A 组第3题)

若关于x 的一元二次方程0)1(2

=-+-m x m x 有两个不相等的实数根,求m 的取值范围. 变式1:解关于x 的不等式()[]())(0113R m x x m ∈>+-+ 解:下面对参数m 进行分类讨论:

①当m=3-时,原不等式为 –(x+1)>0,∴不等式的解为1-

②当3->m 时,原不等式可化为()0131>+??

? ??

+-x m x 1031->>+m Θ,∴不等式的解为1-

1+>m x ③当3-

x m x 34131++=++m m m Θ, 当34-<<-m 时,131-<+m 原不等式的解集为13

1-<<+x m ; 当4-+m 原不等式的解集为3

11+<<-m x ; 当4-=m 时,13

1-=+m 原不等式无解 综上述,原不等式的解集情况为:

①当4-

11+<

<-m x ; ②当4-=m 时,无解; ③当34-<<-m 时,解为

13

1-<<+x m ; ④当m=3-时,解为1-

⑤当3->m 时,解为1-

1+>m x 设计意图:含参数的不等式的解法.

变式2:设不等式x 2

-2ax +a +2≤0的解集为M ,如果M ?[1,

4],求实数a 的取值范围? 解:(1)M ?[1,4]有两种情况:其一是M =?,此时Δ<0;其二是M ≠?,此时Δ=0或Δ>0,分三种情况计算a 的取值范围。

设f (x )=x 2 -2ax +a +2,有Δ=(-2a )2-4(a +2)=4(a 2-a -2)

当Δ<0时,-1<a <2,M =??[1,4];

当Δ=0时,a =-1或2;

当a =-1时M ={-1}?[1,4];当a =2时,m ={2}?[1,4]。

当Δ>0时,a <-1或a >2。

设方程f (x )=0的两根x 1,x 2,且x 1<x 2,

那么M =[x 1,x 2],M ?[1,4]?1≤x 1<x 2≤4?

??>?≤≤>>?0,410)4(,0)1(且且a f f , 即???????>-<>>->+-2

10071803a a a a a 或,解得2<a <718, ∴M ?[1,4]时,a 的取值范围是(-1,

7

18). 设计意图:一元二次不等式、一元二次方程及二次函数的综合应用.

3(人教A 版103页练习1(1)) 求y x z +=2的最大值,使y x ,满足约束条件??

???-≥≤+≤11y y x x y .

变式1:设动点坐标(x ,y )满足(x -y +1)(x +y -4)≥0,x ≥3,则x 2+y 2的最小值为( )

C 2

17 D 10 解:数形结合可知当x =3,y =1时,x 2+y 2的最小值为10 选D

设计意图:用线性规划的知识解决简单的非线性规划问题.

4.(人教A 版105习题3.3A 组第2题)

画出不等式组??

???≤+-≤-+≤-+-0330402y x y x y x 表示的平面区域.

变式1:点(-2,t )在直线2x -3y +6=0的上方,则t 的取值范围是______

解:(-2,t )在2x -3y +6=0的上方,则2×(-2)-3t +6<0,解得t 32 答案:t >3

2 设计意图:熟悉判断不等式所代表的区域的方法.

变式2:求不等式|x -1|+|y -1|≤2表示的平面区域的面积

解:|x -1|+|y -1|≤2可化为

11

4x y x y ≥??≥??+≤?或112x y x y ≥??≤??-≤?或112x y x y ≤??≥??-+≤?或110x y x y ≤??≤??+≥?

其平面区域如图 ∴面积S =

2

1×4×4=8 设计意图:不同形式的可行域的作图.

5.(人教A 版113页习题3.4A 组第1题)

(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?

(2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大? 变式1:函数y =2

m +1

12+m 的值域为 解:y =2m +112+m = (2m +1)+112+m -1≥2-1=1 ,所以值域为[1, +∞) 设计意图:均值不等式的灵活应用.

变式2:设x ≥0, y ≥0, x 2+2

2

y =1,则21x y +的最大值为__ 解法一: ∵x ≥0, y ≥0, x 2+22y =1 ∴21x y +=22(1)x y +=22122

y x + ≤222

122y x ++=2221222y x ++=423 当且仅当x=23,y=22(即x 2= 212

y +)时, 21x y +取得最大值423 解法二: 令cos 2sin x y θθ

=???=??(0≤θ≤2π) 则21x y +=cos θθ2sin 21+=21)sin 21(cos 222?

+θθ ≤22212cos (12sin )22θθ??++?????

=423当θ2cos 2=θ2sin 21+, 即θ=6

π时,x=23,y=22时,21x y +取得最大值423 设计意图:均值不等式的灵活应用.

6.(人教A 版115复习参考题A 组第2题)

已知集合}06|{2<--=x x x A ,}082|{2

<-+=x x x B ,求B A ?.

变式1:已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值

解:A ={x |-2<x <-1或x >0},

设B =[x 1,x 2],由A ∩B =(0,2]知x 2=2,

且-1≤x 1≤0, ①

由A ∪B =(-2,+∞)知-2≤x 1≤-1 ②

由①②知x 1=-1,x 2=2,

∴a =-(x 1+x 2)=-1,b =x 1x 2=-2

设计意图:一元二次不等式与集合的运算综合。

变式2:解关于x 的不等式()[]())(0113R m x x m ∈>+-+

解:下面对参数m 进行分类讨论:

①当m=3-时,原不等式为x+1>0,∴不等式的解为1-

②当3->m 时,原不等式可化为()0131>+??

? ??

+-x m x 1031->>+m Θ,∴不等式的解为1-

1+>m x ③当3-

x m x 34131++=++m m m Θ, 当34-<<-m 时,131-<+m 原不等式的解集为13

1-<<+x m ; 当4-+m 原不等式的解集为3

11+<<-m x ; 当4-=m 时,13

1-=+m 原不等式无解 综上述,原不等式的解集情况为:

①当4-

11+<

<-m x ; ②当4-=m 时,无解; ③当34-<<-m 时,解为

13

1-<<+x m ; ④当m=3-时,解为1-

⑤当3->m 时,解为1-m x 设计意图:含参数的一元二次不等式的解法。

7. (人教A 版115复习参考题B 组第1题)

求证:ca bc ab c b a ++≥++2

22

变式1:己知c b a ,,都是正数,且c b a ,,成等比数列,

求证:.)(2222c b a c b a +->++

证明:)(2)(2

222ac bc ab c b a c b a -+=+--++ Θ c b a ,,成等比数列,ac b =∴2

c b a ,,Θ都是正数,c a c a ac b +<+≤

=<∴2

0 ,b c a >+∴ 0)(2)(2)(22>-+=-+=-+∴b c a b b bc ab ac bc ab

.)(2222c b a c b a +->++∴

设计意图:基本不等式的灵活应用。

变式2:若0101<<<

14 111(1)(1)0(1),0(1)1644

ab a b a a b b --><-≤<-≤则又 21,01(1)(1)161(1)(1)16

1

,(1)(1)4y x x x ab a b ab a b ab a b =-+<<--≤

-->--通过的值域有这与矛盾因此,不可能都大于

设计意图:基本不等式与累乘、反证法综合应用。

8. (人教A 版116复习参考题B 组第7题)

要制造一个无盖的盒子,形状为长方体,底宽为2m 。现有制盒材料60m 2,当盒子的长、高各为多少时,盒子的体积最大?

变式1:今有一台坏天平,两臂长不等,其余均精确,有人说要用它称物体的重量,只需将物体放在左右托盘各称一次,则两次称量结果的和的一半就是物体的真实重量,这种说法对吗?并说明你的结论

解:不对

设左、右臂长分别是12,l l ,物体放在左、右托盘称得重量分别为,a b 真实重量为为G ,则由杠杆平衡原理有: 12l G l a ?=?,21l G l b ?=?

①×②得G 2=ab , ∴G=ab

由于12l l ≠,故a b ≠ ,由平均值不等式

2b a + > ab 知说法不对 设计意图:基本不等式的应用。

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

【有关高中数学教学的】高中数学经典大题150道

【有关高中数学教学的】高中数学经典大题150道 学习活动对学生来说本身就具有重要的意义,但是由于个体间的差异和教学时间紧迫等客观因素决定了在数学课堂上教师不可能兼顾到每一个学生的实际情况. 第一篇:民族地区的高中数学教学 1. 当前高中数学教学的问题和分析 ①不注重知识的循序渐进:从初中到高中的知识跨越是一个循序渐进的过程,一定要做到让学生吸收。 而现在的教师为了让学生掌握的更多,没节制的拓宽知识面,不断地补充一些公式或者特殊的解题方法,这些在高中生的高三复习阶段屡见不鲜,导致学生的负担过重不能更好的发挥。 ②因材施教没有落到实处:一些高中教师教学过程中分层教学把握不到位,教法单一。 只讲”范式”,不讲”变式”,只要求记结论、套题型,多数学生浅尝辄止,不求甚解。 学生学习毫无兴致,导致两级分化严重。 2. 教学新思路探索 2.1注重生源状况研究,实施因材施教依据少数民族地区生源质量较差的实际情况,

教师需要对其因材施教。 结合班级里学生能力参差不齐的实际,传统的一些僵化教法根本无法适应当前新课程改革的要求,无法推进后进生的转化。 教师需要根据生源状况,将其分为差、中、好三个档次,对后进生在知识方面进行详细的了解,设计问题的过程中可以梯度小一点,采取”小步子、慢速度”的原则。 2.2掌握新课改新课程的基本理念在新课改下,高中数学旨在构建学生发展和学习的良好基础,激励学生学习的积极主动性;促进学生的全面发展,注重学生数学思维的形成,把信息技术和课程化作一体,建立适应学生个性发展的学习体系。 这一切都要求教师提高自身的综合素质,在教学中探索更好的教学方法,实现从知识的传授到学生能力的培养的跨越。 2.3注重知识传授的循序渐进以及改进方法新课改高中数学教学的关键就是循序渐进,只有完成这个环节,才能顺利的开展教学。 有的老师眼中只有成绩,一味赶进度,形成”填鸭式”的教学模式。 但事实上这样会适得其反,数学学科肩负着学生运算能力、逻辑思维能力和空间想象能力的培养。 它的特点就是很抽象,对能力的要求很高。 所以如果不遵从循序渐进的原则,那么必然会形成很多学生的掉队,不仅会影响学生的兴趣,更重要的是还会影响其成绩。 所以高中数学教学方法一定要活,因材施教,要具有针对性。 教师要真正成为学生的引导和合作者。 考虑学生的自身状况以及学习需要,辅以多媒体教学,培养学生的积极性和兴趣,做到学生不仅能够掌握现有概念和技能,还能独立思考学习,要充分鼓励学生自主探索。

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

2020年高中数学新教材变式题5 不等式

五、不等式(命题人:仲元中学 邹传庆) 1(人教A 版82页例1) 已知0,0<>>c b a ,求证:b c a c >. 变式1:(1)如果0,0a b <>,那么,下列不等式中正确的是( ) A.11a b < B C.22a b < D.||||a b > 解:选A 设计意图:不等式基本性质的熟练应用 变式2:设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是( ) A .a +c >b +d B .a -c >b -d C .ac >bd D.c b d a > 解:选A 设计意图:不等式基本性质的熟练应用 2(人教A 版89页习题3.2A 组第3题) 若关于x 的一元二次方程0)1(2 =-+-m x m x 有两个不相等的实数根,求m 的取值范围. 变式1:解关于x 的不等式()[]()(0113R m x x m ∈>+-+ 解:下面对参数m 进行分类讨论: ①当m=3-时,原不等式为 –(x+1)>0,∴不等式的解为1-m 时,原不等式可化为()131>+?? ? ?? +-x m x 1031->>+m Θ,∴不等式的解为1-m x ③当3-+m 原不等式的解集为3 11+<<-m x ; 当4-=m 时,131-=+m 原不等式无解

综上述,原不等式的解集情况为: ①当4-m 时,解为1-m x 设计意图:含参数的不等式的解法. 变式2:设不等式x 2-2ax +a +2≤0的解集为M ,如果M ?[1,4],求实数a 的取值范围? 解:(1)M ?[1,4]有两种情况:其一是M =?,此时Δ<0;其二是M ≠?,此时Δ=0或Δ>0,分三种情况计算a 的取值范围。 设f (x )=x 2 -2ax +a +2,有Δ=(-2a )2-4(a +2)=4(a 2-a -2) 当Δ<0时,-1<a <2,M =??[1,4]; 当Δ=0时,a =-1或2; 当a =-1时M ={-1}?[1,4];当a =2时,m ={2}?[1,4]。 当Δ>0时,a <-1或a >2。 设方程f (x )=0的两根x 1,x 2,且x 1<x 2, 那么M =[x 1,x 2],M ?[1,4]?1≤x 1<x 2≤4? ??>?≤≤>>?0,410)4(,0)1(且且a f f , 即???????>-<>>->+-2 10071803a a a a a 或,解得2<a <718, ∴M ?[1,4]时,a 的取值范围是(-1, 7 18). 设计意图:一元二次不等式、一元二次方程及二次函数的综合应用. 3(人教A 版103页练习1(1)) 求y x z +=2的最大值,使y x ,满足约束条件?? ???-≥≤+≤11y y x x y . 变式1:设动点坐标(x ,y )满足(x -y +1)(x +y -4)≥0,x ≥3,则x 2+y 2的最小值为( ) C 2 17 D 10 解:数形结合可知当x =3,y =1时,x 2+y 2的最小值为10 选D 设计意图:用线性规划的知识解决简单的非线性规划问题.

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b a b +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2.2a b a b +≥,其中[),0,a b ∈+∞,当且仅当a b =时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b a b a b ++??≥≥≥ ??? + ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若a b 是定值,那么当且仅当a b =时,()m in 2a b a b +=。其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 m a x 2a b a b +??= ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:2 2 222 221222 4 a b a b a b a b -++?= ??≤≤? ??+≤-? ? ,当且 仅当1a b ==-时取等号。 变式:函数1 (0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1m x n y +=上,则m n 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1m x n y +=中可得1m n +=,明显,和为 定,根据和定积最大法则可得:2 124m n m n +?? ≤= ? ?? ,当且仅当12m n ==时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________. 解析:很明显,积为定,根据积定和最小法则可得:2 2 1122212 2 x x x x +++≥? =,当且仅当2 12 12 x x x += ?=-时 取等号。 变式:已知2x >-,则12 x x + +的最小值为 。 解析:由题意可得()120,2 12 x x x +>+ ?= +,明显,积为定,根据和定积最大法则可得: ()1122 222 2 x x x x ++≥+?=++,当且仅当122112 x x x x += ?+=?=- +时取等号,此时可得

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

北师大版数学高一(北师大)必修4素材 一道教材上的例题的变式和应用

高中数学 一道教材上的例题的变式和应用 教材第107页例5为:,OA OB 不共线,,AP t AB t R =∈,用,OA OB 表示OP ,它的结论是(1)OP t OA tOB =-+.此题等价于“,OA OB 不共线,若,,P A B 三点共线,则OP OA OB αβ=+且1αβ+=”. 解 () (1)AP t AB OP OA AP OA t AB OA t OB OA t OA tOB =∴=+=+=+-=-+ 说明:该例题是个重要题型,它的相关结论和变式很多:如当t=12时,1()2 OP OA OB =+,此时点P 为AB 的中点,此式称为△ABC 的中线公式(向量式) 下面给出它的几种变式和应用: 变式1:,OA OB 不共线,点P 在O 、A 、B 所在平面内,且(1)() OP t OA tOB t R =-+∈求证:A 、B 、P 三点共线。 证明: (1)()A B P OP t OA tOB OA t OB OA OA t AB AP OP OA t AB AP AB =-+=+-=+∴=-=∴与共线 、、三点共线 变式2:,OA OB 不共线,点P 在直线AB 上,求证:存在实数λ、μ,使得OP OA OB λμ=+,且λ+μ=1。 证明:∵点P 在直线AB 上,AP AB ∴与共线 ∴存在实数t,使得AP t AB =,则() (1)OP OA AP OA t AB OA t OB OA t OA tOB +=+=+-=-+= 令λ=1-t,μ=t,则使得OP OA OB λμ=+,且λ+μ=1。 变式3:求证:平面内不共线的三向量OA ,OB ,OC 的终点A 、B 、C 共线的充要 P B

高中数学不等式练习题(供参考)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B )a b <1 (C )lg(a -b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1+a ≥2 (a ≠0) (C )a 1<b 1(a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11)(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21, g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高考最新-高考数学复习复数变式题 精品

高考数学复习复数变式题(命题人:广大附中 王映) 1.选修1-2第62页例、选修2-2第116页例1: 1(1)m m m i ++-实数取什么值时复数z=是(1)实数?(2)虚数?(3)纯虚数? 变式1:若复数sin 2(1cos 2)z a i a =--是纯虚数,则a = . sin 2021,1cos 20222k k k z k ααπαππααπ =??∴+∈??-≠≠??=解:依题意得即= 变式2:使复数为实数的充分而不必要条件是 ( ) A .z z -= B .z z = C .2z 为实数 D .z z -+为实数 ∴解:要明确题目要求的充分不必要条件即要找出若“复数为实数”则不能推出的选项选B 变式3:若有,,R R X +-分别表示正实数集,负实数集,纯虚数集,则集合}{2m m X ∈=( ). A .R + B .R - C .R R +- D .{}0R + 222(0),)0m m bi b m bi b B =≠=-<∴解:若为纯虚数,设则=(选 2.选修1-2第65页习题A 组第5题、选修2-2第119页A 组习题第5题: 实数m 取什么值时,复平面内表示复数22 (815)(514)z m m m m i =-++--的点 (1)位于第四象限? (2)位于第一、二象限? (3)位于直线上 变式1:复数z=(a2-2a)+(a2-a-2)i对应的点在虚轴上,则(C ) A.a≠2或a≠1 B.a≠2且a≠1 C.a=2或a=0 D.a=0 200 2. a a a -=∴==2解:新课标教材上定义虚轴上的点表示纯虚数和原点,所以要求虚部为0即可. 即a 或 变式2:已知复数12z i =+,21z i =-,则在12z z z =?复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 123z z z i z ==-∴ 解:复数表示的点在第四象限.选D. 变式3:如果35a <<,复数22 (815)(514)z a a a a i =-++--在复平面上的 对应点z 在 象限.

高中数学解不等式解答

第二讲 解不等式(一) 一、知识梳理 (一)考点目标定位 高考中解不等式主要涉及到一元一次不等式(组)、一元二次不等式(组)、分式不等式(组)、绝对值不等式(组)、指数不等式(组)、对数不等式(组)、三角不等式(组)以及含参数的不等式等。其中尤以一元二次不等式、分式不等式、对数不等式、三角不等式为热门。 解不等式在高考中的题型主要是在综合题中作为解题的一个步骤有所涉及,在填空题中和集合结合为简单题型。 (二)复习方略指南 熟悉各种不等式的解题方法,特别是要注意分式不等式、对数不等式和三角不等式的定义域情况以及一元二次不等式的判别式情况。 二、知识回顾 1、不等式|2x 2-1|≤1的解集为 {x |-1≤x ≤1} 2、已知全集U R =,集合{}240M x x =-≤,则U M e= {} ()()+∞-∞--<>,22,22 或或x x x 3、不等式09 311421 2≥-x x 的解集为______(,3][2,)-∞-+∞_________ 4、不等式3 2-+x x x )(<0的解集为 ()(),20,3-∞- 5、不等式()210ax ab x b +++>的解集为{}12x x <<,则a b +=___- 23或-3____. 解析:∵ax 2+(ab +1)x +b >0的解集为{x |1<x <2}, ∴???? ?????==+-<.2310a b a ab a ,,解得?????-=-=121b a ,或???-=-=.21b a , ∴a +b =-23或-3. 6、不等式||52||1 x x ->-+的解集是 (1)(1-???,, . 三、典型例题 例1、解不等式:()R a x a ax ∈+<+2 1 解:原不等式化为()112-<-a x a 当1,1+<>a x a 有时; 当11+>-x x 解一:原不等式可化为??????<<-?∈<<-?∈-<-222223022x R x x R x x

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

高中数学不等式单元测试题(含有详细答案--

高中数学不等式综合测试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1> B .2ab ab a >> C .2ab ab a >> D .2 ab a ab >> 2.“0>>b a ”是“2 2 2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .R B .φ C .),(+∞a b D .(,)b a -∞ (理)不等式b ax >的解集不可能...是( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022>++bx ax 的解集是)3 1,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤< B .{|22}x x -<< C .{|13}x x -<< D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确... 的是( ) A . 11a b < B .2b ab < C .2>+b a a b D .||||||b a b a +>+ (理)若011<+b a a b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是( ) A .y x +x y B .4 5 22++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x B .01 )2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{a a C .}8|{≥a a D .}8|{≤a a

相关文档
最新文档